ON PERIODIC SOLUTIONS OF A NEUTRAL TYPE EQUATION

M. AT. AROLSKA and D. D. BAINOV

Plodiv University « P. Hilendarski »
Bulgaria

The aim of the present paper is to find sufficient conditions for the existence of a periodic solution of the nonlinear equation

$$x(t) = f(t, x(t), x(t-h), x(t-h),$$
 (1)

where h is a constant deviation.

Problems connected with periodic solutions for differential equations with a deviating argument have been considered by a number of authors, as for example, in [1], [2], [3] and [4].

We will say that conditions (A) are satisfied if:

- (A1) The function f(t, x, y, z) is periodic in the variable t with a period T>0 and it has continuous first derivatives with respect to x, y, z and is continuous for all (t, x, y, z) of the four-dimensional space.
 - (A2) There exists a constant m>0 such that the following is fulfilled:

$$\left| \int_{0}^{t} \left[f_{x}(t, \sigma_{1}(t), \sigma_{2}(t), \sigma_{3}(t)) + f_{y}(t, \sigma_{1}(t), \sigma_{2}(t), \sigma_{3}(t)) \right] dt \right| \geqslant m$$
 (2)

for arbitrary T-periodic functions $\sigma_1(t)$, $\sigma_2(t)$ and $\sigma_3(t)$.

(A3) The functions $f_x(t, x, y, z)$, $f_y(t, x, y, z)$ and $f_z(t, x, y, z)$ satisfy the conditions

$$|f_{x}(t, x, y, z)| \leq M, |f_{y}(t, x, y, z)| \leq M$$

$$|f_{z}(t, x, y, z)| \leq 2M, |f_{x}(t, x, y, z) + f_{y}(t, x, y, z)| \leq N$$
(3)

where M, N are constants for which the following inequality holds:

$$\frac{MNT^2}{m} + \frac{2MNT}{m} + 2M < 1 \tag{4}$$

THEOREM 1. Let conditions (A) be satisfied. Then, equation (1) has a T-periodic solution $x(t) = \lim_{n \to \infty} x_n(t)$, where

$$x_n(t) = a_n + \varphi_n(t), \tag{5}$$

while the constant a_n and the functions $\phi_n(t)$ are determined as follows:

$$\varphi_0(t) = 0, -\infty < t < +\infty \tag{6}$$

$$\int_{0}^{T} f(t, a_0, a_0, 0) dt = 0$$
 (7)

$$\varphi_{n}(t) = \int_{0}^{T} f(s, a_{n-1} + \varphi_{n-1}(s), a_{n-1} + \varphi_{n-1}(s-h), \dot{\varphi}_{n-1}(s-h)) ds \qquad (8)$$

and

$$\iint_{0}^{T} (s, a_{n} + \varphi_{n}(s), a_{n} + \varphi_{n}(s-h), \varphi_{n}(s-h)) ds = 0$$
 (9)

Proof. From the condition (A1), (6), (8) and (9) it follows that all functions $\varphi_n(t)$ are T-periodic.

To prove that there exists a unique solution a_n of the equation (9) for every $n = 0, 1, 2, \dots$, consider the function

$$\Gamma_n(a) = \int_0^T f(s, a + \varphi_n(s), a + \varphi_n(s - h), \dot{\varphi}_n(s - h)) ds$$

Further, let us calculate

$$\begin{split} &\Gamma_n'(\mathbf{a}) = \int\limits_0^T [f_x(s,a+\varphi_n(s),\,a+\varphi_n(s-h),\,\dot{\varphi}_n(s-h)) + \\ &+ f_y(s,a+\varphi_n(s),a+\varphi_n(s-h),\,\dot{\varphi}_n(s-h))] ds \end{split}$$

From condition (2) it follows that $|\Gamma'_n(a)| > m > 0$. Assume for convenience that $\Gamma'_n(a) > 0$. Then, for a > 0, $\Gamma_n(a)$ satisfies the inequality $\Gamma_n(a) > ma + \Gamma_n(0)$, while for a < 0 it satisfies the inequality $\Gamma_n(a) \leqslant ma + \Gamma_n(0)$.

Hence obviously there exists a constant $R_n > 0$, such that $\Gamma_n(R_n) > 0$, $\Gamma_n(-R_n) < 0$ for every n = 0, 1,... Since $\Gamma_n(a)$ is a continuous monotonic function, then there exists only one $a_n \in (-R_n, R_n)$, such that $\Gamma_n(a_n) = 0$. Thus, we have established that a_n and $\phi_n(t)$ (n = 0,1,...) are determined uniquely from the relations (6), (7), (8) and (9).

Now we will prove that the sequence $x_n(t)$ converges uniformly on the segment [0, T].

Introduce the notations

$$\psi_{n} = \varphi_{n}(t) - \varphi_{n-1}(t), b_{n} = a_{n} - a_{n-1},$$

$$\rho_{n} = \|\psi_{n}(t)\| = \max_{t} |\psi_{n}(t)| + \max_{t} |\psi_{n}(t)|$$
(10)

Estimate $|\Psi_n(t)|$

$$\psi_{n}(t) = \int_{0}^{t} [f_{x}(s, \sigma_{n}(s), \tau_{n}(s), \theta_{n}(s)) (\psi_{n-1}(s) + b_{n-1}) + f_{y}(s, \sigma_{n}(s), \tau_{n}(s), \theta_{n}(s)) (\psi_{n-1}(s-h) + b_{n-1}) + (11)$$

$$+f_{2}(s, \vartheta_{n}(s), \tau_{n}(s), \theta_{n}(s)) \dot{\psi}_{n-1}(s-h)]ds = \int_{0}^{t} [f_{x}(s, \tau_{n}(s), \tau_{n}(s), \theta_{n}(s))]\phi_{n-1}(s) +$$

$$+ f_{y}(s, \sigma_{n}(s), \tau_{n}(s), \theta_{n}(s)) \psi_{n-1}(s-h)]ds + b_{n-1} \int_{0}^{t} [f_{x}(s, \sigma_{n}(s), \tau_{n}(s), \theta_{n}(s)) +$$

$$+ f_{y}(s, \vartheta_{n}(s), \tau_{n}(s), \theta_{n}(s))] ds + \int_{0}^{t} f_{x}(s, \sigma_{n}(s), \tau_{n}(s), \theta_{n}(s)) \dot{\psi}_{n-1}(s-h) ds$$

On the other hand, from (9) we have

$$b_{n-1} \int_{0}^{T} [f_{x}(s, \sigma_{n}(s), \tau_{n}(s), \theta_{n}(s)) + f_{y}(s, \sigma_{n}(s), \tau_{n}(s), \theta_{n}(s))] ds =$$

$$= -\int_{0}^{T} [f_{x}(s, \sigma_{n}(s), \tau_{n}(s), \theta_{n}(s)) \psi_{n-1}(s) + f_{y}(s, \theta_{n}(s), \tau_{n}(s), \theta_{n}(s)) \psi_{n-1}(s-h)] ds -$$

$$+ f_{y}(s, \theta_{n}(s), \tau_{n}(s), \theta_{n}(s)) \psi_{n-1}(s-h) ds -$$

$$-\int_{0}^{T} f_{z}(s, \sigma_{n}(s), \tau_{n}(s), \theta_{n}(s)) \psi_{n-1}(s-h) ds,$$
(12)

hence we can write (11) in the form

$$| \psi_n(t) | = \left| \left[1 - \frac{\int\limits_0^t [f_x(s, \sigma_n, \tau_n, \theta_n) + f_y(s, \sigma_n, \tau_n, \theta_n)] ds}{\int\limits_0^t [f_x(s, \sigma_n, \tau_n, \theta_n) + f_y(s, \sigma_n, \tau_n, \theta_n)] ds} \right] \times$$

$$\times \int_{0}^{t} [f_{x}(s,\sigma_{n},\tau_{n},\theta_{n})\psi_{n-1}(s) + f_{y}(s,\sigma_{n},\tau_{n},\theta_{n})\psi_{n-1}(s-h) +$$

$$+ f_{z}(s, \sigma_{n}, \tau_{n}, \theta_{n}) \dot{\psi}_{n-1}(s-h) ds - \frac{\int_{0}^{t} [f_{x}(s, \sigma_{n}, \tau_{n}, \theta_{n}) + f_{y}(s, \sigma_{n}, \tau_{n}, \theta_{n})] ds}{\int_{0}^{t} [f_{x}(s, \sigma_{n}, \tau_{n}, \theta_{n}) + f_{y}(s, \sigma_{n}, \tau_{n}, \theta_{n})] ds}$$

$$\begin{split} & \times \int\limits_{t}^{T} [f_{x}(s,\sigma_{n},\,\tau_{n},\,\theta_{n})\,\psi_{n\,-\,1}(s) + f_{y}(s,\delta_{n},\,\tau_{n},\,\theta_{n})\,\psi_{n\,-\,1}(s-h) \,+ \\ & + f_{z}(s,\sigma_{n},\,\tau_{n},\,\theta_{n})\,\dot{\psi}_{n\,-\,1}(s-h)]ds \Big| \leqslant \frac{2\,M\,N}{m} [(T-t)\,t + t(T-t)]\,\|\,\psi_{n\,-\,1}(t)\,\| \end{split}$$

Since the maximum of the function (T-t)t on the segment [0,T] is equal to $T^2/4$, we obtain

$$|\psi_n(t)| \leqslant \frac{MNT^2}{m} \|\psi_{n-1}(t)\|$$
 (13)

Estimate $|\dot{\psi}_n(t)|$. From (8) we get

$$\dot{\psi}_{n}(t) = f_{x}(t, \sigma_{n}, \tau_{n}, \theta_{n}) \psi_{n-1}(t) + f_{y}(t, \sigma_{n}, \tau_{n}, \theta_{n}) \psi_{n-1}(t-h) + f_{z}(t, \sigma_{n}, \tau_{n}, \theta_{n}) \dot{\psi}_{n-1}(t-h) + b_{n-1}[f_{x}(t, \sigma_{n}, \tau_{n}, \theta_{n}) + f_{y}(t, \sigma_{n}, \tau_{n}, \theta_{n})]$$

Note that from (12) one can easily obtain the inequality

$$\left| \begin{array}{c} b_{n-1} \end{array} \right| \leqslant \frac{2MT}{m} \rho_{n-1} \tag{14}$$

whence

$$\left|\dot{\psi}_{n}\left(l\right)\right| \leqslant \left(2M + \frac{2MNT}{m}\right)\rho_{n-1}$$
 (15)

From (13) and (15) follows the inequality

$$\rho_n \leqslant \left(\frac{MNT^2}{m} + \frac{2MNT}{m} + 2M\right)\rho_{n-1} \tag{16}$$

From (4), (14) and (16) it follows that the sequence a_n is convergent. Set

$$a = \lim_{n \to \infty} a_n$$
, $\varphi(t) = \lim_{n \to \infty} \varphi_n(t)$, $x(t) = \lim_{n \to \infty} (a_n + \varphi_n(t))$

One can see from (8) that x(t) is a T-periodic solution of equation (1). Thus, the theorem is proved.

REMARK 1. The theorem holds if condition (6) is replaced by: $\varphi_c(t) = \overline{\varphi}(t)$, where $\overline{\mathcal{C}}(t)$ is an arbitrary T-periodic and continuously-differentiable for $t \in (-\infty, +\infty)$ function.

REMARK 2. If T = h, the conditions (A) can be weakened, as follows: Conditions (3) and (4) are replaced by

$$|f_x(t, x, y, z) + f_y(t, x, y, z)| \le N, |f_z(t, x, y, z)| \le N$$
 (3')

$$\frac{\mathcal{N}^{2}h}{m} + \frac{(\mathcal{N}h^{2})}{2m} + N < 1 \tag{4'}$$

REMARK 3. Every T-periodic solution of the equation (1) can be considered as the limit of the sequence of the type (5), where

$$a_0 = x(0), \ \varphi_0(t) = \int_0^t f(s, \ x(s), \ x(s-h), \ \dot{x}(s-h))ds$$

while a_n and $\varphi_n(t)$ for $n \ge 1$ are determined by the relations (8) and (9).

Indeed, in this case we obtain

$$\varphi_n(t) = \varphi_0(t), \ a_n = a_0 \ (n = 1, 2, ...,) \ x_n(t) = x(t)$$

and the assumption is obvious.

THEOREM 4. Let the conditions (A) be satisfied. Then the T-periodic solution of equation (1) is unique.

Proof. Let x(t) be a T-periodic solution of equation (1), defined by Theorem 2, i. e.,

$$x(t) = \lim x_n(t)$$

where $x_n(t)$ are obtained from (5), (6), (7), (8) and (9).

By $\omega(t)$ denote an arbitrary T — periodic solution of equation (1). Determine the sequence $\omega_n(t) = \overset{\sim}{a_n} + \overset{\sim}{\varphi}_n(t)$ according to Remark 3.

Consider the difference $\widetilde{\psi}_n(t) = \widetilde{\varphi}_n(t) - \varphi_n(t)$. It is easy to obtain the estimation

$$\left|\widetilde{\psi}_{n}(t)\right| < \frac{MTN^{2}}{m} \left\|\widetilde{\psi}_{n-1}(t)\right\|$$

$$\left|\widetilde{\psi}_{n}(t)\right| \leqslant \left(\frac{2MTN}{m} + 2M\right) \left\|\widetilde{\psi}_{n-1}(t)\right\|$$

whence

$$\left\|\widetilde{\psi}_{n}(t)\right\| \leqslant \left(\frac{MNT^{2}}{m} + \frac{2MNT}{m} + 2M\right)\left\|\widetilde{\psi}_{o}(t)\right\|,\tag{17}$$

$$\left|\widetilde{a}_{n}-a_{n}\right|\leqslant\frac{2MT}{m}\left\|\widetilde{\psi}_{n}\left(t\right)\right\|\tag{18}$$

From (17) and (18) and using condition (4), we get

$$\|\widetilde{\psi}_n(t)\|_{n\to\infty} = 0, \ |\widetilde{a}_n - a_n|_{n\to\infty} = 0$$

i. e.,

$$\widetilde{\varphi}(t) = \varphi(t), \ \widetilde{a} = a, x(t) = \omega(t)$$

Thus, the theorem is proved.

Received July 13, 1981

REFERENCES

- 1. Halanay, A., Periodiceskie resenia lineinyh system s zapazdivaniem (Periodic solutions of linear systems with retardation), Rev. Math. Pures Appl. 6 (1961), 141 158.
- 2. Mikolajska. Z., Une remarque sur la méthode des approximations successives dans la recherche des solutions périodiques des équations différentielles à paramètre retardé, Ann. Polon. Math. 24 (1970), 55 64.
- 3. Norkin. S. B., O periodiceskih resenijah lineinogo odnorodnogo differenzial' nogo uravnenija vlorogo porjadka s zapazdivajuscim argumentom (On periodic solutions of a linear homogeneous differential equations of second order with retarded argument), Mat. Sb. 45 (1958), 71-104.
- 4. Rodionov, A. M., Periodiceskie resenija nelinejnih differentialnyh uravnenii s zapazdyvaniem (Periodic solutions of nonlinear differential equations with time lag), Trudy Sem. Theor. Differential. Uravnenii s olklon. Argumentom 2 (1963), 200-207.