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INTRODUCTION. The theory of multi-functions and vector-valued amarts
has been developed and exténlively studied in recent years by Kuratowski and
Ryll-Nardzewski [8], Himmelbeg [7] Castaing and Valadier [3] Hiai and Umega-
ki [6] B.K. BPam and N.D.Tien [5], Bellow [2] D.Q.Luu ([9], [10]) among others.
The main purpose of this paper is to consider the class of all multi-functions
with closed ball values in a separable Bamach space. It is shown that one can
embed the class of all inlegrably bounded multi-functions with closed ball values
into some Banach space. These resulis lead to consider various processes of
maulti-functions with closed ball values. In Section I we recall some necessary
notations of multi-functions. Main results are proved in Section 2. InSection 3
we give some applications of main resulls to the study of ‘some classes of
amarls with closed ball values in Banach spaces.

I. Notations. Throughout the paper let B denote a Banach spal:é with scme
norm denoted by | .| and Ly(B, Z) the Banach space of all' B-valued Bochner
integrable functions defined on some probability space (. % P). By K we me-
an the class of all closed bounded non-empty subsets of B with the usual Haus-~
dorff’s metric h (. , .). A function F: @ — K is called measurable if every set
fw: F(v) n V <=9} is measurable, where V' denoles an open subset of B. If this
occurs then we write E e p(K, Z) with

Sp(Z) = {f € K(B: 5)); f(v) € F(w), a. e}



where 2, is a subo-field of Z. Such a function is called integrably bounded, if
the real-valued function w | — h (F(w), {0}) is integrable. If this oceurs then we
write F € Ly (F, X). In the case the integral of F over A€l is defined as
follows -

JFAP = {[fdP; &S, (Z)}
A A

Moreover, if Iy, F; & L; (K, Z) then
H (Fy, Fy) =§h (Fy (w), Fy (o)) dP
0 A

defines some complete metric in L; (X, Z).

Remark If we denote
Kc= {A€K, Ais eonvex}

K, ={AcK, Ais convex compact} and
.-Ks.—_.—' {4 €K, A is a closed ball} then

in the case, wheré_B is an infinite dimentional Banach space we have
KCC+Ks .

2. Measurability and Integrability of Relations With Closed Ball Values

Before giving main results. of the paper we note that every closed ball of
B can be written only in a unique way x - rU, where x € B, r > 0 and U denotes
the unit ball of B. Thus every multifunction F with closed.ball values can
be written only in an essenlially one way, i. e.

, *F(w) =f (0)+r (w) U, a: e.

- where f: @ — B and r: Q- [0, o). The natuaral 'qucstion arises whether f and
rare measurable if F is measurable? and integrable if F is measurable ? We
shall give some positive answers to these questions,

LEMMA. 2.1. Let B be a Banach space (it not to be separable) and Iet {4) -
h (4, {0}) for all A¢K. Then (X, |.[) can be regarded as a closed convex cone
of BXR with the norm | (x. r} == |||l 4 [r|. More precisely, there is a linear
(w.r.t. the positive scalars) one-to-one isometric emheddmg I from K into
B X R.

Proof, Let B be a Bnnach space. Define

I (x+rlU)=(z.,r). It is easy to check that the opernlar I satisfies all the
required mentioned above conditions

COROLLARY 2.2, A Banach space B has the R-N- Property iff K has.



TAZOAEM 2.3 Let. B be a §:parable Banach space and F: Q— K ie
F () =f(v) + I (), a.e. for somef: QB and r: Q — [0, . Ihuz E is
@ measurable iff both-f and r are measurable. S

Proof. The sufficiency has been proved in ([3), theorem IIL 41). Tize major
part of the proof contains in showing the necessarity of condilion. Indeed, let
F: Q —»Ksie F(w)= f(w) F r(w) U, ave. Suppose that F is measurable,
Then in view of [3] there is a sequence (fn) of S, () such that

Flw)=cl{f, (v). n > 1}, a. e.
Hence r (w)-— -:21— sup ) I f (w) — f (@)l 5m n>1{, ae. It implies that

r(.) is measurable. Now let « ¢ B then it is clear that F (w) - o=

= (f () ~ @) + r(w) . .

Therefore in view of lemma 2, I we have
, IF(w)~rI——Hf(w)-xH—l-r(w) _ (me'Q)

But since F is measurable then again by [3} the function w |~ | F(w) —x|is
also measurable for all x ¢ B. It follows thus the function w — | flw) - x| is
qmearurable for all-z.€ B: In other words, f(.) is itself measurable. It completes
our proof of Theorem 2.3.
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COROLLARY 24. A functmn F: Q—K_ismeasurable iff there isa aequence |

of sxmple functlons F,:Q— K such that
lim h (F, (v), F(w) }==0, a. e.

n—rox
Moreover, by the same techmque glven m [11] we can choose the sequence F)
so that T

uf () |i<nf(<o)nand r.(») < r{e), a.e.
fon all n, where Fw) =f.(w) + r{(w) U and -
S R@f, @4, @0 (>

COROLLARY 2.5. Let F (w) = f(w) -} I‘(w)U a.e. then Fis mtegrably bonnded
iff the both functions f ‘and r are integrable.

- THEOREM 2.6: Lef Bbe a separable Banach space. Then lhere is a linear
(w.r L the postfﬁ)é botinded- fzmcl:ons) one—ta-one tsomelrzc embeddng from
T K- ZFinto Li( R,-2 )¢ Li(B,-%5. Moreover,

(1)cl j FdP s equal to the Boc}mer mtegral taken as a functzon in

LI(R 3) X LI(B 2‘.)
(2) For every FZ L‘I(Ks, Z‘) and every subo field zlcz we ha:ve E(F El)e

L'Ks, %) and the cona’monal expectation E(F, $;) defined in the sense of [6] is

equalto’the conditional esr,peciatwn taken as a function in LR, Z) X L(B, ).

v
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Proof. It follows from Corollary 2.5. in Theorem 4 . [(2), and Theorem
93(1, 2) in [6],

APPLICATIONS.

Definiiion 3.1. A sequence (Fn) is said to be adapted to an _increasing
sequence (2Zp) of subo-fields of Z if Fnis Zn-measurable for all n. Unless otherwise
mentioned all our sequences are assumed adapted (Zn.)

Definition 3 2, A sequence (Fn) is said to be a martingale, quasi-martingale,
uniform amart or a Li-amart in Ly(K;, Z) if the following conditions hold, resp.

Fo=EFny, 2,) > 1) . (3.1)

I H[E(Fnsy £,), Fr <o (3:2)

Ve > 0 Ik>1Vest>k H[E(F g, 33), Fe] <o (3,3)
Vex0 Ik>1Vm> ' >k H[E(Fms En), Fa] <<e (3.4)

where G, 7 denote the bounded stoppmg times with the order defined by
a(w) = 't((u), a. e.iff o > 1.

Using the same technique gwen in [9] by the auther we can prove the following
theorem

THEOREM 3.1. (see [2] and [9]).
A1) every'quusi-martingale in L(Ks, %) is a uniform amart
(2) A sequence (Fn) is a uniform amart is LyKs, Z) iff there is a unique
martingale (Mz) in L(Ks, %) such that :

Ir.m H(F,c, Mt) e ()

wlwre T denotes 1he set of all bounded stoppmg times with the usual order.
(3) A sequence (F,yisalL, — amart in L, (K, Z) ilf there is a unique mar-

- tingale(M)in L, (X, Z) sucll that’

ImH(F M )..o |

Hence every uniform amart in L ( K Z) isa L, —amart.

Usmg main resulls given in prevmus section we get the following result,

THEOREM 3.2. LelF ,F €L, (K, 3) wzth --f +r U and F:=f 4- rU
for:somef -; f.€ L, (B, E) and r,rel (R Z) wttfzr >0, r >0 for-all n
and nlmu.si w & Q then -



(1) lim h(F (@) F(w))=0. a.ed ff

im| f (o) —f(w) | —0and lim | r (0) — () | =0,a.e .
n t

6 lim H(F_, F)=0 Iff

lim E(| f,—fI)=0and limF(| r,—ri) =0.
n n R
(3)Thesequence (F ) is a marlingale (quasi-martingale, uniform amart,
L,—amart) in L (K, Z) iff the sesuences (f yand(r ) are martingales (quasi-
martingales, uniform amarts, L -amaris) in Ll (B, Z) and L1 (As T), resp.

Note that it has been shown in [9] that every and only L, -amart in L1 (B, Z)

has a Riesz decomposition in Li (B, ) In general, even for quasi-martingales

with cénvex compact values in a Banach space we have no chance to expect a
Riesz decomposition. But for Li-amarts in L1 (Ks » 2} we have the following

atatement.

THEOREM 3.3. A L -amart(F )inL (K_,%) with F =f 4 r U(n>1) has
a Riesz decomposition iff the L -amart (r }has @ Riesz decomposition wiih a

positive polential.
Proof (=) Let(F ) be a L ~amartin L, (K, , Z) with F = f_+r U(n>1).
Suppose that

’ Fn——--M"—[-Pn (n>1)
Whefe (Mn) isa martingale and (Pn Jis a LI —potential, i.e.

lim E(IP_|I)=0 3.5)

n
Since M and éﬂ belong to L (K ,Z) then M =g, + = U
and Pn =p, + 3HU . a.e,and for all n, Hence_
F o=@, + o)+ @, +8,D@>1) .
=(9,+p)+ (e, +8U
a—fﬂ-{—rnU,a.e.(n;i). . N
Therefore by Throrem 3,2 (3)and (3.5) the sequence (r_)hasaRieszdecomposition
r,=«,+8 (a2 1) with the positive‘ potential (8 )

It
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Proof of (+=). Suppose conversely that (r ) has a Riesz decompositionr =
n
(r, —v,) + v, =0.Since r_ >>0(n > 1) then by construction of the Riesz
decomposition we have (r;z — v,} > 0, a.e. (n> 1). Hence, if ) has a Riesz
decomposition
fn ==k <+ A (n>>1)then

Fo=f, +rU=((k, +h)+[r,= v+ v, U
| = [k, + (r, = v U]+ (R, + v,0)
Thus, if we put M =k + (r,— v,V and p,=h, ++y U1
then(F ) has a Riesz decomposition
F = ﬂrf + P (Il > 1)
Where(M )1s a martingale and (P ) isa L, — potential which proves Theorem 3,3, -
COROLLARY 3. 4. (see [4], [1] and [(10]).

Let Bbe aseparable Banach space then the following conditions are equivalent

(I) B has the RN Property w.r.t. (Q, Z, P)

. (2) Every martingale F'_ in L, (K_, %) which is L, — bounded is conver-
gence almost surely w.r.t. the metnc b (...

(3) Every L -amartin L (K , %) which is uniformly integrable and LI'-
bounded is convergent in L, w.r. t. the metric H(.,.)

Proof. It follows from Theorem 3. 2(3), Theorem 2.2. in [0] and the well-
known result of Chatterji in [4].

COROLLARY 3. 5. see [12], also [9]-

A L -amart in L (K Z) is convergent m L - norm iff the following
conditions hold

M F, is uniformljlr integrable and L, — bounded.

(2) ¥ > 1 Jaconvex compact subset C of B such that

¥p<0En,EA,eZn PA) >s—a¥n>n Y4e 3 ifAcA then {F dP
. 4

¢ P(4) C + pU Note that (2) and (3) in Corollary 3.4. fail to be true sven for
martingales with convex compact values in Hilbert spaces(see [6]).

Finally the authors wish to express their thanks to Dr. N.D. Tien, and Mr.
B.K. Dam and Mr. N.X. Tan for some useful discussions.
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