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§1. INTRODUCTION: In this paper we are concerned with a property of
measurable multifunctions, related to the bang bang principle in the control
theo.ry. It is well known an infinite — dimensional version of the Lyapunov
convexity theorem, stating if T' is an integrable convex compact-valued
function from a measure space (Q, o4, 1) with 4 > 0 non-atomié, 6-finite, into
a separable Banach space E then the sel Sp.of measurable selections of T

contains as a dense subset the one of its profil, i.e. the multifunction T defined
as ! T'(w) = the set of exiremal points of ['(»), for the topology 6(L} ,LE,").

In the present paper the above density property will be established for
measurable multifunztions which need not be inlegrable with emphasis on
the topology in which the density is considered, It will be shown that for the
case when Q is an interval in R, the density proper ty in’ questlon still holds for
some topolodles in L}, finer than the weak omne.

We shall deal with measurable multlfur}ctlons taking values in a locally
convex Suslin spaces E and consider SI' as subset of a generalized Orlicz
space ME of measurable functions from Q into E, mclh_d;ng thus the spaces ‘UI}
with 1 <{ p <¢ o, with E separable Banach.

The main results will be stated in § 2 and proved in § 4. ‘Auxiliar lemmas
are given § 3.

§ 2. NOTATIONS AND STATEMENT OF RESULTS.

1. Notations. We shall deal with a complete measure space (2, o4, 1) With
3] > 0 need not be § - finite, a locally convex Suslin space E not necessarily
melrizable {4]. As always, £’ denotes the . topological dual of E, <..> the
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¢anoénical bilinear form beiwéen E and £', 4(E) the Borel tribe in E, A4 ® B(E)
the smallest &~ fleld in QX E containing all the setsof form A X B with A € A4
and BefoF‘) By a measurable multifunction from Q into E is meant any
funct;on I' from Q into the collection of all the subsets of E such that GraphT'A

{(w, 2) € QX Efx € T (0)} € AYB (E). For a function f: Q2 — E, we shall say
that it is A—measurable in the usual sense it f—(U) € £ for every open set v
in E, or equivalently, f~(B)E4 for every Borel set B in E,. Let us cite below
two facts which will ke used frequently without reference.

A/ Let (Q, A. u) be a complete measure space withy >0, finite. For a
function f : @ — E, the following stalements are equivalent :

a) Graph € A4 ® B(E)
b) f is scalarly measurable, i.e. for eachx’ & E’, the function w — (f(w),z7)
is measurable in the usual sense.

¢) f is the pointwise limit of an ordinary sequence of measurable functions

assuming a finite number of values,
d) /' is measurable in the usual sense

€) the function w — (f(w), g(w)) is measurable (in the usual sense) for every
scalarly measurable function g: Q — E°,

Proof : The statements ) < b) « ¢) « d) can be.found in [7] (Theorem
L.3.6) while the implication ) = ¢) follows immediately from )c=>e) and
the inverse one is trivial.

k
B/ With (Q, o4,|1) given asabove, E = . E® is the Carlesian product of
s=1
locally convex spaces El, Ez yuny EX ..Suppose that for each s either E° is Lusin
or (E? )’ as well as ES is Suslin. Then for each scalarly measurable function

g= (¢ )*: Q — E', the multifunction defined by : V (w) = {x = (z° )%
§=1 os=1

. € E |max|{2%,g° (w))] <1} is measurable, where (., .), denotes the cano-

=1, k
nical bilinear form betweer E®and (E° y.
Proof : It suffices to show that for each s, the function (v, &° ) — (x% ¢° (1)),

is A4 ® B (E°) —measurable. Indeed, since, clearly, the function (w, &) —{w,z)
is measurable from Q X E into Q X ES, the functié_n (w, ) = (x%,9° (o)) is

o & ‘B (E) — measurable, hence 30 is the function (v, ) — maz |(z°, g° (v))s|-

Sam?l

Consequently, Graph V ¢ £ @ 3 (£).

u
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If £%is Lusin then the function (w, 3 )—(z° ,g* (w))s winch is continuonsin
x * on E* for each fixed w ¢ Q and -4 —measurable for each fixed 2 e Es,

is o4 @ B (E° )—measurable by a result of Castainz [6, Cor. 3 to Theorem 1},
It (E°y is Suslin now, then by c¢) above applied to (E° Y, this function is the
limit of an ordinary sequence of o4 ® B (E° )—measurable, hence it is ARB (E%)
—measurable itslef, what in turn yields the measurability of V.

In what follows, if (Q, o4, u) is an arbitrary measurable space with ¢t > 0,
Mg (), or simply Mg (cH g (), or simply /") will denote a vector space of

meagurable (scalarly measurable functions) from Q into E(E’, resp.) We write
Mg (NE,) for the quotient of Mg (c/g, resp.) by the almost everywhere equal-

ity equivalence relation. It will be always supposed that #g and 4y form a
duality pair, i.e. forall fe Mg, ge of/p the function w— {f (o), g(w)) is L —
integrable on Q. For a set ACE we say that Mp is A—decomposableil for every
measurable set QyC Q of finite measure and for every measurable function
fo: ©2¢—E such that f(w) € A a.e. on Q, the function f, defined by: fi(w) = f(w)
if e Q, fi(w) = f(o) if 0eQ\Qy, belongs to Mg () for any f & Mp(). We
say simply that /g is decomposable if it K—decomposable for every compact
set K [7, VIIL3]

Finally, for a multifunction I’ from Q.into E, I|, denotes the restriction of
I' on Q,, Spe(Sp) denotes the set of all measurable selections (classes of measu-
rable selections, resp.) of I, and ClCo TI' is the multifunction defined by,
(CICoT) (w) = ClCoT' (w), where Co stands for the convex hull and Cl the
closure of sets in E.

2. Statements of results,

In what follows, J is a closed subset of R, ! > 0 is a Radon measure onJ
E is a locally convex Suslin space, Let us introduce in My the topology defined
by the system of neighborhoods in g, given by:

Us;ghgm.. = {feJ?tE | sup U (F 1), g (MY L@ (e V'j-m, . }
AEY ANT :

where {g1 92 ., gm} © o¥g and % denotes the family of all intervals in R, We
shall call it s(M g, Np) — fopology.

THEOREM 1: Let L be a non atomic measure on J, T be a measurable mulii-
function admiltting at least one selection in _#lg. Suppose :

(i) either E is Lusin, or E’ as well as E is Suslin
(i) there is a balanced convex Borel set A in E such that Mg is A—decompo-
sable and the range of T is contained in the linear hull of A.
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(ii*) (replacing (ii)) M, is decomposable.
Then Sy n My isdense in S 1 N Mg in the S(ME - Nps) ——«to;;ology.'

" Let (J, ) be given as in Theorem 1 and E a separable Banach 3pace We
mlroduce in L (J} the norm defined by : ‘

IlfII = su

]«(t)u(dt)“ forally e /.’F(J)where It || is the norm in E
269 ||

SA(\I

THEOREM 2: Under the above assumpiions on (J, W), E, let T be a médsura-
ble multifunciion from J into E, admitting at least one integrable selection. Then

Yy 1 = . a 1 . .
St LE is densein Sl N Lp i thg s-Horm.

THEOREM 3 : Let (Q, o4, 1) be an arbitrary comp_let-e :ﬁeqsurc space with
W >0, non atomic, T : © - 2F be a measurable mullifunction, admilting at least
oneseléctionin Mg - Suppose ‘ :

(i) either E s Lusin, or E’ (as well as E) s Suslin.

(ii) there is a balanced convex Rorel set 4 in E such that _ﬂtE is A-decomposa-
ble and the range of I' in contained i1 the linear hull of A.

(ii*) (replacing (ii)) My, is decomposable.
Then Sp N My isdenseinS,p n Mpinthe s—~(Mg N p) — tbpology.
THEOREM 4. Let (Q, o4, W) be a measure space wilh W > 0, nonatomic, E

be a separable Banach space, T be a measurable multifunclion from Q into E
admiliing af leas! one integrable seleclion.

. | . _ 1 .
Then the set SQ S n LE) is dense in the setSn(SCICOI« N LE) in the. no:’-m
of E. ~

Remarks: In the case where the multlfuncllon I is 1nteorable the results

of Theorem 1 and Theorem 2 were obtained in [12} for the finite dimensional
E and in [13] for E being locally convex Lusin space. It should be noted that
the s-topology in M. is, obviously, finer than the o—(M , N .)_—_tp.pblog‘y, whea-
ras such an assertion fails when replacing the latier topology by the topology
defined by the s-norm. Indeed, by virtue of Theorem 2, any element in
S¢igor N L4, can be approximated in the s-norm by an ordinary sequence in
SN L whenever the latter set is noempty. However such an assertion fails
to hold 1t the s-norm is replaced bythes—(Mp, Np)— t0polodv and,-a tor:tlory,
by s-topology. Namely, Valadier gave 1ecently an exa nple showing that even in

%
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the two—dimensional case one can not in general, approximate in the wealk
topology an element of ,S(.'I(:ol" N L‘ﬁ? by ordinary sequences in Sy N L}Rﬁ {19].

Thus Theorem 2 together with the mentioned example shows in particular that
the s-norm topology is not stronger tham the weak one in Lfg . Theorem 3 is

not quite new. It- was obtained in [18] [19] in other ways for the case
M Q)= ﬁ;z(ﬂ),%ﬁE () = £3 (2) with separable Banach £ under the c-finit-

eness hypothesis on M.

The first results on density property in question were apparently obtained
in {5] {9] [10] [11] [16] [17] [3]. In context of control theory this question was
considered in [20] [15] [9] [10] [1}; (2], [8)s {7], [14], where one can find more
complete references on the subject as well as its applications.

§3 LEMMAS: In this section we shall prove some auxiliary lemmas which
are essentially intermediate sieps in proving the ma.n results, stated in § 2.
Some of these facts could be of interest initself. At first, recall thata measurable

space ({2, -£) is said to be complele if 4= N ;4\“, where azl\p. is the tribe of
HEM L

ail the subsets in Q of form: 4 = A v M with Al € A4, M ¢ N € o4 and

K(N)=0, M is the space of all probability measures on (02,04). It is easy to see

that if (Q, o4, 1) is a complete measure space with {1 > 0, 6-finite, then (Q, A)
is a complete measurable space (for this notion and relaled facts see
17, Ch. III}). '

LEMMA 1: Let (Q, o) be a complete measurable space, E be a lo ally-convex
( o

- Suslin space, € = ] a; be a sejuence of measurable functions from Q
. Ji=1 "

inlo E, and a(.) be a measarable function such thal a(w)e CICo Jaz. { ) gm

for all o € Q. Then for any measurable multifunction V from Q into E taking
values in a system of neighbourhoo Is of the origin in E, there exist a nondecreasing

k=1

sequence ;Qf f“ of measurable sels in Q and for each i s [N, @ set 3?»1' fi of
i=1 '

) , i
i nonnegative measurable functions on Q! such that 3 ?L;c (w)=1, -
© k=1

i Lo . : . e .
I M@y @ea@+V@foradloe (i=12.)aduv Q=0
k=1 fo=l

2 - 1163 - , 17



Proof. Let S depotes tlie (countable) set of all rational vectors of the
stardard simplex in IRl . e '

i

3(?\ ) ‘ A, >0, rational, £ A, = 1{. Let
==1

| p=1 X
St A n alon o a0 By Sgt AT (@) =
; fn—-l ’ ( k )k“—~"1 T e ()
2 @ 00 = o e 1" e a) + VW] (reid

) o s
and Q! — Qb (¥t €|N).

n=]

It is easily seen that Q°? ¢ 4. Indeed, by hypotheses. on a(.), a, (.30 (1)

isn

({=12..) and in virtue of A (@) = (b) in § 1, the function — a(.) + A e() i
meastrable and our assertion follows then from the Yankov-Neumann’s pro-
jection theorem for Suslin space [7. Theorem. III. 23). Clearly, Qi = Qiﬂ(’v‘ielN)

?\i(w)f; . ;%;n ;; 1

for all w e QLA U Q52 1t is easy to check that the sets Q7and the functions
min

and U Qi =0 by hypotheses on a(.). For each i ¢ IN set
i=1 '

. i
;.1 (r.j)f (¥ieIN) possess al! desired properties.
k =1
COROLLARY: Lel (8, oA), E given as-in Lemma 1, let T be a measurable
mullif unction from Q inlo E and a(.) e Scicors Then for every measurable multi-

function V from Q inlo E taking values in a sys'em of neighborhoods of the ori-
gin in E, there exisls a nondecreasing sequence {Qi}z_” . of measurable subsets of O
b o ‘ fe .

, , i
such that v &' =Q ad for ealii e |N, there exisls a set ?%}cm,(.) i of i non-
: i=1 _ =

npgaiwe measurable funcimns on Qf such that L ?\ (w) =1 and Z ?L (w) a, (w)s
k—l k=1

a(w) + V(o) (Vo ol ) where {a (. )} is a Castaing Tepreseniation of T,

Proof : The existence of such a sequence {ak(')}:—1 is well known [7, The-
orem III Since a (w) & CI {ai (w) ];1 (Vo e Q) the conclusion follows readily
from Lemma 1, - ' |

i
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LEMMA 2: Let (Q, o) be a measurable space, E be alocally convex space, A
. be a balanced convex Borel set in E and ai, a,,...,dn be measurable functions with
ranges conlained in the linear hull of A, : '

. Then there exists a nondecreasing sequence { Q'P};_l of measurable sels in 3

»

such that v I}p =0 and
p=1

@ 1) v ak(ﬁp) Cp. A(’v‘ € ]N)
=1

n
Proof. Set Q) = ﬂ_ a! (p.4). Clearly, Q, € of _and R, C Q,, (¥, € |N)

Furthermore, since the range of az(= k1,2,..., n) is contained in the set fj p.A
K p=1

by hypothesm, we have Q = {J (tp, The inclusion (3 1) follows 1mmed1ately
p=1 ) ) .
from the definition of .O.P (p € IN)

LEMMA 3: Let (Q, o4, 1) be a complete measure space with Y. > 0, finite, E
be a locally convex Suslin space, u (.) (I = 1,2,...,n) be measurable functions from

of measurable sets

Lb

Q into E. Thenthere exists a nondecreasing sequence, Qp f

in Q such that u(Q\G{Qp) =0 and for each p&« N andi=1,2,...,n Clu, (2p)
p- N N )
is com pact.

Proof : If n =1 the result of Lemma 3 is welI—known [7, Proposition VII-4],
The general case is reduced to the previous one by setting 1= (uy,u,,...,0,):
Q — E® and observing that the projection on E of a compact set in E" is compact,

LEMMA 4: Let I bea compact set R, W be a nonatomic nonnegative Radon
measure on [, (E, |l _,%_H ) be a separable Banach space,'b, e £5(I), X, € Lry 1))
(i=12,.., n) % li (f)=1 for all tel, Then, .for every < >0 there exists é )
measurable puriition of I into n sets M, (i =1 2, 10s11) such that -

sup || n
AeY S ANT {E NG (?) z::,1 M b, (:)lu(d:) | << € Wwhere % denotes
the family of all intervals in R
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Proof : Inthe case / isa compact interval the proof is givenin[13]. The general
case amounts to the above by taking a compact intervall, containing [ and setting
(@)= O0MGCILN\)b (=0, % (H=1/n(i=1,2,.,n) for all t in I;\I.

LEMMA 5; "Let LS, ,,4, L) bea complete measure space with & > 0, finile,

nonatomic, (K, || ||) be a separable Banach space, a, (Yefy (i=1,2..,n)and

A (L) (i=1, 2,.., n) be nonnegative measurable funci:ons on Q such that

n

: . A(w)= 1 (Vwef)). Then for every ¢ > 0 there exists a measurable parttt:on

{ﬂ-{j.}j_l Of Q such that

”S [z A, (w)a (m)—}L x“ (w)a(m)]u(dm)

I='1 i=1

Proof Note f1rst that 1f a() & £ E(Q) and g >0 then there exlsts an (1nte-

grable)functmn o 2 — E assum.no at most a countable number of valnes such

that I a(w) — a(w) i < £ (’v‘we Q). Indeed, if {x b7 is a sequence dense in
E, it suffices to set, for each w e Q a(m) =, if & is the smallest integer such
that a(w) eBEI (=, ), where Bel (x,) denotes the ball around 2, with radius e;.

Lef now EI.(.) be a measurable function with at most countable range such

that [ a; (w)— ;:1!. () | < e2M(Q) (i =1, 2,.... n) and .{Qk}?:i be a measﬁrable
partition of Q such that- on each QX the functions a.(.) take constant valges,
say,Fi (w) = cf i=1, _2,...., n). By virtue of Lyapunov’s theorem [7, Theorem
IV, 17] for each k g' N'tlie‘re exists a measux'ei)le partition {Qf} f= 1 of of ~such

that (QF )_ (RS M (m) H(dw). Set & =T Qf. We have:
k=1

S Ik, () q () K(dw) = I &‘."S A, (0) Mdo) = = & poky
Q‘kl'=1 i iﬂl 1 nk I i"——i 1 t

=3 Sn‘f.—&" (o) H(dw). Hence, Sn z o 0 I-l(dw)_..

. 21' S..Q.! a; (w) H(dw) = 31 SQ Xa; (@) ai‘(m) ll(.deu)

——
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Finally, it follows from the choice of a(.) that

=—3

SQ L%l Aj(@) 'a,-‘ (w) — Eﬁn.-(w),af (m)} u(d;)

” \ %__El"s ()1ey ‘-‘“)—”&;- (w)]-—éixni(@)[a; @ ~2 @K (@) || < ¢

Thus the lemma is proved,

§ 4. PROOF OF THEOREMS :

1. Proof Theorem 1: Since the case W(J) = 0 is trivial, we can suppose
that W(J) > 0. Let b(.) € Sp Ay, which exists by hypothesis, a(.) € Sy, N A,
e > 0 and {g, gasees» Gmf & oF > be given. We have to show the existence of
an element () ¢ ' N Mg such that h |
(4.1} sup | f<a(t)—p (1) gj (1) >Rd) | <e (V'J = 1,2,..., m)

AsYy  Ang

To do it take first a bounded in_téifval I |R such that
4.2 { |I< a(t) — b(t), g, (1).> | (dt) < ¢/4 (¥, =1, 2,u.,1)
\ N

Since as noted above in §2 the multifunction t — V(i) =
= {zeE || < x. gj( B) > | < g/4l(InJ)} is measurable, according to Corollary

to Lemma 1 there exist a measurable set J. < Il afinite set {b, }i:1 indp
along with n nonnegative measurable functions li () (f = 1,2,...,n) such that
(4.3) mazx S

Jj=1,2,...n

| << art) — b(1), g.(t H(dt) <e,/8
i) < O O 5 > () <o g8

n £
(D) =1(&J;)and
i= .

att) — 30 (D) b (D e V(1) (¥ & T ) Lo
i=1

. L .n ' . ’ . . . )
(4.4) maz | <<a(l) — Z X ()b (1), g, (1) > 1 < /4 (ANT) (Ve T.)
j=1,2....m i=1 : : .

Applying Lemma 2, or Lemma 3 under Assur;:ption (ii)", to the functions
t — (_bi (t), (‘bi (t)s 94 (0) ) (bi (®, g,(t)),..."b,. @, gm(t)))(i = 1,2,.., n) from J_

" into EXR™; there exist a measurablese J° C J, and a number p > 0 such that
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(. o)ﬂ max, oo lay —2 0, gj(r)) [ (dn < o8,
T e

(4.6") max 1,3, l /b, M, g. (f)) l < p (V’fEJD)
=1 !2s )

(4.6 b, " pA or, under Assumpt:on (iiy, b, (/) C K, where K isa

sompact set (i = 1.2,...,n). 5

Clearly, we can suppose that J° is compact.

Taking into account (4.6’), we are enable fo apply Lemma 3 to the functions

t - ((bi (), g}(t)) , {bf D, gy (1) semm (bi (), gm(t)>) (f =1.2,...,n) from J° into [R™

(endowed with the norm | x| = max | ; | forallz =(2,,&yy.., 2 JEIR™).
. 1_1!2!'°',m
According to this lemma there exists a measurable partition{M ; }" of J° such that -
. ‘ {om

an_mex ;?‘:131. O (b, ® &)~ = iy OB, 5,0
AnJe - ‘ -

d) < 2
(@) < -

Set — b.(H)ift & M
b(t) = ?b(t) it LI\ J°
By decomposablhty hypothesis on A, , it follows from (4.6") that b () e

Irn My Moreover, by (4.2), (4.3), (4.5) and the definition of B (.) we have

‘(a(t) -3 @, gfi-(t)) K (df) ‘ < l S(a ) — _:: Xy, 5 O 9, (t))u(d:) +e/t
and - and® = S

end by (4.4), (4.7).

| (< a0 - E %y 02,0, é,(t)> u@ <] < a0 -
AnJe
- E2,®b, @, gi(t))|u<dt)+{5( Ea080

Ar\.fv
u - - ‘ .,
. —ff xm__(t)bi (th g, (H ) p(dt)l< /2
which shows (4.1). : o



Proof of Theorem 2: Lel b() & le-./'\ .g Let there hegwen a(.) e chlCoFA

-‘IE and s > 0. As above, we can supposs that t (J) > 0. Likewise to what- have

been dome in the poofl” of Theorem 1, by using Corollary to Lemma 1 and
Lemma 2 and the integrability of a,b we find 2 compact set J* C J of nonzero

measure, a finite set {bi () }"_1 in CSF]J“ and n nOnnégative measurable func-

tions A, () ({= 1,2,....n) on J° such that

(4.8) § Il a(@®—b@nd) < g2
: NANR L . :
n .
ZhH=1 for all t in J°
feal
49 - - Ialy — 22, (Db, (1) I <e/dlt (J9
1 f=1 .
T (4.10) Il bl. ) I <pforall fin J° for a sunitable number p €N

By (4.10), it follows Lemma 3 the existence of a measurable partition
{ M, } of J° such that
|

(411) - sup- | { [ (Db, (t) - z xM (Db, (t)Ju(bt) << s/4
AE? (=1
AnJ®
Set
B(t) = 5 x (t)b t if teJo
. i1 . .
b(t) if te\J?

Clearly, Sp n £L 3B() - Moreover, it follows from (4.8), (4.9), (4.11) that

{0 =T @1 < 6/2) +1{la) — % O, 011 @)1
ANS anp T o
em +| (] J LORS LU (f)]u(di)”-}-HJ [ 2300,0- 2 1,00,0]=

Anyo AnJo
. Rl <e
This concludes the proof, -
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3. Proof of Theorem 3: Let b{.) ¢ Sp My . Given a(.) e Sercor N My

f m
{gj }j...1 C:c/}’E, and ¢ > 0, we have to show the existence of an element

B()e Jp N My such that

(4.12) |§ Ca@) = B @), ;@) 1 @) | <& (= 1, 20y )
n i * i

Set Q m’msﬂl(l_/k -+ 1) { mazx I( a(v) — b(m),gj (@)} l < kf

j-1,2,.--@,m

By A)e) O, €A (k=0,12..,) . Clearly {Q, }7,

is nondecreasing and << a(w) — b(w), ¢ (@)>=0forall v € 2\ 0
. k=1 k
and j == 1,2,..;, m . Hence,

4
5 I mar €0 = B g0 (@) = f maz | (aw) = b,
Dt N2 | ~ Q | ‘
g;(@) ) [ 1 (dw) < + o=, which implies 1 () = o by definition of 0, and
(4.13) Sm“fj_i,z,...,m | € o) = blu), g;(w)) | K (do) < e/d
e, .
for some k, large enough. We can suppose that M} (Q Jrfo)-> 0. By using Corollary
to‘Lemn_'xa 1, applied to '-Q-ko. T, d ,Qka and the multifunction V: ol V(w)
é {xeB|{ =, gj(m )M ‘<z/4u {Qka)} which is measqrable by B)in §2, there‘
exist a measurable set Q_C Q , iogether. withi nelements by, b,,..., b, in
érl Q and n nonnegative measural_)le functions A; (), A, (Do An () on O
such that _ :
(1) (mazy oo W KE() = Do) g (o) 1B Wo) <o \
2, \0, |

i=t

5 A(0)=1(¥oeQ,) and a(v)— 3 xi(;)bi(m)ewm_), i, e
=1

LY
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(@15) maz |@(o) ge); wz A (o) (B (od gy (aN]

' <e/2n(n_)(vmaa) |

By virtue of Lemma 2 (or Lemma 3, under Assumption 2 (u) ) apphed to

the space E x R™and the functions
© |~ (b; (w) (b, (w), g1 (w)), (b, (@) ga (0rens b;(w) g, (u)>)
(1 = 1,2y n)
there exist a measurable set 0° in Q_ and an integer p such that
4. 16) S’.",“"’jﬂ, Zpereym KTCO) = B Cads g0} [ 1 (do) <e/8
e\ °

[¢h;€¢0) g ()] (p(Fee&ld®i=1,2.,n; j=1 2..,m) and ()Y p. A4,
or, under Assumption 2) (ii’), b, () C K, where K is a compact set in E. By

Ljapunov Theorem (see [1], {7]) there exists a measurable partition {}, }i:1 of Q0

" such that

wn{f %, ) (5@ g, @) = =y @) (5@ g, ) |1 @) =0
,na - |

(j== 1, 2,--., m)

. E Ay (@) b; (w) foe®
- Set b(&))z (=" h[ ‘

b (w) | if 0 € O\

By the decomposability hvpothems on #; and the choice of Q one has
F(yedrn Mg From (4.13), (4 14), (4.16) it follows

(.18) |[(a(w) =B g (o)) M| < (12)+ | (a(w) — T, 65 (o)) H(do)]
' The second term on the right is less then or equal to

|

no

a(w) = £ 0w by (o) g;0)) | U(d) + {(En 0 u0-
- | o 143 ' 7

n

= I X (0) By (@), g; (@) W)

Toed

. Thus, by virtue of (4.15), (4.17), the inequality (4.18) yields (4.12), This
- completes the proof,
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.4-.Proof of Theorem 4: Asabove, it suffices to examine the case U (Q) = (.
Let b(\) € S M L’.é exisiing by hypothesis, inen an a(} € Sppp N [3;5 and a

number ¢ > 0, we have to find an elemenl TJ(.) € dp N E‘E such that
(4 19) II [a(w) — Blw)] H(dw) || <€

Set @, = {we&Q (1 k+1) <[l a() ]| + [ b(») | < k }. Itis clear that
Qeaz,!ﬂ CQk*'I (k._O 1. y ) and
a(w) = b(w) =0 .

=]
forall w e O\ v Q,. Hence,

= Cha@)+ 1 bo) u)u(dw) = { e 10 1 11 <+ =
5= i\ oo S “

It follows that El(ﬂ ) < oo ( k= 0 1, 2,. ) and

4.20) S el + 1o ] ) < o |
/0,

0 .
_ for some integer k, large enough.: We can suppoese that 1t (Q ) > 0. By V1rtue”'
of Corollary to Lemma 1 there emst a measurable subset .Q e Q , n

elementsb (1__12 ,n) in CSFIQ and n nonnegatwe measurable functions

'nﬂ A (1_1 2,. ,n)suchthat

@z o S Ila(w)ll+ﬂb(w)lfl u(dw)<s/8 S

INSE

A () =1 -{v@; €Q_)and

(4.22) | a(w) — iki (@) by (wyff <e/4(Q) (V0 €0y ) "

Lef Qo be‘a measurab’e ‘sét in Qs Such' that
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(4.23) S [l a)l + [ 1] W(dw) <ef8
0\ 00 .
and on Q° the functions b!. (i =1, 2,..., n)are bounded. The exis tence of sucha

set is ensured by Lemma 2. We can now apply Lemma 5 to the functions
bi (i=1, 2,..,, n). Acco'rding to this lemma there exists a measurable partition

,M ‘n of Q0 such that
ili=1

~ n n )
(4.24) S [ T, (@) b, () — 2%y () b.(m)] R(do)|| < ¢/4
Q0% =g ! =1 i t
It is easily seen that the element b defined as
2 ki @) fwess
® W) if & R
T =l *ar _ | ,
b(w) , if we Q\nﬂ :

is one to be found. Indeed, the inclusion b e S A ﬁ; is evident while the
inequality (4.19) follows fom (4.20) — (4.24). '
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