A REPRESENTATION THEOREM FOR ALMOST SURELY CONVERGENT SEQUENCES OF MULTIFUNCTIONS

ĐINH QUANG LUU

Institute of Mathematics, Hà nơi

§ 1. INTRODUCTION

Let (Ω, \mathcal{A}, P) be a probability space and \mathcal{K} the family of all closed bounded non-empty subsets of a Polish (space (\mathcal{B}, ρ)). Thus (\mathcal{K}, h) becomes a complete metric space—with the usual Hausdorff's metric h, defined as follows

$$h(X, Y) = \max \{ \sup_{y \in Y} d(X, y), \sup_{x \in X} d(Y, x) \} (X, Y \in \mathcal{K})$$
 (1.1)

A multifunction $X:\Omega\hookrightarrow \mathbb{K}$ is said to be weakly \mathcal{A} -measurable $(X\in \mathcal{M}(\mathbb{K},\mathcal{A}))$ if $\{\omega, X(\omega)\land V\neq \phi\}\in \mathcal{A}$ for every open subset V of \mathcal{B} . A function $f:\Omega\to \mathcal{B}$ is called an \mathcal{A} -measurable selector of $X\in \mathcal{M}(\mathbb{K},\mathcal{A})$, $(f\in S_X(\mathcal{A}))$ if $f(\omega)\in X(\omega)$ for all ω and $f^{-1}(V)\in \mathcal{A}$ for every open subset V of \mathcal{B}

In [2], Kuratowski and Ryll-Nardzewski proved the following general theorem on selectors

Theorem 1. For each $X \in \mathcal{M}(\mathcal{K}, \mathcal{A})$, the set $S_X(\mathcal{A})$ is non-empty. Castaing [1] generalised this result as follows

Theorem 2. $X \in \mathcal{M}(\mathcal{K}, \mathcal{A})$ if and only if there is a sequence $\langle f^i \rangle_{i=1}^{\infty}$ in $S_X(\mathcal{A})$ such that $X(\omega) = \operatorname{cl} \left\{ f^i(\omega) \; ; \; i \geqslant 1 \right\}$ for all ω , where cl denotes the closure operator.

Using these results we have obtained, recently, the following theorem in [3].

Theorem 3. Let X, $Y \in \mathcal{M}(\mathcal{K}, \mathcal{A})$ and $\varphi: \Omega \to (0, \infty)$ an \mathcal{A} -measurable positive function. Then

 $\forall f \in S_x (\mathcal{A})^{\exists} g \in S_y(\mathcal{A}) \ \rho(f(\omega), g(\omega)) \leqslant h(X(\omega), Y(\omega)) + \varphi(\omega)^{\forall} \omega$. Main purpose of the note is to prove the following result.

Theorem 4. Let $\langle X_n \rangle$ be a sequence in $\mathcal{M}(\mathcal{K}, \mathcal{A})$. Then $\langle X_n \rangle$ is almost surely convergent to some element $X_{\infty} \in \mathcal{M}(\mathcal{K}, \mathcal{A})$ i.e. $\lim_{n \to \infty} h(X_n(\omega), X_{\infty}(\omega)) = 0, \text{ a.e.}$

if and only if there is a countable number of sequences:

$$\langle f_1^i \rangle_{i=1}^{\infty}, \ \langle f_2^i \rangle_{i=1}^{\infty}, ... \ \langle f_{\infty}^i \rangle_{i=1}^{\infty} \ \text{such that}$$

$$1) \ \langle f_n^i \rangle_{i=1}^{\infty} \subset S_{x_n}(\mathcal{A}); \ X_n(\omega) = cl \ ([f_n^i(\omega), \ i \geqslant 1])^{\bigvee \omega}, \ \bigvee n=1, \ 2, ..., \ \infty$$

and

2) $\lim_{n\to\infty} \rho(f_n^i(\omega), f_\infty^i(\omega)) = 0$, a.e., uniformly in i = 1, 2...

§ 2. PROOF OF MAIN RESULT

(Necessarity). Fix a positive integer m, Since $X_m \in \mathcal{M}(\mathcal{K}|\mathcal{A})$ then by the Castaing's representation theorem 2 there is a sequence $\langle g_m^j \rangle_{j=1}^{\infty}$ such that

$$\langle g_m^j \rangle_{j=1}^{\infty} \subset S_{xm}(\mathcal{A}) \text{ and } X_m(\omega) = \operatorname{cl}(\{g_m^j(\omega), \ j \geqslant 1\}) \ ^{\forall} \omega \tag{2.1}$$

Further, thanks to therem 3 there is a sequence $\langle p_{\infty}^{m,j} \rangle_{j=1}^{\infty}$ such that

$$\langle p_{\infty}^{m, j} \rangle_{j=1}^{\infty} \subset S_{X_{\infty}}(\mathcal{A}) \quad \text{and}$$

$$\rho \left(g_{m}^{j}(\omega), \ p_{\infty}^{m, j}(\omega) \right) \leqslant h(X_{m}(\omega), X_{\infty})) + \frac{1}{2^{m}}, \text{ a.e.}$$

$$(2.2)$$

Analogously, for each n there is a sequence

$$\begin{split} \langle p_n^{m,\,j} \rangle_{j=1}^{\infty} \quad \text{such that} \quad \langle p_n^{m,\,j} \rangle_{j=1}^{\infty} \in S_{x_n}^{\infty} \quad \text{and} \\ \rho \bigg(p^{m,\,j}(\omega), p_{\infty}^{m,\,j}(\omega) \bigg) \leqslant h(X_n(\omega)), \; X_{\infty}(\omega)) + \frac{1}{2^n} \;, \; \text{a.e.} \end{split} \tag{2.3}$$

But in view of (2.2) one can suppose that for each m

$$p_{m}^{m,j}(\omega) = g_{m}^{j}(\omega) \quad \forall \omega \quad \forall j = 1, 2,...$$
 (2.4).

Now, since $X_{\infty} \in \mathcal{M}(\mathcal{K}, \mathcal{A})$ then again by theorem 2 there is a sequence $\langle q_{\infty}^k \rangle_{k=1}^{\infty}$ such that

$$\langle q_{\infty}^{k} \rangle_{k=1}^{\infty} \subset S_{X_{\infty}}(\mathcal{A}) \text{ and } X_{\infty}(\omega) = \operatorname{cl}\left(\left\{q_{\infty}^{k}(\omega), \ k \geqslant 1\right\}\right) \stackrel{\forall}{\omega} \qquad , \tag{2.5}$$

Further, again by theorem 3, for each n there is a sequence $\langle q_n^k \rangle_{k=1}^{\infty}$ such that $\langle q_n^k \rangle_{k=1}^{\infty} \subset S_{x_k}(\mathcal{A})$ and

$$\rho(q_n^k(\omega), \ q_{\infty}^k(\omega)) \leqslant h(X_n(\omega), \ X_{\infty}(\omega)) + \frac{1}{2^n}, \ \text{a.e.} \tag{2.6}$$

زيلا

Finally, for each n = 1, 2, ..., we put

$$\langle f_n^i \rangle_{i=1}^{\infty} = \langle p_n^{m,j} \rangle_{m,j=1}^{\infty} \cup \langle q_n^k \rangle_{k=1}^{\infty}$$

then it is easy to check that by (2,1), (2.4) and (2.5) we get first assertion 1. Further by (2.2), (2.3), (2.6) we obtain that for all i = 1, 2, ...

$$\rho(f_n^i(\omega), \rho_{\infty}^i(\omega) \leqslant h(X_n(\omega), X_{\infty}(\omega)) + \frac{1}{2^n}, a.e.$$

Thus by the almost sure convergence of the sequence $\langle X_n \rangle$, the second assertion 2 is satisfied. It completes the proof of necessarity. Since sufficiency can be established easily from conditions (1) (2) and definition (1.1) then our main result is obtained.

In particular, if **B** is a separable Banach space then according to [3] we in also consider a sequence $\langle X_n \rangle$ of integrably bounded multi-functions, i. correct in

$$\int_{\Omega} \sup \left\{ \| x \|, x \in X_{n}(\omega) \right\} dP < \infty$$

Therefore our main result implies the following corollary 5 which gives s a representation for L_1 -convergent sequences of integrable bounded multinations.

Corollary 5. Let $\langle X_n \rangle$ be a sequence of integrably bounded multifunctins contained in $\mathcal{M}(\mathcal{K}, \mathcal{A})$. Then $\langle X_n \rangle$ is L_1 -convergent to some integrably ounded multifunction $X_{\infty} \in \mathcal{M}(\mathcal{K}, \mathcal{A})$

e.
$$\lim_{n\to\infty} \int\limits_{\Omega} h(X_n(\omega), X_{\infty}(\omega)) \, dP = 0$$

and only if there is a countable number of sequences

$$\langle f_1^i \rangle_{i=1}^\infty, \ \langle f_2^i \rangle_{i=1}^\infty, ..., \langle f_\infty^i \rangle_{i=1}^\infty \ \text{such that}$$

$$1)\ \langle f_n^i\rangle_{i=1}^{\infty}\subset\ S_{x_n}(\mathcal{A}), X_n(\omega)=cI(\{f_n^i(\omega),\ i\geqslant 1\})^{\bigvee}\omega^{\bigvee}n=1,\ 2,...,\ \infty\ \mathrm{and}$$

2)
$$\lim_{n \to \infty} \int_{\Omega} h(f_n^i(\omega), f_{\infty}^i(\omega)) dP = 0$$
, uniformly in $i = 1, 2,...$

§ 3. QUESTION

Given an increasing sequence $\langle \mathcal{A}_n \rangle$ of sub σ -fields of \mathcal{A} and a sequence $X_n \rangle$ of $\mathcal{M}(\mathcal{K}, \mathcal{A})$ adapted to $\langle \mathcal{A}_n \rangle$, i.e. each $X_n \in \mathcal{M}(\mathcal{K}, \mathcal{A}_n)$. Suppose that $\langle X_n \rangle$ s almost surely convergent to some $X_\infty \in \mathcal{M}(\mathcal{K}, \mathcal{A})$. Our question is, whether here is countable number of sequences

$$\langle f_1^i\rangle_{i=1}^\infty, \ \langle f_2^i\rangle_{i=1}^\infty, ..., \langle f_\infty^i\rangle_{i=1}^\infty \ \text{such that}$$

1)
$$\langle \mathbf{f}_{n}^{i} \rangle_{i=1}^{\infty} \subset S_{\mathbf{X}_{n}}(\mathcal{A}_{n}), \mathbf{X}_{n}(\omega) = cl(\{\mathbf{f}_{n}^{i}(\omega), i \geqslant 1\}) \forall \omega \forall n=1, 2,..., \infty \text{ and}$$

2)
$$\lim_{n} \rho(f_{n}^{i}(\omega), f_{\infty}^{i}(\omega)) = 0$$
, a.e. for each $i = 1, 2,...$

REFERENCES

- [1] Castaing C. Sur les multi-applications mesurables Revue Fr. Inform. Recherche per. (1967) 191-126.
- [2] Kuratowski K. Ryll-Nardzewski C. A general theorem on selectors. Bull. Acad. 'olon. Sci, Ser. Sci. Math. 13 (1965) 397 403.
- [3] Dinh Quang Luu. Multi-valued Quasi-Marlingales and Uniform Amaris

Received 10-1980