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INTRODUCTION. In recent years, the study of asymptotic marlingales
(real-valued and vector-valued) has been developed extensively by many authors,

‘e. g. Austin, D. G., Edgar, G. A, and Ionescu Thulcea, A. [1], Bellow, A. [2],

Chacon, B. V. and Sucheston, L. [4], Edgar, G.A. and Sucheston, L. (8}, (9], Uhl,
J.I. Jr [14]... Also multivalued martingales have been discussed by F. Hiai and
H. Umegaki [10], F, Hiai [11], and later on by Coste, A, [6]. The aim of this paper
is to present a theory of multivalued amarts (asymptotic martingales) considered
as a simultaneous generalization of vector-valued amarts and multivalued mar-
tingales. In Section I, we introduce some prehmm‘u*y notations and definilions
and give several examples of multivalued amarts. In Section II, we present
several convergence theorcms for some suitable metric and also an almost surely
convergence theorems. Theorem 2. 1 seems to be new even when restricted
to the veetor-valued amarts, whereas theorem 2.2. is in some sense a generali-
zation for the case of multivalued amarts of a result in [10] (see Theorem 6.3).
Let us note also that our theorem 2.4 is the multivalued version of Chacon and
Sucheston’'s theorem (see [4, Theorem 2]) with some modificalions.

The authors wish to thank professor Nguyen Xuan Loc for many suggestions
and improvements given by him after reading the first draft manuscript.

I. DEFINITIONS AND NOTATIONS

Let us collect some terminology and notations. Throughout this papef we
denote by (&2, @, P) a probability space, by E a real separable Banach space
with a dual Eand by 2F the family of all nonempty subsets of E. I'or X & 2kl
let ¢l X depote the closure (in the norm topology) of X. Denole
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K (E) = {Xe 2¥:Xis bounded, closed }

K (E) = {XeK (E):Xis convex}

K (E) = {XeK (E): Xis (norm) compact }
with the introduction of the Hausdorff distance

h(X,Y)= max {sup d (z, Y) sup d(y, X)} .1
’ - zeX . yeY .

and in particular
| X | = h(X, {0}) =sup iz
zeX
K(£) can be embeded into a complete metric space. Moreover KC (E) is a closed
subspace of K(E)and K (E)isa clqsed, separable subspace of K(E) (see[15]).
The addition and multiplication in K(E) are delined by
X@pY=cl{zty:x€ X,yeY} ,XYgK(E)
aX—={az:zx€X} ,a€R XeK(E).
Let Xisa bc'ﬁun=d_ed, nonempty subset of E, The support of E. The support
function of X is the function defined on E’ by .
@ s(2 | X) =sup {(@x) i e X}
DEFINITION 12. A sequence (X :n3>1) € K,(E) is called to converge
weakly to X e K (E) iff lim [s(2" | X ) — (2’ | X)) = 0 for all &# € E". "

n—roeo

Let X : @ — 2F such that X(w) is closed subset of E for all w e Q. Recall
that X is (weakly) measurable with respect to 6-field Fif {w: X{w) N U £ ¢} 5F
for every open set U ¢ E. We consider to the following spaces of multifunctions
(see {10] for related results):

L& F, P, 2}1;) = %0 9E)={x:Q—> gE: X is measurable and X(w) is closed
forall e Q} o |
M, F, P, K(E)) =L (Q, K(E))={Xep" (& 20):§ | X 1dP <o}
L, F, PR (E)) =L (WK (E))={X el K(E)): X(w)e K (E)as.}
LNQ, %P, K, (E))=L"(%LK (E)y={Xell(Q,K(E)):X(v)eK_(E)a.s}
with the introduction of the Hausdorff mean distance
H(X,Y) ﬁxslh (X (0), Y (0) ) dP (1.2)
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LiiQ, X(F)) can he made into a complete metric space. Moreover,
L, X JAE) D Ll (€, K, (E)) are closed subspaces of ! (Q, K(E)).
The space
‘ LM QFPE)=LHOUE)={t : Q> E:§ | { | dP < o}

' QO

is considered to be a silbspace- of L (Q, K, ( E))
Let X g L0 (Q, 2F). The integral of X is defmed by
j XdP—{ SfdP fe.SX}

~ where Sy= X(?):{ feL*(Q,%,P,F): f(w) € X(v) a.s. }
For A s @, SX:-SI X with 1 is the characteristic function of the set A.

Apart from the distance given by (1.2), we defme the weak (mean). distance
as follows: ‘ : .
DEFINIT{ON 1.2. For X,Y ¢ L.! (Q,%,P,K (E)) the number

H, (X,Y ) =sup J‘fs).! (@ X)) —s(2 N Y) 1 dP 2’ e B2, 2 || <1}(13)

is calied the weak distance between X and Y. -

REMARKS (1) By [3, Theorem II1.18} we always have
H, (X,)Y)< HX,Y) for Xo¥ e L' {Q, K_(E))

t

2) We also have the following inequalities for X, Y & L! (Q, E_(E)

sup h (dlf X, el fY) << H, (X,¥) < 4 sup h(clfX, clf ¥) (1.4)
AeF A A - AeF A A ‘
Indeed, (1.4) is immediately consequence of [10, Lemma 2.2] and the
inequalities

sup | [fdP | ‘<~S | f1dP < 4 sup ;SfdP[

AeF 4 Q 4eF 4
for scalar — valued function f € L' (Q, ¥, P, R).

We now give the definition of multivalued amarts. Without loss of
generality, let us denote by (¥ : n > 1) an increasing sequence of ¥ such that
F=06(U, ?n ). A stopping time is a random variable r taking values in
{1,2,..., oo} such that for each n > 1, (r =n) ¢ ¥ . The set of all bounded
stopping times is denoted by 7. For 7 ¢ T, denote T(z) = {6 7T :6 > t}
DEFINITON 1.3. An adapted sequence (K, :n>1)in L' (Q, K (E) (ie., X,
is‘i’r‘l- measurable for each n > 1) is said to be a multivalued amart iff
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(h) lim clS NgdP =Y existsin K (E). ie., for each 3 > 0, there exists teT
n

such that h (LLSX’ dP, Y) < ¢ for all 6 € T ().
£

An adapted sequence of random variables taking values in K. (E) is said
to be of class (B)iff sup[ | X | dP < o
' EXAMPLES'

1) Multivalued martingales (see [10]). An adapted sequence (X :n>Dis
said to be multivalued martingale if Xm = E (Xn | ?m) for alln > m > 1,
where BE(X | ¥ ) is denoted the multivalned conditional expectation of X

relative to ¥ . - By the property of conditional expectations (see [10, Theo. 5.4];,
it is easy to see that clS XedP = CIS XgdP tor all T, 6 € T. Therefore, every
‘ Q S ¢}
. multivalued martingale is multivalued amart,
2) Multivalued supermartingales (resp. multivalued submartingales)
An adapted sequence (X, :n = 1) c Lt (2, Ix L(E)) is said to be
multivaluel supermartingale (resp. submartingale) iff
VX, dP 2{ X, aP (resp. {xarc(X P, 4c¥F ,n>1
A 4 A A
Then, it is easy to see that S X dP & S XgdP (resp. S X dP & f XedP)lor, 1, 8&T
A . A A A
- with T <{ &. Thus, if (X ) 18 multivalued su_permartingale, then ¥ = HSX dP =
0
(h)lim SX dP. If (X )1s multivalued submartmgale such that [ f X, dP is rela-
SO
tive norm compact set of E, then cl (Uf X dP)=(h) limSX dP
n Q) TQ
3) Mulitivalued quasimartingale. An adapted sequence (Xt n>>1)is said
to be multivalued quasimartingale iff

:;H(X E(XM_II? ) < oo

n=1
By the same argument in the real-valued case (see [8&, section I example 3[) it
will be proved that every multivalued quasimartingale is a multivalueil

amart, &



I CONVERGENCE THEOREMS

In this section, under « Uhl conditions » (see [13]), we shall give the conver-
gence theorem in the weak melvic and the almost surely convergence theorem
for multivalued amarts in L! Q, K, (E)). The convergence theorems for muiti-

valued amarts in L2 (Q, K, (E)) will be eslablished by using the Radon-Nikodym
theorem of F. Hiai (see [11]). ' "

We begin with a lemma, which is a fundamental statement for multivalued.
amarts (see 4] for the case of vector-yalued amarts),

LEMMA 2.1. Let (X, |, ¥/, n> 1) be a multivalued amart in 1. (@, K_(E)

- Thenforeach AE: ?Fn, the net (cl SAerP €T ) converges to « limit F (A)In

K(E)(w.r.t the H ausdorff meiric). Moreover the convergence is uniform in
the followz'ng sense : For each ¢ > 0, there exisls a T el stch that

suph (clf X, ,F(d4)<<e - L@ 1
T
Ae‘?’r N -

for all T € T'(t;), Where, ¥, ={d & ¥: 4n (v—n Je ¥ foralln>1}
Proof. Let ¢ > 0, choose t, & 7' such that '
h(clfX_ ,cfX )<e
| ( .SQ' o’ )
for 1,6 > Tro)' Fix 6 » 7 > ¢, and ‘A e ¥, « Define a bounded stopping times
T oy as follows: 1, =T on 4, oy,—con 4 and G=oc,=n; on Q\ 4, where
Iy > max (T, ¢). Then, from
X, =1, X, @1g\ X,
X =L X @lg X,
By [10, Theorem 4 .1] and [3, Theorem II . 19] we have

[ Xe X )=n(a fox e fqX,)<e 2.2
‘By the completely of K (E) with respect to the Hausdorff metric we deduce
(b) lim <l | 4X ¢ =F(4). Finally, (2.2) implies
sup A (cl fXo , F(4))<¢
A6 F, A :
This completes the px'oc;f. _
The next lemma is multivalued version of the maximal lemma (see [8]).
The proof is identical to that given for Lemma 1.1 of [8].
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LEMMA 2,2. (maximal lemma) Let (E&’n--, ‘:F'n , 0 > 1) be an adapied s:quence of
random variables taking.valuesin K (E) such Lhat s;pSigtl dP < ee. Then for

each posiiive pumber a,
P (sup) X ] > @) < (1/a) supg]X

THEOREM 2.1. Let E be a Banach space with a sepa;"'able' dual. Let
(X,@,n>1)bea multivalued amart in LY(Q, K (E) such that :

(1)sup _[IX,;|dP<c>oand

(ii) for a given ¢ > 0, there exisis a norm compact convex subset K ¢ E such
that for any 8 >0 there is an index n,>1 and ‘a set 4 Fp , P(Q\ ) <e:
| [ X P C P(A)K - 80
. - A ’
for all n > no and for all ACA,, Ae¥F,,U denoles the closed unit ball of E.

Then there exists some XelL(Q, K, ( E)) such that X converges weakly
-a.s to X, : .
Proof. We first assume that (X )is a E—valued amart. As inthe lemma 2.1.,

the E -valued set function .
F(A)—-hm fXdP Aev¥
- T 4 n
is finitely additive. By standard methods (see [5]) we can write E =F 4 F
where Fcand F_are E-valued finitely additive set tt_mctmns of houvr_xded

variation where [ F_|, the variation of F_ is singular with respect to P, andF
is a countably additive set function which is P-continuous. From (ii), by the
similar argument as in {13, Theorem 4] we deduce
-F, (A)—. fXdP for XelL(Q, E), Ae.
A
Define Y = E(X| ?n) and Zn= X - Y Then Z is E-valued amart. On

the one hand, for each x’e E”, ((x;Z ): n>>1) is (real-valued) amart with -

sup _['I (x? Zn:ii dP < oo, By [1] (x; £ ) must convei'ge a.s, On the other hand,

n v

N

it is easy to see that Lim [<= Z )dP~<x’F (A)> for Ag¥?. That implies

n—>oed ‘
*lim (x* Z )u- 0 in probability. Hence, lim (x; Z = a. 8. Therefore,
- n—reo n—see :
lim @ X )= (:X) as. '



- Now, let («’, 1> 1) be a dense sequence of F". By (i) and lemma 2.2 we
i ) .
deduce that for almost surely w&Q lim (&3 X )= (2:X) for all z’ g £,

" In the general case, when (X )is K_ (E)-valued amart, then by [10, Theo.
4.5] and by (11, Coro.5.4}(X ) can be considered as an amart taking values ina
Banach space, hence by [6], the arguments of the above part can be used for
this case Q.E.D.

THEOREM 2.2, Lef (Xn, ?n,'n > 1) be a multivalued amart in q, ch (E))
such that ,

(@ (11X, 1:nr>1) is uniformly iniegrable, i.e.,

lim sup ) i X, dP-=0 and,
_ ateo n % |>a}b "

(if) for a given e > 0, there exists a norm com[;?cf convex subset K I such

that for any & > O there is an index n, > 1 and a set 4, G?RD , PONA) <e:
[ X, dPC P(A)K U
. A i

for al n>>n, and for all A 4, AsF,.
Then there exists some XeL'(QK. (L)) such that lim H, (¥,, X)=0

n—roo

C onverseIJ, if lim H(X,X)= 0 then (ii) is Salzsfzed
n—roe

Proof. The «if » part is a consequence of the theorem of Uhl (see[14, Coro. 3]).
Indeed, regai‘ding X,, as a vector - valued amart the conditions (i) and (ii) guaran-
tee ithal the limit measure (in the sense of Lemma 2.1) has Radon-Nikodym
- derivative contained in LYQ, K ..(F)). That implies

lim H,{(X,, X)=20Tor some XeL'(Q, Kcc(E)).

n—oo
Conversely, if lim H (X,, X)=0, then by [13, Propo 1] and by Lemma
hr—roc
2.1, so the condition (ii) holds. : Q.E.D.

"REMARK. If (X, ) is K, (E)—valued martingale, then the following three
assertions are equivaleht. ‘ -

(2) (X,)is cregularly»,i.e., X,=EX|¥F,)n>1, whereXg LK, (E)).

_(b) lim H(X,,X)=0 _

n—roo . )
(¢) lim H,(X,, X) :‘-.:770.

n—roa
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Proof. (a) = (b) is the content of the theorem 6.1 of [10]. -
() = (c) is triviality. ‘
(¢) = (a) From the inequality (1.4), we have
fX,dP = {XdP Ae%F,. Using the Proposition 6.1 of {11], we deduce
A " . . ' _ .
X,=FE(X|¥F,)forallnzLl

For multivalued amarts i LY( o, K¢(F)), we present the following:

THEOREM 2.3. Let E be a Banach space with ihe Radon- Nikodym properly
and let (X ,, F, ) be a Kc(E )— valued multivalued amart such that '

(i) v § X, dP is relatively norm compact in E and,
n

i) (1 X, n> 1) is unformly integrable. _ )
Then, X, converges in the weak distance fo some X¢ Ll(Q,KC-(E)), :

Proof. By (i) and [11, Theorem 1.3], for each n, F,(A4) =cl [ X, dP is the
- ! ’ v A -
‘measure with values in K, (). Then, by (ii)

F(A)=(h)lim ¢l {XqdP is K (FE)-valued measure, P -conlinuous and of
: T A
hounded variation. By [11, Theorem 4.3, and Corollary 4.4] F has a generalized
Radon-Nikodym derivative contained in L'(Q, K (E)), L. e, F(A)=cl [ XdP
: ' Y
for Xe LY(Q,K (E)). Moreover, -(ii) guarantes that F(L) is relatively nor
compact in F, this fact implies that v ¥(A4) is relatively compact w.r.t, the
_ AeVvF, .
Hausdorff topelogy. Regarding F as a vector — valued measure and using
Hoffmann -Jorgensen’s theorem [12, Theorem 9] we deduce lim H (X,,X)+=0

i—»oo

REMARKS 1, If (X ) is mutivalued martingale, then the condition (i) of the

theorem can be writen as follows: f X, dP is relatively norm compact in E.
' O i

2. If E' is separable and (X ) is multivalued martingale such that

(X.“’ Y)=0for X e L' (Q, K. (E)). Then X _=F (X|¥ ) for ralIn.

limojiw

> o

The following is multivalued version of a’ theorem of Chacon and Sucheston
(see {4, Theo. 2]). ’

THEOREM 2.4. L2t E be a Banach space with the Radon- Nikodym property
and with a separable dual. Let (X, : nz»1) bea K (E)—valued amartsuch thot
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() foricack'n> 1, f X, dP is relatively weakly compact, F {Q) is weakly
Q
compuact and

(i) sup §| X, [dP.<

Then there euuts aX € A (Q K ( E)) suclx that X convergesio X weakly a, s.

Preof The proof is similar, to that of theorem 2 in [4].

The followmg corollary is the multwalued version of the theorem of Bellow
(see [2]). . 7 - T _ .
COBOLLARY 2. 5 Thc followmg a.s.sertrons are equwa[ent for o givenm
Btmach space E.

(a) Eis fmzte-dzmensmnal
(b) Every multivalued amart ( X, )in L1(Q, E_(E)) such that

su’p’ f '[ ‘X,c’ ‘i dP < oo conve'fges a.s. in the Haus'dorff iopo[og‘y.

Proof. (b) = (a) is lmmedxately consequence of the theorem of Beliow [2]
because every E-valued amart is K (E)~valued amart. (a) => {b) is consequence

_of the theorem 2.4. Indeed, by theorem 24, X converges weakly a.s. t6 X e Z4
' i

(@, K _(E)). For any 3 >0 choose zj,..., " with || a:}"[] < 11 < J < k) stich that
for each o eE’-,i." x’ ]| < 1 there is.a a:; satisfying | 2> — 2’ || < &,
. ' ]

1

Then from the inequalify

ls(a:IX) s(x’{X)] [s(:r:’lX)—-s(:c’{X)[-{-

!s(:t:’lX)——s(a:’{X)l+ fs(x’lX)——s(a: IX)I

v We have. . T Bp e i il o
by 1)
h(Xn,X) max{ls(a:' | X )—s(.c’]X)[}+a([X ]-{-{X[)
PG '%§J§
That implies
limk X ,X)=0 _a.s. , Q.E.D,
R—>0o '

L AR

'REMARK. The theorem 6.3. of [11] is special case of the Corollary 2.5.
Indeed; if (X )is K (E)-valued sﬂbermarﬁngale orsubmartlngaie (see example

2,\sec;10n I), then (X )is also K (E}—valued amavt and . sup f ] X 1dP =

i
7 — 316 o .



fmplies sup"f(l'X,c | dP-< oo, Moreover, i (1X, 10> 1) is uniformly--inte-}

grable, then H (X, X) — 0. ’ .
Finally, we give the Riesz decomposition for multivaiued ‘amarts.
THEOREM 2.6, Let E be a Banach space with a separable dual and with the
Radon-; Nikodym property. Let (X ) be a K ( E). valued amart such thal for each
n>>1,§,XndP is relatively weaklg compact F(Q)is weakly compact and sm:h
thal Eimyp inf {o|Xn|dP < os. Then

(i) There exists a unique K ( E )-valued martingale (Ya) such  thal
hme(X,t,Yt)__() ‘ _ o -

(11) if sup j[Xt[ dP <C os, then for e.s. w € £ lim [s(:r: | Xn)—s(x’ ]Yn).)‘ =0 ’v‘er

n—roe =

Proof. The proof is similar to that of theorem 1 in [9].

EXAMPLE. Let (J0,1), ¥, P) be the Lebesgue measure space. Let for each
>1 fa:{0,1) = {0, 1) be a F-measurable function such that ¥u& [0,1) lim sun

fn(w)>0 and p> ("lf,na’P)2 <C oe. Let E be an 12 space with the usual basis (ep).
n==1

Define the- multivalued function X: [0,1) — 91 as follows :
X (@) =70 {fn (W)en:n > 1}

Clearly

X € I} (Q.Kc(lp)) but for all w € [0.1) X(w ¢ Kcc (I} and IXdP € Kee(ly) for

1

all Aec¥. :
Let¥ bea &-field generated by {{(x—12%, k", k=l,..., 2m ,

' We define X, = E{(XIF, ) for all n>1.
Then it is easy to see that H (X X) + 0, but hy theorcm 2.3,
H, (X ,X) — 0. Moreover h(X,,X)+0 for all w€{0,1), but by theorem 2.4 X

converyes weakly a.e. to Xo ) o
- . Received on Feb, 1981
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