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NON-STATIONARY INVERSE SCATTERING PROBLEM
- FOR PERTURBATION WAVE EQUATION

PHAM LQT VU
Instituté of Earih Sciences

In this work the non-stationary inverse scattering problem for pertur-
bation wave equation is studied
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The non-stationary inverse scattering problem for equation (1) with
condition (2) which equals zero was resolved in [1]. First we examine the
non-homogeneous wave equation :
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We demonstrate the following lemma

Lemma 1. The solution of problem (4), (2)—(3) is unique.
Proof : We suppose that there are two solutions of this problem. Thus,
their difference fi(x, t) satisfies the homogenous equation
- a*ii(x, 1) a%i(zx, )
atz | ax?

— ) as ¢ — ce. (3)
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the boundary condition .
i, t)=0 ' (6)
and.irradiation conditions (3).

- The solution of Cauchy’s problem foT equation (5) with the boundary
condi tion (6) and initial date by t = {, has following form by x <{t —1,:

iz, 1) = 1? [ + 1 — o, to) — it —to — 2, )] +
xti—t, x+i—t,

1 (‘ dik(y, t,) 1 ali(y, t,) | ali(y, t,) } - \
—_ —= 10 vy = 2 = d » 7
* 2 ot Y 2 j{ ot + ay Y )

l=to—x T l=ip—x

\

135



_From (7) it is easy to obtain (he valuation
li(z, 1) < x max iy, L) - iy, o) l’ (8
l—fo—x L ySit—lot+x 8y ot
Taking inlo consideration that from the condition vall ~t, —z, L=+
+ @] and t, - — oo if resulls y— os, and using the irradiation conditions (3)
we find that the right member of inequality (8), as t,— —o=, becomes zero.
Thus @i(x, t) = 0 for any point (x, 1). Therefore the uniqueness of solulion is
proved. ) B , .
Lemma 2. Lel (he right member of equation (4) satisfy lhe condition

C
P Ol < T e pe

and the function g(s), — e << s < o0, of hoﬁndary condition (2) be a continu-
ously differentiable funection and .

>0 | O

| Io(s)] < C, id‘(f’lf) <c (10)
Thus function ) o .
. : t—x ft+x—71 t t+x—t1
\u(x; B = ot ! x) + %J“df jp(y, v)dy.+ é—f dTIp(}’, ndy, (1)
—0oe |—x—7 t—x x—i+71

is solution of problem (1), (2)—(3). _

Proof: We verify directly that (11) is solution of equalion (4y with
u(0, t) = @(t). Furthermore by using (9) — (10), from (11) we obiain the regular
limitation of function u(z, t) and its first derivatives, excepl that
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In (12), when % —» oo the right member tends to zero regularly in t, i.e.
function u(x, t) satisfies the irradiation conditions (3) So this lemma is proved.

We go on to the solution of Sc-attering pro]ﬁem (1) —(5). b

Theorem 1. Let g(s) be a continuously diffierentiable function and

1) 1 < C, ’dq’(s)
, . ds

<« G, G = const and potential e(x, t) satisfies the condition

R

[e(x. )| < (13)

N N , ‘_b‘ 0
(1 a)rte (1 + [t yi+e £
Thus the solution u(x, t) of scattering problem (1)—(3) exist and is unique. This -
solution as & — o= presents in form

ufx, t) =t —2) +0 (1) : (14}
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shere [(f- ) — seattering wave which 18 given by ium,lmn p(t—=x) and connec-

o \Vlﬂ] this by equality -
Sa _[_\

f(S)—@(S)——eryj ey, Duly, oyde (15)

5—Y
Proof: Using lemmas 1 and 2 we found that problem (1) — (3) is
ruivalent to the following integral equation in thc space C(Eﬂ) of conti-

1ous funetions in FEueclidean 2- dlmenslonal space E2
t—xz t4x—7 t att—t
w, £) = g(t—=x) —-é— j dr S'c(y, ryuly, 1)dy — % -[ dz j ey, 1) uly, o)dy, (10)
. e t—xp—7T t—x w-tit
Using the valuation (13) and the properlies of function ¢(s) we can easily
:monstrate the uiqueness of solution of equation (16) and the convergence
" conseculive approximating method for (16), i.e. equation (18) has a unigue
lution. '
Il we examine ihe scaltering wave {(l—=z) after (10), equation (i6) has

llowing form oo -2ty
u(x, t) o, f(t—x) -+ i— f dy J' c(y, Ty uly, r)yde (17
x ity

om (17) in consideration of (1 3) we oblain easily (14). So the theorem is
monstrated, ' ' : |

According to the theorem 1 each function ¢(s) giving wave @(l—2a) is
rrespondent to the function f(s) which determines the scattering wave f{(t—x).
us the operator S which transfers ¢(s) in f(s) is determined. Tlns _operalor
s cal}’ed the operator of scattering

 Se(s) = £(s) (18)

The operator S will be examined in space Lay(— oo, o). ‘
~ We remark that in case the potential c(x, ) == 0, the scatlering wave
—x) = @(t--x) and in this case the operatior S is equal to the unit operator,

In order to resolve the inverse scattering problem (1) — (3) we pirove
- following lemma.

Lemma 3. The solution u(x, ) of equation (lf) with any right member
) < G(E) exists ‘and is ubique in space C(E®. The solution of thls equahon
L be wrilten in follovung form

w(z, t) = f{t—a) -+ j Hya, t,8) fg—n)dE = (14 HytanT_f(b). (19)

— 0

ere the operator Ho(x) by fixed x is operator of Hilbert-Schmidt and T_, is
Operator of translation T_ f(t) = [(t-x). By x—ee [H (@) L2 —0 (20
The _proof of existence and wuniqueness of solution in C(E?) of
Yation (17) with any right member f(t —x) < C(E) is analogous with the
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demonsiration of theorem 1. We gel Lhe solution of this equalion in form (19). Wilh
this aim by replacing u(x, t) from (19) into (17) with any [ any E<Ct we obtain

oo oo . t—l—‘v—x .
H (1, 8 = — [ et gz +— [ ay S e(y-F OHA(y. 7, By —2)de -
_— L:; x td4ax—y
adi e g ek )
%Id"j e(y, ) Hy(y, 7. E+y—a)de @n
@® t-]—:r—y

By using the valuation (13) we demonslrale easily lhat the conseculive
approximaling method is convergent for equation (21}, where

1 P VO ‘
;Hf(i, [.§)|<\7J. | ey, E—x+¥) ] . exp [(1+[z|‘+9€’ (22)
t—& x
zr

We get easily the uniqueness of solution of equation (21) from the fact, that this
equation is that of Voltera type with the variable x, where c(x, t) satisfies ine-
quality (13). Furthermore, the valuations (13) and (22) permit lo demonstrate
the statement (20) and to estimate '

J'J'Hi(a, t, B)dtdE < oo
E<Ct

i.e. H;(a:,t ) with variables t a,nd §is a kernel of Hilbert— Schnndt So the
lemma is demonstrated.

Here Hi(x, t, &) is the aﬁalogy of kernel transformation operator of
stationary scattering problem for equation of Sturm-Liouville,
From equation (21), by supposing § = { we get

oo

Hi(z, i) = é*_[ e(y, L—x+¥)dy - (233

By applying operator (—g— + i—)f or (23) we gel
fes

(—— +————)H+(a: L) = — Lo 1) N (24)
at -+ ax 2 _

The formulas (23), (24) express the potential c(x, 1) through the kernel of the
transformation operator.

We designate the operator which transfens the given wave (p(t’) in solu-
tion w(x, t) of non-statiopary scattering problem by U(x), thus

Uy p(t) == u(x, 1) .
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In considerglion of (18) equalily (19) can be wvritlen in form

Uz)p = [I + H(x)]T_ S¢ {(25)
From the boundary condition w(@, t) = ety we 'get C
' Wy =1 ' (26)

Because H (x) is an operaior of Iilbert—Schmidt, therofore the operator (I -+
Hy(x))-! exists also. And from (25) in consideration of (26) we obtain ihe exp-
ression of scattering operator in La{— oo, o) _
| S = (I+ H.(0)-* @D
From Lhe equality (27) we examine operator function
S(@,) = (I 4+ I (z)) L 2, 0.
By using equation (21) we can prove the following lemma.
Lemma 4. The operator S(x,) is operator of seattering of non-slationary
problem on semi-axis > x, with boundary condifion u(x, . t) = p(t).
‘We examine the properties of solution of problem (1)-(3) and proper-
ties of scaltering operator of this ‘problem,

Lemma 5. If the given wave ¢(t-x) is equal [0 zero in area t — < A
the solution u(x. t) and also the scaltering wave [ (t—x) of problem (1)—(3) are
equal zero in this area. ' :

If g(s) is equal to zero by s> t—x the transformation operalor is
connecled- with the scattering eperator through following equality

t ) ‘
iz, t, O+ F(t -2, E~2) + J.H‘_j_(m, L F (—s, E-x) dn =0, £t (28)

where I' (t, £) is the kernel of the operator S5-I,

Proof : The first conclusion of lemma results from (16) — (17). Indeed’
ot —2) = 0 by t —x <A, ie. the free term of equation (18) is .equal
Lo zero by t —x<ZA. Because of the Voltera-property of equation with -variable t,
we geteasily u(x, t) = 0 by t—a <. Bulin equation (17) from condition z[t+x -7y,
b~z +y] we get v —y <t —x <A and so u(y, z) = 0, Ih erefore_the scattering
wave {(t—x) is equal to zero in area t—x<CA, Now lel ¢(s) = 0 by s > t—z,
- and by using (16) and (18) from (19) we gel '

i t ] t
FoG~2)+ [z O oE -2 d5+ [ Hi@, L8 Fo@ = o) dt =

t - t
= [Fa-= t—mo@—mdi+ [ Ho@ L8 eE—nds+

1 . 13 - .-
+ o) difH,.(iv, L F—-z, t—a)dy =0

- Do “— 00
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From the last equalily we get equality (28) by E<{t So the lemma is

demonstrated. : '
Furthermore, by supposing F (i — x, £ — x) be the kernel of operator F..

we wrife (28) in operalor form - )

| — I+ H, @] F, = Hy @),

fherefore .

_ — Fy = [I4H, (@)]7H, () (29

We suppose '

F(z) = [I + H, @] —I (30)

and adding (30) with (29) we get .
F(a) —Fx = [T+ He@)' [Hye) + 1} —1 = 0, (31)

. Supposing F (x, t, &) be the kernel of operator F(x) we wriie equalily (31)‘1?01"

the kernel of corresp(mding operators in form
Fz, t,8) —-F({t—=x, E—x) = 0 by £ >0, - (52)

Thus, if the operator S is known, the operator F = S—I is known also, and
the operator F (x) is determined by formulas (31) — (32). Hereby and fr 0111(30)
we find operator

He@) = I+F@f' - 1,

on which kernel the potential c(x, t) is recovered after formula (24), furthermore
the retation between the operator S and potential c(x, t) is smgle -valued. We
iormulate this result.

Theorem 2. The non—statlonary potential c(x, t) ot scattermg problem

which is given by perturbation wave equation (1) and the boundary conditions

(2)—(3) is recovered after the scattering operator S, furthermore the relation

between S and c(w, t) is single-valued:
The potentlal c(zx, 1) is determined after H, (x, 1, &) h} equality
c@ ) = - 2(—+ — ) H@n 0, '
dx t

where H, (x, t, &), E{t is kernel of operator [[4+ F(x)]-' —L and F(x) is
connected with the given operatdr S by relation:

. ' Ft, 8 = Ft—x, t—x), E < L, 2 > 0,
whele I‘(:n t, &), F (t, &) are kernel of the operators F(x) and S—I.
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