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¢ 1. INTRODUCTION

'

Consider the following problem :

(P) Given a closed convex subset D of R? and a concaye function
/ : R®— R satisfying f(x) > 0 for all z & D, tind a point £ &€ D such that
f @) =0.

Any solution of this problem must be, of course, an optimal solution of
the program - , : '
Minimize f(z), subject to z € D ! | @O
The converse, however, is true only if the optimal value of (1) equals 0.

Problem (P) includes as a Speciai case the following concave complementa-
rity problem : :

‘Given a concave mapping w : R® — R?, find = € R” such that
22>0, p=w@>0(@y=0 @
(when w is affine, this is the linear complementarity probiem extensively studied
during the last decade). To convert (2) into a problem (P) it suffices to set

D={x:20, w(;&) > 0},,lf(-2?) _——~'§ min {.:cI » w, (z)}
i=1 . i

In [2;3] we have developed a method for solving the linear complementa-
rity problem via concave programming. In the present paper this approach

will be extended further in order to solve (P). The main point of this extension
isin a more flexible rule for the bounding operations involved in the iterative
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procedure, which on one hand saves us the need to sue linea: vubprograms (1
be solved by the simplex method), on the other hand allows the procedure to
be applicable to more general situations. Thus, a variant of the new methoc
will be absolutely «simplex free», i.e. does nol use in any way the simple:.
method. When applied to linear programming problems, thls variant yields a
new iterative algorithm, quite different from the simplex one. Although at the
present stage the method has not yet been lested on computers, it seems to offer
some interest in view of several potential advantages: 1) it solves the problem
whenever the latter is solvable; 2) it involves very simple operations ; 3)it
allows an easy decomposition of a large problem into many smaller subpro-
blems.

2. DESCRIPTION OF THE ALGORITHM

Assume that an interior point of D is-available at the beginhing, and (using a
translation if necessary) that this point is the origin O of the space. The method
we propose for the solution of the problem (P) is an iterative procedure of the
branch and bound type. In each step of this procedure a certain collection of
cones (Wxth vertex at O) must be examined and three basic operatlons must be
pe1f01med

1) Select a cone from this colleclion;

2) Split this cone into two smaller subcones‘

3) Fathom each newly generated cone M by computing a number p (M)
such that p{M) > 0 indicates that f(z) > 0 all over M N D and hence that M
can be discarded from further examination.’

We  shall specify later the precise rules for these basic operations.

Assuming for the moment that these rules have been defined, the algorithm

can be described as fallows.

"Take an n simplex T = [s',.., s®t1] in R? with barycentre at © and for
each j=1, .., n-1 lei M be the polyhedral convex cone generated by n

halflines from O through s w1th L= ji let 20/ be the point achieving the

minimum (if it exists) of f(z) over the common part of D with the halfline -

from O through s/,

Initialization. Set x9 = arg min {f(xo'f): j=1,., n+ 1}; My =

‘ : ) LPREEE
M, ., Compute u(M, ;) for each j=1.., n+1



Step k =01,... If f(x*) = 0, stop: z* i§ a solution of (P). Otherwise,
delete all cones M < Jﬁk with (M) > 0. Let GQk be the set of remaining cones.

It R, == (7, stop: the problem (P) has no solution. Otherwise, select a cone

M, € R _ and split it into two subcones .r‘aar'k’?’, M, .. For each j= 1,2 compute

H(HM,, ;). These operations generate some new points of D. Let K*7 be the
new current best point, lLe. the point that achieves the smallest value of f(x)
. k ‘ 1 < ;
among " and all newly generated points of DfForm M, ;= (R, \{M, D v

{A, 1. M, o} and go to the next step k + 1. : '

k17

Understandably, the convergence as well as the efficiency of the above
Algorithm crucially depends upon the concrete vules for selecting and splitting
M, and for fathoming the newly generated cones - and Mk 9 We proceed

N . Pl 3 3 .

to describe these rules in the next sections.

\

3. SELECTING ¥,

Let M be any cone gencrated during the procedure. So M is a cone with
vertex at ( and exactly n edges passing through n pbints vl,..., v of some facet
of the simplex T == [s},..., s"71]. Let

- 8; = sup-{8: f(s0/ ) > 0} (3\
p(3) = min {9,..., (N (4)

Then, as can be easily seen, p(."f‘) >0 and
cp(My=sap {8: f(x) >0 YrcMno.T} {5).
" and hence, M' (= M implies p(3") = p(M). ‘
Rule for selecting M, :
M, =arg min te(My: M € Qk} (6)
PROPGSITION 1. Suppose that the above rule is adopled for seleciing the

cone M g iR each step k. If the Algorithm, generaltes an infinite subsequence of
cones. ‘{Mk } tending to a halfline U contained in D then ihe problem (P) has
q : .

no solution.
(We say that a sequence of cones M, fends fo. a halfline I’ if any cone

containing F\ {8} in- its interior contains all Mﬁ’q with sufficiéntly large g¢).



Proof. Tt will suffice to show that, givén any posjtive number N, we have
fix) > 0 for allx e D such thatlz| << N. To this end, observe that, the
function f being concave and bounded below by 0 on T, its _minimum over I’
is attained at 0 (see e.g. [1], section 32). That is, f (x) = f (0), > 0 for all
x el. Take 06 > 0 so large _that the ball |z} << N is contained in the
simplex 67. Let U be a ball around & peint ¢ € I, such that x ¢ 67 and

f(x) > 0for allxeU. Then for all g large enough M, lies imside the come

. : q
generated by 0 and U. Consequently: the j-th edge of Mk meets 7. at some
’ q

point =%/ with f (x2Jy > 0. Since x9°/¢ oT, we must have p (M, ) > 8 and
| » :
hence, by the rule (6), p (M) > 0 for all M R, . Now, if x € I} and |z} <C
q

N, then either x belongs to some cone already deleted in a step h < kq or T

belongs to some cone M & R, :in both cases, f (x) > 0, because p (3) > 8

q
and x ¢ oT. [

4. SPLITTING M

We shall use the same Disection rule as was used in [4]. More specifically,
let v¥l,..., o7 be the intersections of the n edges of M, with the boundary of

the simplex 7. Choose the longest side of fhe simplex S}; = [v‘"1 youey D], sRY

[pks/t,pk2i2], and let uk be the midpoint of this side. Then,-for cach h = 1,2
take M, , to be the cone whose set of edges obtains from that of M, by

~

substituting the halfline from O through uk for the edge passing throngh phsdh .

It is immediate that M = M A v M k,27' In [4] we have established the
following important property of this splitting method :

PROPOSITION 2. If the Algorithm is infinte, then the digmeter of the above
defined simplex S, tends to zero. Hence, any !',nfinite decreasing sub.fequencc of
cones {qu } tends to a halfline emanating from O,

(By a «decreasing sequenAce‘ {M, } «we mean a sequence such that
p :
. DK, )
g—1 kq -
We shall say that a cone M is of first or second cafegory according te
whether M ~ D is bounded or not. From the previous Propositiens we can
draw the following

M,
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COROLLARY. Suppose that the rule (8) and the biscction rule are used for
selecting and splitting M, , respectively. If the Algorithm generates infinitely
many cones of seond category, then the problem (P) has no solution. '

Proof.Suppose that the Algorithm generates infinitely many cones of second
category. Then one can select an infinite decreasing subsequence of cones

M, such that each M, contains infiniiely many cones of second category.
q q

By Proposition 2, this subsequence of cones tends to a haifline, I'. It is easy’
to see that I' must be contained in J. Indeed, otherwise there would exist a
ball U7 around a peint cel” such that U n D = ¢. For all'q large enough every

halfline in M, emanating from O would meet U. In view of the convexity of
. q
D this would imply that the intersection of I with every such halfline is a

- segment, hence that M, ~ D is bounded, conflicting with the fact that M &
q ' . - q

contains cones of second category. Thus, I' is contained in D and so, by

Proposition 1, the problem (P) has no solution. [ '

5. FATHOMING THE NEWLY GENERATED CONES -

By the previous Corollary, if the problem (P) is solvable, then using rule (6)
and the bisection rule the Algorithm will be finite or will generate, after a
certain number of steps, only cones of first caiegory. In the latter case there’
exists an infinite decreasing subsequence of cones {M, } of first category. By

q

Proposition 2 the intersection of this subsequence is a halfline I" and since each

set M, N Dis unbounded, the set I' n D is a segment [0,2*] with z* £ 0
. q :
(because 0 € int D), It turns out that using an appropriate rule for fathommg

the newly generated cones in each step, it is possible to guarantee that for any
such subsequence M we have f{z*) =0, i.e. z* is a solution.

£ B X

To describe this rule; let M be a newly generated cone, with n edges meet-
ing some facet of T at v',..., »™. Consider the 8, defined by (3).
1)1 0, = + oo for all j=1,.., 0, then f () > 0 for all & & M. Hence, in__

that case we set
s H(M) > 0.

2) In the contrary case, 0, <C + oo for some j and since f(x) >0 for all
xe D, the j-th edge maust cut the boundary 8 D of D. So at least one point of

i ¢ - 1



M 3D is available, for example the intersection of 3 D with the j-th edge of M,

Wethen take an arbitrary point z& M A 8 D and an arbitrary sup porting hyperplane

H of D at z. Let H+ be the halfspace determined by H that contains D, Since M A D
"CC M n H* we can obviously set . ' - ‘

>0if inf {f(z): xe M N H*} >0
=40 otherwise

o e @

where the number inf {f(z): x € M n H+*} is easy to estimate because M ~ H+ ig
a polyhedral convex set of simple structure,

More precisely, suppose that D is given by a system of constraints of
the form:
9,(®)>0  (i=1..,m) . ®)

where each g;: R" — R1is a concave function. Since 0 int 1) we must have gi(O) ‘
>0 foralli= 1;...,m If jis such that 0,<+ o0 and A; = sup {?( >0: 9, (A ') >
0% i}, then z= A v/ & M N8 D, and we have g. (2) =0 for some i, Let { bea

suhgladlent ofm-g (x) at point z. Then g, (x) — 9, (z)-— g; (*) > 0 implies
(t,z — x) >0, and so the equation {t, z — .1:) =0 defines a supporting hyper-
plane H for D at z, such that H+——-{.1: ({, z - x) > 0}. Since O g int D  int H+
it follows that

{t,z)> 0. . ] M

. Let us distingunish two subcases:

2a) (f,uj) >0 for all j=1,.., n. Then for each j the j-ih edge of M cals
Hat 2=,/ with

Cj = (1,z) /(t,vf).

So M AH* is a simplex with vertices 0, 2%..., 2% and from the concavity of
the function f we have . . :

f(#) > min {f(0), (), o f(zD)} for all © € M A H*. Noting that f(0) 0,
we can set .

~

’ u(M)g ff() for all 3 - (10)

0 otherwise

2b) 1,07y < 0 for at least some j. Then the Jj-th edge of i lies in M ~ H*
which is thus unbounded. In this case we set

u() = 0.



PROPOSITION 3. Suppose thal the above rule is used for fathoming the
newly generated cones in each step.~If the Algorithm generates an infinite

decreasing subsequence of cones Mk such thaf( ~ -M]' )sz{"O, Y with z* <=0,
q g=1
then f(z*y=0, i.e. z* is a solulion. Furthermore, if for each M we deriole by

Z(M) Lhe point z e M NoD constructed for M as indicated above, then M, ) — 2,
g

Proof. Let v* (v*7, resp.) be the point where the halfline from O through
2" (#(M | ), resp.) cuts the boundaryof T, and let r*= g*p*, =(i P ):—gqﬁq.
q o =

Clearly the sequence M, tends to the halfline I" from O through z*aso that
g

4 —p*. If ¢ is the gauge of the convexe set D then ¢ (£'v*) =.1, hence
B = 1/ (v*) and similarly, E.q = 1jop (5‘?). Bat ¢ being continuous, it follows

that 5.q — &* and hence, HM, )} — z*. Now observe that, since a, aR, , we
\ g g q

have p.(Mk )= 0. Denote by u(-”j, 19 the vectors v/, ¢ constructed for M:Mk .
q - q

By taking a subsequence if necessary we may assume that 19/)t9] — 1*, p¥/ s p*J
as g — - o=, Since (17, #M ). )—x)>0forall xe D, it follows that (*, z'—x) >0
‘ q
forafl ze D. In view of the fact O&int D this implies {t*, z*) > 0. Hence,
(t, v*) > 0, so that for all q large enough (19, vq’j) >0 for all j=1, .., n
JTherefore, p(M i) is computed according to (10) where z/ = z4+/ =& 0of v/
q ° 0
with :
Eq,j = (19, z(ﬂlkq»f(ﬂ, vq’,J).

Clearly, gq’j—> (&, %) [{t*, v*)=E*, hence 7/ —>z*, But from (10) and the relation
u,(Mk )= 0 it follows that for each ¢ large eriough there is j = j(gq) such that
¢ ‘

fzry < 0. Consequently, f(z*) < 0, which implies f(z") =0, because f(z) > 0
for all zeD. [J

REMARK 1. In the above method for computing W(M) there is a large
freedom in the choice of the point z=2(M)ye M N3 D and the supporting
hyperplane H. '

For example, if isj < oo forall j=1,.., n so that every j-the dge of M

cuts 3 D at some 2/, then one can choose any of these z/ as z. Often it is more
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efficient to také z to be the point where 8 D cuts the halfline from O through

the barycentre v = (p* - ... + v")/n of the simplex [v? ..., v"].Once has been
chosen, there are in gemeral several possible choices for the suppoiting
hyperplanc H. Of course, using this flexibility but withont spending too much
effort, onme could try to. get M(A) >> 0 whenever possible and thus quickly
discard M if this cone is irrelevant. '

6. CONVERGENCE OF THE ALGORITHM

From the previous resulfs we can now derive the following convergence
theorems.

Suppose that the above rules for selécti’ng' and splitting Mk and. for fatho-
ming the. newly generated cones are applied in the Algorithm described in
section 2. )

THEOREM 1. If the problem (P) is solvable, then either the Algo}'ithm {ermi-
- nates after finilely many steps, yielding a solution, or it generafes a sequence
* {x*} D such that f(x* )~ 0. In the latter case the sequence Z(M,) has al least
one cluster point and every such clusier point is a solution.

Proof. If the problem is solvable, then, as seen af the beginning of the
previous section, the sequence M £ whenever infinite, contains an infinite decre-

asing subsequence M, such that (R M, )n Disa line segment [0.2%] wiﬂ;
: q g=1 4

z* 4= 0. Then by Proposition 3; z(M, ) -» z* and z* is a solution. Furthermore,
" g : .

we have from the definition of " f(:r: a4 ) < f(2(M, )), hence f(a:kq ) \0. Since
q ) ;

the sequence f(xk ) is nomncreasmg; we conclude f(zf) \, 0.
THEOREM 2. For any fwo given positive numbers ¢, N, the Algorithm either
finds af ter finitely many steps an <- approximate solution, i.e. a poinf % ¢ D

such that f (zF) <e, or establishes after finitely many steps thal the problem
has no solulion infhe ball || x || < N.

Proof. If the problem is solvable, the first alternative holds by the previous
Theorem. If the problem'is unsolvable, the sequence M, whenever infinite,

contains a decreasing subsequence M, tending to a balfline ', We must have
q

[ < D (otherwise, ' A D) would be a line- segment and the problem would have
nosolution by Proposition 3). Therefore, as seen in the proof of Pmpomtmn 1,
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for any given 8 > 0 there is k;}gsuch that p(3/) > 8 for all ¥ « R, . In parti-
: - ) q
cular, there is kq such that for all i € 2 ;. the ball x| < N is contained in
‘ q

the simplex p (M).T': then, at this step kq we are assured that f(xr) > 0 for all
x & Dsatisfying o [| < N. [

7. CASE WHERE NO INTERIOR POINT OF D IS AVAILABLE

The above Algorithm supposes that an interior point of D is konown. In
some practical cases such a point is actually readily available or easy to find.
There are, however, circumstances where the search for an interior point of D
may be hard. Therefore, the question of how to overcome the difficulty if no
interior point of I) is available is worth discussing.

Fortunately, at least for the important special case of the concave
complementarity problem (2), this difficulty can be easily overcome at the
cost of an extra dimension. : .

Indeed, it is readily seen that the problem (2) is equivalent fo the

following one :

Find (a:,a:nH) eR™ x R such that

T, 0 =tluunt 1), w@ + 2 20 (i =1, n an
n .
2 min {z, , w(x) -+ Tt b g =0 (12)
i—1

This is obviously a special problem (P). Given any x >0, we can always

choose an T, ., 5° that (=, $H+1) satisfics all conditions (11) as strict inequa-

lities, i.e. so that (a:,xn 1) is an interior point of the constraint set defined
. . ) + : R

by (11). Therefore, the above Algorithm can be applied, starting from this

interior point. ' '

If we know a feasible point, tben to avoid an extra dimension one can also .
proceed as follows.

Observe first that all the previous results remain valid if instead of assum.
ing the function f to be nonnegative on the constraint set D we assume only
that f is bounded below on this sel. Now, let us slightty relax the constraints (3)
and consider instead of D the set D), defined by system

g (@) e >0 =1,.., mh
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vhere ¢ is a small positive number. Clearly, any point of D is an interior point
»f D.. so if the function f is still bounded below on D, (as it is the case with

he function f in the concave complementarity problem (2), then, starting from

-

1 point -of D, we can apply the previous Algorithm Lo find a zero of f in

D, :this will provide an approximate solution to. the originalnwprohlem.

8. CASE WHERE THE CONSTRAINTS ARE LINEAR

A special‘case deserving detailed consideration is that in which the cons-
traints are linear, i.e. have the form :

g, (@)y={(a', ® 4 B, >0 (I = L., m) (13)

it turns out that in this Caée the method can be applied even il the origin 0 is
only a boundary point of D. '

Suppose first that O is &’ nondegenerate exireme point of D, i.e. an extreme
point incident to exactly n edges of D. Then we can take lhe initial set %, to
consist of a single cone, viz. the cone Af, with veriex at O generated by the n
edges of D incident to O. Indeed, for this it suffices to choose first n vertices

si..., s of the simplex T, — [s.00s s”+1] to be the extreme points of [) adjacent

toO (if some edgé of D incident to O is unbounded, the corresponding s/ may be
taken to be any point distinct from O on this edge). Then the comes M, . (see

section 2) with j = 1,..., n are immediately discarded, because M, ;N D={0}.
So the only cone that must be explored is 3, =M, _ 1o
With _#, chosen in that way it is easy to verify that all the operations

described in section 4 for fathoming a cone make sense. In more details let M
be the cone to be fathomed and assume that BJ. « o for at least one j (see

section 4, case 2). Then a point z = (M) € M ~ 3D isavailable which is distinet
from O. In section 4 the inequality (9) was secured by the hypothesis O € int D,
In the present case this is secured by the following

LEMMA 1. Assume that [0, z] with z == 0 is thé infersection of Lhe polyhedral
set (13) with a halfline emanaling from O. Then there is an [ € {1,..., m} for

which g, () =0 < g;(0),i.e.(a's 2) + B;= 0, while B,> 0.

Proof. Denote I = {i: (@, zy + B, = 0}. Since 0 € D, we must have B, >0
(i = 1,..., m). If p; =0foralli€l, then for some 8 > 1 we would have
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L25

(a', 82>+ B, =0 (i€ ), while (', 02> + B> 0 (i ¢ I) (since(a’, > -4p; = 0

for i ¢ 7). This would mean 8z € D, contradicting the hypothesis. .

Thus, for some i we have<a’, z)+ B, =0,p; > 0. Then, taking t=—q! (which

is the only subgradient of ~g, () = —(al, x) — B; at point z), we are assured
that {f, z}) = B; = 0,1, e. (9) holds, dnd hence, we can proceed further just in
the same way as we did in section 4. |

Of course we still have to show that Proposition 3 remains-.valid. But upon

close scrutiny it is easily seen that the basic points in the proof of this-
proposition are the following : :

1) Whenever( R M ) A D = [0, 2] with z* 4 0, thenz(M ) — z*;
g=1 kq kq
2) any cluster point t* of the sequence 19/ 14 || satisfies (*, v*) > 0 (the,
notations being the same as in the proof of Propositjon 8)

In section 4 both these poinis are secured by the hypothesis 0 ¢ int"D. In

the present case, these points follow from the linearity of the constraints. In
fact we have the following

LEMMA 2. Lel v* +4-0 be a point such that the inlersection of the halfline
from O'tlzzrough v* with the polyhedral set D defined by (13) is a line seqment
[0, =*] with z* 4= 0. For every neighbourhood U of z* there is a neighbourhood V-
of v* such that whenever v € V the inlersection of the halfline from O through v
with D is either {0} or « line segment [0, z) with = € U,

(A proof this Proposition can he found in [3])

Since Z(Mk ) == 0 (which can be easily seen from the fact that M, is a )
q

. . q
subcope of M), it follows from the above Lemma that’ #(M , ) — z*.Eurther-
g
more, if {9/ || t9 | — ¢, then, since /4 = —a’ for some i=i(q), we may assume

i(q) = I* (constant) for all ¢, hence ({7, =(M , )) B > 0, so that (", z* ) =

= B;+.>> 0. This proves points 1} and 2) and there by Pmposmon 3 and Theo-

rems 1 and 2 for the case where O is a nondeﬂenmate extreme point of D (if O
is a degenerate extreme point of I then a shght perturballon will make it
nondegenerate),
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9. ALTERNATIVE VARIANT FOR THE CASE OF LINEAR CONSTRAINTS

+
Besides the above basic algorithm, one _ca’n also indicate several other
variants for the casc where [ is a polyhedral set given by (13).

I. Suppose that Q is a boundary but not an extreme point of D. Then in
carrying out the fathoming operation -as indicated above it may occur that, in
the case where 8, < J- o= for some j (case 2 in séction 4), no point z € # N

oD distinct from O is available and so we cannot determine the hyperplane H
by the previous method. To circumvent this difliculty, we can proceed as
follows, .

Computation of u (M),
L B = -} oe for all j = 1,..., n, then, as hefore, set u(M) >0,

2) Otherwme consider two subcases:

2a) If there is some i = 1,..., m such that for all j ==L, n: <d, s/ >
< Oand f(;»/) > 0, where z_-,j = — By (a0l ), set W) > 0;

2b) Otherwise, set L (M) = 0. |

It is easy to see that [-l(M) > 0 actually implies f(a:) > 0forallz € M NAD,
Indeed, in case 2a) the hyperplane I = { x: (d, ) + B, = 0} cuts the
edges of the cone M at ;= o ey (j = L,....n), so theset M N D is contained
in the simplex [0,2,..., z"]. Since f (0) > 0, if we have f(zf) > 0 for all j then
from the concavity of f it follows that f (x) > 0 for allaze M N D.

PRGPOSITION 4, The constraints being (13), suppose that 0 & D and the
above rule for computing WM) is applied. If the Algorithm generales an infinité

decreasing subsequence of conés M  Such that ( A M k ) n D ={0, z*] then
: ; T g=1 ¢
T f (2%) =0, i.e. z* is a solution.

Proof. Let z* = [*v*, where v* denotes the intersection of the halfline I' =
= N MJ: with the boundary of T, If z* - ¢ then 6v* ¢ D for all @ ~ 0,

g=—1 q- o
hence there is some i such that §. = 0, (ai v*) < 0; if 2* 4 0 there is by

Lemma 1 some i such that { a',w >+ B;= 0 and B, > 0, hence ( at, to )

= — B; << 0. Thus, in either case there is some i such that ( df, v* ) < 0,
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b= — [31,/ <.ai, v* ). Sinee %7 v*, we must have, when q is large enough,

- {d, »%/y < 0 for all J- The equality W( qu) =0 then implies the existence

of an index J=j(q) such that f (f;qj v j) << 0, where tq, j=—8;/ (al, v3/ 3

Obviously, §q ; £, qu o I, L*v* = z*, Hence, f(z*) = 0, because F is
nonnegative on D, []
From this Proposition, we deduce :

: THEOREM 3. The constrainis being (13), suppose that O e D and the above
rule for computing W(M) is applied. If the problem (P) is solvable, then the
Algorithm either finds a solution after a finite’number of steps or generates an

infinite decreasing subsequence of cones M . such that ( n M )N D=
. - q g=1 q
{0, z*], where z* is a solution. )
1L The previous method for computing R(3) is simple enough, but does not

guarantee that f(x*)\ 0 when the problem is solvable. Although we actually have

2% = quvq’j - z ‘Whene'ver( A M, ) N D = [0,z*], we are not sure that
3 gm]. q .

29 € D, and so a subsequencce z(qu) € D with z.(Ml-q) — z* may fail to exist.
Another method which guarantees the latter result even in the case where 0 is
only a boundary point of 1) is the following.

Consider the hyperplane K passing through all yj= Bjuj with 0; <<+ o
and parallel to each v/ with 8=+ o;, and let H be the supporting hyperplane
of MD that is parallel to K. Then the point z=z (Mk ) where H touches # nD

- q N .
is determined by solving the auxiliary linear subprogram :
2 .

Mazximize Py pj/ﬂj » subject to Bp s D, p > 0, (14) |

where J ={;: 0~ o }, B is the nxn-matrix with columns v,..., vpand p is
a column vector with components Pisee p, - Set W) > 0 if z lies on the side
of K containing 0 (i.e. if the optimal value of (14) is < 1), H(M) =0 otherwise.

This method, which has been nsed in cur earlier work {3] (the interested
reader is referred to this work for all Lhe relevant delails), yields in general a

better value for M(M) than the previous method. Furthérmore, it provides in
any event a point z = z (M) € M Nal such thal » (M, ) — z" for anysequence
g .
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Mk as mentioned in Theorem 3. Hence, under the conditions stated in this
q

Theorem, f(:z:k ) N\ 0 whenever the problem is solvable. However, these advan-
tages are achieved at the expense of a great deal of tomputational efforts (pre-
liminary experiments witlithis kind of algorithms have shown that most of
the computational time is expected to_ be spent solving the auxiliary sub.
programs). . 1

IiI, Suppose that the polyhedrél set [) contfains no line (as is the case with
the concave complementarity problem). In this case the Algorithm can be made

finite by the following procedlire. In each step k of the current ¥ is noi an

extreme point of D, one can find a vector u==0 such that x* 4 gz still lies in D
(z is a nonzero vector of the linear manifold determined by the constraints

that are binding for %), Let us replace z¥ by the point that achieves the mini-

mum of f over the lines segment (or halfline) .D ~ {2k fou: — oo < 0<T+ oo},
Répeating this operation as many times as necessary we shall ultimately reach

an exireme point xX of D such that f(z) < f(z*). Thus, by performing if
necessary some additional computations we may assume that the current best
- feasible point x* in each step is an extreme point of D, In the case of Solvability,
since f(2¥) \, 0 and the number of extreme points is finite, the Algorithm will
necessarily terminate after finitely many steps with an extreme point ¥ such .’
that f(x) =0, |

10. CONCLUDING REMARKS

in conclusion, lei us mention some particular features of the )method
developed above : '

1) The method solves the problem (P)(in particular, the concave comple-
mentarity ‘problem (2)) whenever the problem is solvable, but is not able to
decide in a finite number of steps’whether or not the problem is solvable. In a

' finite number of steps the method can only decide whether or not the problem
has a solution in a bounded region (as latge as we please, but given before hand).

2) The basic Operatioh throughout the computational process is the search
for the minimum of a concave function over a halfline (or line segment), which
is an easy one-dimensional search. Round-off errors accumulation is not expected
to be a major problem for this method,, because the calculations in each step
do not explicitly depend on the results of the previous step,
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3) In constrast ‘with many methods of nonlinear programming, this method
* does not necessarily involves solving linear subproblems. In the special case of
the concave (in particular, linear) complementarity problem it is .even not
necessary to know a feasible point in order to start the algorithm. Thus, by
applying this method to linear programming problems we shall get a new
iterative algorithm quite different from the simplex method.

[

4) At any step k, the problem can be easily decomposed into smaller
subproblems, since for each cone M in 2 . the subproblem of finding a zero of

f in MAD can be solved autonomously. This should alio

w an efficient use of
several parallel computers for selving the problem. '

We hope to be able to report computational experiencé' with the method
presented above in a gubsequent paper.
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