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INTRODUCTION The theory of Asymptotic Martingales (Amarts) has been
developed and extentively studied in recent years by Bellow [I], Edgar and
Sucheston [3], Chacon and Sucheston [2] among others. It was shown that every
real, valued amart and every vecior-valued uniform amart has a Riesz decom-
position. Thus one problem seems to be remained is that of characterizing all
processes having a Riesz decomposition. The purpose of the present is fo solve
this problem. Our main results are given in the section. In the section 2 we prove
some convergence theorems and contruct some related examples.

1. DISCRETE PARAMETER PROCESSES HAVING A RIESZ DECOMPOSITION

'Throughout the paper let B be a Banach space with some norm denoted
by || . || and L, (B,F) the Banach space of all B-valued Bochner integrable
functions defined on some probability space (S, E, P). We shall assume that
we are given an increasing sequence F (n) of sub-fields of F. A process X(n)
" is said to be adapted to I (n) il X (n) in F (n)-measurable for all positive
integers n. All our processes are assumed to be adapted to F (n) Unless other-
wise specified all random variables will be assumed taken from L, {5, IV).

DEFINITI(_)N 1.1. A process X (n) is said to have a-Riesz decolmposi{ion,

if X(n)=M(n)+P(m)(a>1) ‘ . 1)
where M (n) is a martingaleandP (n) a [,-potential, i. e.
lim E(f| P(r)[[)=0 ' . .2
n -
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By the same argument as that gwen in 5] the Riesz decomposmon is alwsya
essentially nnique,

PROPOSITION 1.1 Every umform amart (|5]), hence every qua31 marimgale
in L, (B,F) has a Riesz decomposition.

PROPOSITION 1.2 A process X (n) is convergent in Ll iff it has a Riesz
decomposition (1.1) with (1.2), where M (n) is a regular martmgale.

THEOREM 1. 1 A process X (n) has a Riesz decomposrizon if f the following
condition ( RD ) halds

¥
(RDYPe>0 gy 51 mem>k E (|| X, (m)—X(n) ) < ¢
WhereX,; (m) = E(X (m), (F(n))(m>n3>1)

Proof. (::>) Let X (n) be a process having a Riesz decomposition  (1.1)
~ with {(1.2).Then in particvlar, 'we have

V_e>0 =1 Ym>kE (1I'P(m) | )g-z— o

Hence ¥9>0 E'lc};?l Vm}n}k, we get

E(hX, (m)—X(r) 1)

S EfX(m) —M(m) || )+ EC | X(n)— X(n) 1)
S ERP(m)I) +EPmI) <e
It proves condition (RD).

 Proof of(<) Suppose conversely that a process X( n) satisfies cond:tlon (RD).
Thus, in particular, we have

"*J>1 Yeso0Tm i Yms i B X, (m)— X(k)u)

- Theérefore {X (n)} is a Cauchy sequence in' L,(B, F, (j)) for a,ll j>1. Conse-
n=j
quently,

llmE(IlX (n)— M(_})H) 0

n—roa
for some sequence M(j). It is not hard to show that in the case the sequence
M (j) is a martingale. Now put )
P(j)=X(j)—M(j) (j=>1)
~ We claim that P(j) is a L;-potential. Indeed, fix a positive number ¢, by condi-
~ tion (RD) we have '

*>1Vmsn>k EQIX, (m)-Xn)D< T
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On the one hand, since lim & (| Xj (n)— M(j)1)=0(j)>>1) then, in partic-

. n—r s
“ular, we get
N d . : . £
izk Smy EQIX()+my ) = MDD < <
On the other hand, since '
E(MPCG)N) = EMXD—M(H1)
<EWX()=X,; (D+m; )1) + B X, (F+ m; )— M)
then finally we have F (]| P(j)1)<¢e (j>k) |
In prove (1.2). The proof of theorem 1.1 is complete
DEFINITION 1.2. Let N denote the set of all positive integers. For eve-
ry pair m>nz1 and every subsequence (« ) (N we denote by «[m, n) the
number of elements of (¢ ) contained in the interval [m,n]. In the following
theorem if we have two sequences (z, )and (8, ) of N then by (v, ) we mean
the superimposed sequence («,  with (8, ). '
THEOREM 1. 2. Let X(n) be a process in L; (B, F') then the 'following con-

ditions are equivalent
(1) X(n) has a Riesz decom posz‘tionl-

. . eo Ble, , «
@ Va1 Ya, boNe do VB JCNR, oo, if Plog s ot d)
k

— k
. , =1 «
thenthe process X(T, ) is a quasi-martingale.
3 ¥ S ‘ .
3) {ock }CNock foo {Bk Cv if B[, » %ty \).=1' : (k>1) .
then the process X (v, ) is « quasi-martingale,
3 ¥ s ‘
) {ak }CNc:k oo {ﬁA } N B}c foo, if ﬁ[“k * “k+1) =1, (k>1)

then the process (X ¥,) is a uniform amart.

" Proof of (1 — 2). Let X(n) be a process hafi'ng a Riesz decomposition (1.1)

with (1.2). Then, in particular, we have

- | . ¥ :
> u} N o 1o, EIP(MI) < = (9.

oL

V

Suppose now that {B; << Po << Pa» <Cerr} is any but fixed subsequence of
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ke © =1 << oo : (1:4')
Estime *
TEE(NY (vpgn) = x(v)u)-—z: S SRS
. k=1 Y LT L eY
—X(v,)ll)<S o B X = M) DR W)~
k=1 YJ [ A+1)
M) K f: 7 ey o)+ 1
k=1 ok

Thus since « > 1 then by (1.3) and (1 4) we Have (2).

Because the implications (2 — 3 — 4) are clear then it remains to show
that (4 — 1). Indeed. ‘

Let X(n) be a process satisfying condition (4) then, in particular in view
'of result of Bellow [1] we get
X(a ) = M(= 1) + P(x}) (k> 1) . (1.5)

where M(X, ) is a mar tingale and P(x ) 1s a Li_poténtial Now define
: k ) :

M(n) =E M. (ock), F(n)) foralle,_, <n<e
with @ =0 and P(n) = X(n) — M(n) (n>=1

k

We claim that the process M(n) and P(n) salisly condition (1.1) with (1.2).
Since (1.1) is clear then we have to show only (1.2). Indeed, suppose that (1 2)
does not hold, hence we can choose some positive number €. and a -
subsequence - '

{Bk} of M wi_tﬁ Ble, » T e 1 for all k and
tim E (I P @) 1) >3 . | (1.6)
k—rce

But again, by'(4) the process Xy, )isa aniform amart therefore inview °
of [1] we get

; X(Tk)=M (v ) + P(vy) (k> 1) L7

Where M(y, ) is & martingale and P’ (v, )isa uniform potential hence a

L, —potential. Again define
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' M{n)=E( (ry)\ ), F(n))forall |[ Ve << Ky, With 70 m_. 0
and ® pP(n) = X(n) — M(n) @>1
On the one hand, since {z, } ¢ {y; then by (1.7) and (1.5) .
we get M(x, ) = M'(¢,) (k> 1), hence |
M(n) = M(n) (n > 1). It implies that

P(n_.) = P'(n) (n > )
On the other hand, since { BL } C{v,} then
khmE (HP(ﬁk)IE)—hmE([IP’ @) =0

which coniradicts (1.6). The proof of Theorem 1. 2 is thus complete,

B

2. THE CONVERGENCE THEOREMS ANﬁ SOME EXAMPLES

The following convergence theorems for processe‘s having a Riesz decom-
position can be easily established from and at the same time can be regarded
as some extensions of resuitsin [6] and [3] given by Uhl and Chatterji, resp.

THEOBEM 2. 1. A process X ( n) having a Riesz decomposition is convergent
in L, iff the following conditions hold

(1) X (n)is uniformly integrable and L, — bounded
(2) For every positive number ¢ there is a convex compact subset K of B
such that .

n.

Mo 03n, g er(ng P(Ae)>1—e N ¥ Ac p(n)

if A C Agthen §X(n)dPeP(A)K+2oU
a4

where U denotes the unit ball of B. 2

THEOREM 2.2. A Banach space B has the RN property w. r. t. (S, F,P) iff
every uniformly inlegrable and L,—bounded process which has a Riesz decompo-
sition™is conwvergent in Ly.

Note that is was shown in [1]that every quasi-martingale is a uniform amart,
The following example shows that.the converse implication is not true.

Example 1. There is a uniform amart in L, (I, {0,1]) which fails lo bea
quasi-martingale. o
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Construction, lct P be a Lebesgue measure on Borel sets of [0,1} and
(e, ) lhe usual basis for I,. Define : R '

=2 g-neTN] gk 1< <2 :

k
: 12
and X (k, 1,)=— Z 1], (t) e kE>1);tef0,1
(b ty =g 2 U7 (0 e (>Ditelo]
k .
where n, =X 2/ with ny =0 and 1f, () denoles the characteristic function
:1 L

of a Borel set A.
Note that, if k= k' then for all f & [0,1] we have X (k,t) 1 X (k, t), hence
I X (k t)— XU, D=0 Xk, (te [0,1])
1t follows that k

S EQIX (k+1)—X()1)>E E(X(k)1)>
k=1 ‘ k=1

1

= oo

1
¥ =
>>k

Therefore X(n) is not a quam-martmgale But since E( I X(2) |} ) g - for all

bounded stopping times z 3> k then X(n) is a uniform amart (see [1]).

Example 2. There is a real, valued process which has a Riesz decomposition

but it is not a vniform amart.

‘Construction. Let P and AI‘ be defmed as in preceedmu example. Put

n

2 .
V(=D il () (11 <k< Y
i=1 .

where a =ifori-k and o, = 47, Define moreover Y"c > Y"" iff either n>n’

or n=n’and k >k’ and let the resulting sequence renumhered with ihe order
be denoted by X(n).'It is not hard to check that X(n) is a Ll-potential but
 1im E(X(r)) does not exist hence, by definition, it fails to be an amart waere
T denotes the set of all bounded stopping, times with the usual order.

Finally, the author wishes to express his thanks to Dr N.D.TIEN
and Mr. B.K. DAM for some useful’ discussions. ‘
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