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1. INTRODUCTION. A Banach space X is said te have.the RN Property if for
every finite positive messure (S, X, ) and every | — continuous measure m:
® — X, of bounded variation, there is a Bochner integrable function f: § — X
such that '

- m(A) = Sfdu foreach A of £
4 .

_ It was shown, at first, in [6] by Phillips that every reflexive Banach space
“has the RNP. Later, Rieffel [7] Davis and Phelps [1] Maynard [3] and Phelps [5]

obtained many geometrie characterizations for the RNP. Recently, Huff and- -

Morris [2], have studied the class of all closed bounded non-empty subsets of X

and proved that a Banach apace X has the RNP iff every closed bounded non-
empty subset of X has an extreme point. In this paper we give some examples

and prove some theorems related to the RNP in Banach'spaces.

1. NOTATIONS, DEFINITIONS AND SOME EXAMPLES

Throughout the paper let X be a Banach space with it's continuous dual X.
By B (x, r) we always mean the open ball of radius r > o and with center
zeX. Given a subset B of X we denote by B; co (B)and co (B) the.closure the
convex haoll and the closed convex hull of B, resp. Finally 6 —co (B) is defined
as follows : ‘
6 —co (B) = Zr'ixl.: P> 0 .Zrl.zl;{a:i}- C B
) i=1 . .= .
provided the series  r; 'z, is convergent
i=1- ’
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DEFINITION 1.1. A subset B ol X is said to be f — deatable;

o — dentable or dentable if for every r = 0, there is an x € B such that

xgco (B\ B(x,r) - o (.1
x § seo (BN B{(x, r)) or (1. 2)
x¢co (BN B(a 1)), resp. S (1. 3)

If an e B satisfies (1.1) 5 (1.2) ar (1.3), resp. for.all r > 0, then x will be

called an f — denting, s — denting or denting point of B and denoted by
zel—-D(B),xeco - D(B) orx eD(B), resp.

DEFINITION 1. 2. Given a Banach space X let B (X) denote the class of all

bounded non-empty subsets of X. We shall consider the following subclasses
F(X), Fp(X), Fo(X), Fy (X) and Foy (¥) of B (X)

F(X)y={FeB(X):F is closed}

Ff (X) ={ Fe F(X); Fis f —dentahle }
F,(X)={FeF(xX):F ‘is ¢ — dentable

Ed (X)=14 F,; Fis dentabl.e and Fe F (X)}
Fo(X)={ F & F (X); F has an extreme poinf }

LEMMA 1.3. Let X be a Banach space. Then for each B € B (X) we have

(1) co (B) C G-co (B) < o (B) - | (1.4)
@) Fy(X) < Fy (X) CF, (X) ' (1.4)
(3) ext (B) = £ — I (B) '

@) Foxt (X) C Ty (X) P @)

Where ext (B) denotes the set of all extreme poinis of B.

Proof. Since the inclusions mentioned -in (1), (2) and (4) are easily estab-

lished so we give here only a proof of (3). Indeed, let B be a bounded non-
empty subset of X. Suppose first that x e ext (B). Henc = ¢ co(5\ {x}). Conse-
quentlj, x ¢ co (B\B(x,r)) for every r’> o. It means that « € f--/}(B). Suppose
conversely that x ¢ ext(B). Equivalently, e co (B\{x}). Thus there are positive

n
numbers Pppenl, and vectors xp,..., x, of BN\ {x} such that x = % I, o
e , i

Since X, = xfor all { =1,..., n then we have

r=inf {ffz,— z|;{=1..n} > o
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Hence z ¢ co (B Bz, r)). Cousequentiy, x § f D(B). 1t completes a plOOf of
"lemma 1.3.

Rieffel has pointed out in [7] that the closed unit ball of € [o0,1] is not den—
table but it has an o- denting point. Consequently, we have F7 . (Clos 1PEF (Clos 1).
The following example gives us further informations about inclusions (1.4).

Example 1.4. There is a closed bounded subset of ¢, which has an extreme
point (then by lersma 1.3 (4), it is f-dentable) but it is not o-dentdble.

Construction. In ¢, define ihe closed bounded subsets Fn by Fn ={(xi,..,,:cn,0,....);
¥, € {1,—1}; [ = 1...n} It is easy to check that

MeF,F)>107>1; !=f=f) ,

@ F, Cco(F Y(mz= 1}

Where, by definition, & (A,B) inf{|la—bll;ae4d, e B}

Now put F = {J F v {S2ke f» where {e18yes € ...} denotes the usual
;- kot

hasia f or Cq. tdking‘ into account that by (1yand (2) F is closed bounded, ext (F)= |
{¥ 2-x.e } and F is not e-dentable. Thus we have I, (c,) § F (co).
b

It is also well-known that the closed unitball of ¢ has many exireme points '
but it is not dentable. We show now that there is aclosed bounded subset of ¢0
which is dentable but it has no extreme point,

Example 1.5. There is a closed bounded subset of € which is dentable but
it has no extreme point.

. - Construction.In ¢y, define closed bour_xded subsets Fn by

1
on

B

F, -_B( ) (n‘>';1)-

T

It is not hard to check that
D) ext(FF,)=¢(@>1) and
@ MF,F)> -;— (i, j > 1and i = ). .
Now put F' = u F_ . Then by (I) and (2) F is closed bounded and
=1 . : :

ext (F) =j. But since A( v Fn » F k) >'—i~ then F is dentable.
. ek _
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Note that on the one hand this example shows that the classes F_,(X)and
4 (X), in general, are uncomparable. On the other hand it shows that

exf(co) ¢ Ff (¢, ) ‘
COROLLARY 1. 6. The Banach space ¢, has no the RNP.
Proof. See ([2])

2, SOME THEOREMS RELATED TO THE R-N-PROPERTY

REMARK 2. 1, In [2], Huff and Morris have shown that in a Banach space
which has no the RNP we can contruct a sequence {F } of finite bounded

subsets contained in the closed unit ball of X satisfying the following conditions

(1) There is a positive number r such that
(F,, Fj) (f j>1and i & j) and

@) F_C(eoF ) (m >0 1),

Now put ¥ = v F . Then by [2} [ is closed bounded and ext(P) =¢. We note
n=1
that in the case ¥ is ot f-dentable. This remark glves us the f ollowmg result,
THEOREM 2.2. Let X be a Banach space; Then the following conditions are
equivalent

(1) X has the RNP,
(2) Every closen boand;ch subsef of X is 8-dentable,
(3) Every closed bounded subset of-X is f-dentable. ‘
DEFINITION 2. 3 A Banach space X is said to have the /-Non-empty Inter-
section Property (f~NIP), similarly,” s-NIP or NIP, it for every subclass {Ft ;
teT } of F(X) with co(F, ) = co(F, ), similarly, with a-co(F ) = c-co(F ) or
co(F ) = co(F ) for all ¢, ¥ of T we have
N F, +¢
teT
THEOREM 2. 4. Let X be a Banach space Then the following cona’zttons are -

equivalent
(H) X I_tas. the RNP,
(2) X has the NIP,
(3) X has the s-NIP.
-7 {(4) X has the f-NIP,



Proof. (1 — 2) Suppose that a Banach space X has the RNP and a subclass
{F,;teT} satisties conditions that F, ¢ F(X) for all # € I"and cF(')"(JF‘I } == (:_E(Ft,)
for all f, ' & T. Put K = co(F, ) for some t ¢ T. It is clear that K does not

depend-on the choise of { € T. Since D(K) == ¢ (see [5]) then it is sufficient to
show that I(K)'C F, for all ¢ ¢ T. Indeed, suppose that there is an x D(R)

such that x eEF tor some {, ¢ T. Hence

r——_lnf{[[-r— gi; yeF }>O.Thu:

zeK= co ( Fm) C co(K\B (x, r)). It contradicts the assumptien
that x ¢ D (K). : : -
Since the implications (2—»3 —4 ) are clear then it remains to prove (4 —1)
Suppose conversely that a Bunach space X does not hage the RNP. Take F and
r from remark 2.1 and define
F, =F\B (x,r)for all x € F. Then by (1) and (2) in remark
2.1 wehave co(F_ ) = co (F_. forall o, o’ € Fbut '

~er P, = ¢ It contradicts (4).

DEFINITION 2.5. On the algebraic tensor product E®F of two Banach
spaces E and F we shall consider only one normtopology, that is the ¢ —tepol-
ogy (inductive, least cross-norm topplogy) defined as follows

” |
2«<§df><Yrg>#€Swﬂ4€S@ﬂf

r=1

h2le=sup |

. . .
forz= Z2 ®y.  €EQF, where S (X) denotes the unit ball of a Banach

r=1

space X,
Note that the value of | z]| . is independent of the special representation

of z (see [4]). We denote the e-completion of £ ®/F_‘ by E&. It was shown that

the Banach temsor product E& F of two Banach spaces £ and F with it's
g-norm is a Banach space. '

The natural question is whether E GOF has the RNP if we suppose that cach
of two Banach spaces £ and F has the RNP. The following theorem has heen
suggestad by professor Ryll-Nardzewsfki.

THEOREM 2 6. The Banach tensor prpduct [P @lq fails to heive ke W .

where —-——|———=1andp,q>0
p q

68



=¥

E

Proof. Atfirst we show that/p ® g conlains the space of all compact operators
from I to l . Indeed,

n .
let z= X x, @y, € l_p ® lq » by delinition 2 . 5, we have

r=i

,ﬂzusxsupﬂ <X, ¥ ><YT,X>;XGS(IP');YGS(IQ)f
) ] r=1i

On the one hand we can consider z as a finite dimentionel operator from
tp_ to !q, }Jy

n

z(z)= I = Y. » T >:,r:r , for each xelp
- r=1

Estime

hzl=sup {Iz@) sz €5 [}

i
-=sup§” 21<yr,a:>a:r:xeS(lp)g
{7 =

=7 sup ?l I <gy,e><z ,y>hzeS)) yés(fq)=f——%llf'~’lls

r=1
Hence I &)/l contains all finite dimentional operalors from lp to lp_ Thus it
contains the space of all compact eperators from l to l _ Therefore in view of

corollary 1.6 il is sufficient to show that the space of all compact operatoras
from lp to Ip contains some subspace isometrie to ¢, Indeed, let 4 = (a,)eco

and [[All, =sup {|a, |} < co. We can consider A as an operalor from Ip
0 R '

to Ip by

_A(:z:) ={a x ) & lp, where z = (x ) € IP. it is easily seen that
At =SUP{I a, E}== Al .
We show now that A4 is a compact operator To see this let define d l —-w-l by
A (x) = (a,x,, 2,‘.aa:,o,)el
Since a tends to zero so A_tends to A in the operator norin. Fmall} note that
all operator;s A  are finite dimentienal then 4 must be compact. It completes the

prool of the theorem 2.6,
Received on May 1980
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