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_ 1. INTRODUCTION

Let V be-a real Banach space, ||. [lanorm in V, f: VR a Ck function,
k== 1, into the real numbers R and df(x) the differential of f at fhe point reV,
Let Jf) (p) be the k.jel of f at pgV,.thus J5(£)(p) is the set of all C¥ fun-
ctions g: V—R, satisfying d'f(p) = d'g(p) fon i = 0,..., k, or equivalently, J*f) (p)
is the set of all C* functions g: V—R with g(p) = f(p) and for any e 0
there exists a neighbourhood U of p such that: || df(x)—dglx) I =ellx—p | k!
f=1for all 2 = U; where |i df(x)—dg(z) || denotes the ‘supremum norm of di(x)—
dg(x). The set J%f)(p) can be extended to the set J¥(f, w)(p) as follows:

Given a, wc R, ©>0. We define: ‘

T o)(p) = [g: VR geCl gp) = 1(p)
and there exists a neighborhood U of p such that
. Ildf(@)-dg@) I=w jz—p| *! for all z < U}.

We call J*(f, w)(p) the (a, w)-jet of f at p. Further’ we say that f has the pro-
perty Qo, @) at p with @, a ¢ R, a0, if there exists a neighborhood U of p
such ghat fdfx) 1l Zalx—pi ! for all z < U. f is'said to be local homeomo-
rphicat p to giif there exisls for every neighborhood O of p a neighborhood
W of pand a homeomorphism ®: W = @(W) such that ®(p) = p, ®(w) C O and
fo®(x): = f(P(@)) = g(z) for all x & W.. ) , '

In [10] we have proved two following theorems which relate to some local
stability properties of differentiable function$ on Banach spaces.

_  Theorem I, If fcCk, k=2 and fhas'prOperty Qk, a) at p, then f is local
homeomorphic at p to each g € J*(f)p). ' ‘

Theorem IL If f € C'and the mapping & —df(x) is locally Lipschitz and f {
has property Q(a, a) with a>>1 at p, then f is local homeomorphic at p Lo each

gcI*(f, w)(p) provided w <

a
9wl ) . :

Clearly Theorem II implies Theorem 1. Note that Theorem I and Theo-
rem II extend the well-known Kuiper—Kuo Theorem (see {4], Theorem 1, and
[5])," which have been proved for Hilbert spaces and R" and only for J*({)(p)
defined on such spaces,
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In this paper we shall extend the property Qo, a) al p and the sel
(f, w)(p) by replacing p wilh a compact set G € V. So, the property Q(a, a) of
i G and a new set J*(f, ») (G) will be defined. Thd&n, with respect to pro-
rly Qa, a) at G and J¥(f. w)(G) a theorem like Theorem II can be proved.
nv we detail our idea: Let f: V— R be a differentiable function, G be a coms
¢t set in V (Thus int G = ¢ if V is infinite dimensional) and W7 be the neigh-
rhood of G defined as follows: '

W' = {xE_V : [[a:—-GII<1‘j

here 1 > { is a real number and

i lz—Gll=min {la—p| : pEG]

(1.1) Definition. f has property Q(gz, a) at G with o, a € R, 2> 0 i there
isls a neighborhood W< of G such that" ,

hdf@yn zaflo— G

all < W .

(1.2) Definition. Given o, v € R, » > 0, then ‘

(L, wy (G) ={g: V->R:g€Cl gp)= 1), p&€G.and there exisis a
ghborhood W* of G such that '

ldi@) —dgx)I=olixa—G| = forall x € wrl,

(1.3) Definition. f is said to be homeomorphic al G to g, if there exists
»eoery neighborhood O of G a neighborhood W of G and a homeomorphism
W s O(W) such that @p)=p for p € G, (W) € O and’
£.0(x) = g=)
“all z € W.
Our main result is the following:

(1.4) Theorem. Let £ : V— IR be a C!- function and suppose the mapping
> df(x) is locally Lipschitz. when f has property Q(e,-a) with e>1 at G,
: a

n { is homeomorphic at G to each g &€ J*(f, ) (G) provided w < SerT

(1.3) Remark. Obviously Theorem (1.4) implies Theorem Il and therefore
sorein I The proof of Theorem (1.4) will be as similar as that one of
rorem II. However some inleresting considerations and eases occur in this
of, but not in the proof of Theorem II. For example in case the set G is a
1pact subset of V wich contains some critical point of f or G itself is a
1pact subset of the critical set X = [p & V. df(p) = 0.

We note thal if € C G = {pl € K and V is reflexive, then property
» ayof I at p, as has been proved in [8], coincides with the definilion of
\degeneracy of critical point p, given by R. Palais in [6, §7], i.e., if the
pping A defined by (Az, ¥) = d*f(p) (x, ¥) is a toplinear isomorphism {rom
mto its dual space V¥ In the example that follows we ‘will see when a
clion f has property Q(«, a) at a compact set G. We hope our result in
orem (1.4) will find applications in some stability problems where the
ility of objecls (functions, veccor fields) is invesligated around not only
ngle point but a donlain in both finite and infinite dimensional cases,

7

123



r

1.6: Example. Let us consider a C! [unction f: V>R Let G be a

eompact subséet of V, containing no critical poinls .of [, Then, since K is a
closed set, G has a positive distance from K. Hence, for small enough O<r<1

the set W={reV:lx—= G i <<r} has a positive distance from ¥. Assume’

moreover f salisfies the Condition (C) ol Palais and Smale (i. e., if for any
subset S of V on which {f]1is bounded but inf [tdf@) Il = 0, then lheie is a
. . . x &8 )
critical point of f in the closure S of S), and |[|is bounded on W then Lhere
is clearlv a 7>0 such that [pdf@ | >7 for all x € Wr. We get [ df) i =
_>__1— r= T o —Gle’ for all re W, il > {. Hence f{ has property
T r :

Pl

Q(a, a) al G with a = _T_
. r

2. BASIC DEFiNITIONS AND RESULTS

et Blr,r)=f{reVi iy -zl < r} be the open ball with center a and radius
r and aB(x, v).be the boundary of B(x, ry

Given a C!— function £:V >R then df(x) € V¥ and, as mentioned, the

critical set K of f is closed which implies the openness of the set V=V\E.
Now given an open interval Ja. bf in R and let o : [a, L[=V.be a differentiable
mapping. Then do(t) < LR: V) (the space of all linear continuous mappings
from R into V). Setting ¢'(t) = de(t) 1 we call ¢’ the camonical lifting of a.
Let @ be an open subset of V. A C¥ vector fielld,]1 =0, on Oisa C* mapping
from @ into V. Let X be a CE vector field on @, then a solution curve of X
is anCl-mapping ¢ from an open interval Ja, b into O such thal e’(t) =
X(o(t)) for all t €la, b[. If 0 €la, b[then x =a(0) is called the inilial condition
of ¢. From now on we write o to‘mean the solution curve of some vector

field with initial condition o (0) =x. oy is gaid to be a maximum solution curve.

of X if any other solulion curve &, with initial condition 85(0) == is 2 restrie-
tion of ox. A mapping A:O—Vis called Iocally Lipschitz if for every & e 0
there exists a neighborhood U of x and a constant 1L.>>0, such that || A(x))—
_Alrdn=Ljla—a | for all oy, x2 & U

) In [3) {1V, §2) the reader cin find the proof of the existence of a maximum
solution curve o5 of alocally Lipschilz vector field ¥ defined on an open sel 0.
Besides. one gets following results. _

Denoteé by J(x) =] t={x), *(x) [¢ R the domain of o, and let D(X) =
={(t, I‘)ERXO: i < J(x)} then D(X) is an open sel of RO, the mapping

@ DXy -V defined by o(t, x) = a.{t) 13 iocally Lipschitz and for
s & J(ox(1)) it follows ' : _

p(s+ t, @) = os, @b, x)) and, il y =qt. 2) then x = q(—t, ¥). All the

above resulis based on the theorem of local existence and uniqueness of -

‘solution curve of a locally Lipschitz vector field. A motivation of this theorem
is the following:
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(2. 1) Theorem. Let X; B(a,r) — V he a loeally Lipschitz veclor field on
B(x, r) satisfying § X(y) I =H for all y ¢ B(w, r), where H> 0 is a consiant.

Then for 0 < a = II_I there exists a solution curve oy: ]—a, af[—B(x r)olf X,

i e, o) & B(m, ) 4nd o" (t)y = X(-o'h(l)) for all t€ ]—a,al
(2.2) Definition. Let {;O0— R he a differentiable mapping. A vector’
field Z on O is calied a pseudo- gradient vector field on O for IF il |) Z(x) ||
= 20 df(x) | and Zf(x) ;= df(z) Zx) || df(x)=y? for all x < O
(2.3) Theorem. (Palais [7], Theorem 4.4) Let f : V=R be a C' — [unction

then there exists a locally Lipschitz pseudo-gradient vector field Z for f on V.

(2.4) Corollary. ([7], §5) Let f: V— Rbe a C'— function and suppose
that the mapping x — df(x) is locally Lipschilz. So, by (2.3) there exisls a locally
Z@)
7f( x)

then X isa locally Lipschitz vector field on '\7and df(x) X(x) = 1. Hence, if o, -
is the solution curve of X, then f is strictly monotone increasing along o i.e..

' [{ox(t)) <[{ox(l2) for i <1y €J(®). Especially {(o.(1))=1f(x)+1 for t< J(x).

Lipschitz pseudo-gradient field veclor Z on V. Let X = 2% with X(x) =

3. STABILITY PROPERTIES ON J%(f, @) (6).
THE PROOF OF THEOREM (1.4)

In this section let f: V>R be a GC'-function and suppose that the
mapping x — df(x) is locally Lipschitz. Let Z bé a locally Lipschitz pseudo-

gradient vector field for f on V, X= 75 and o; be {he maximumn solulion

curve of X with initial condition ,.(0) = x.

First, we study some properties describing the behavior oF a function
g € J*(, ) (G) and of the solulion curve o, of the veclor field X near the
compact set G in the case [ has property Q(z, a) at G. From thesc properties
we then obtain the proof of Theorem (1.4). Throughout this section we assume
a>>1. It turns out that some propositions also hold for arbitrary «. Now it is
not hard to prove the first proposition stated below:

(3. 1) Proposition. If f has properties Q(a;a) at G then every g €
J“(f ) {(), <74 {has property Q (o, a—w) at G. ’ 7

(3. 2) Proposnmn Let g € J*([, w) (G) and W* be the neighborhood of G
such that

Fdf{x)y —dg@) |l ==wlla — G| = for all x &€ W'\G.

It follows thal:

() —g@) | <<wla—-Gi% forall € W \G

Proof. Let X € W'\G, then there is a point g on thé boundary aG of G
such that o —Gli=lx—~qll. :
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Applying the-mean value Theorem

1
f fla{ — f(q) = f df(q + Lz — ) (@ — q) dL Tor t & [0,1],
]
1 4
8@ — g@ = [ dg@+ @ — ) @ -
0

Note that f{q) = g(q) so we obtain by substiraction:
1 o
I{x) — glo) = f(df(z) — dg(z) (x—q).dt with 7= q - (& — ).
A D ‘ -

Consequently:
B ) ,
@ =g@ 1= [1df@) —dg@ i e — gl dt
. : [ ' 1 1 .
=afs—ql [It@-@I*td=olzoq) et
=wle-~ql ~;<mwx~qm:wnx—GH.
| - " QED
In the next Proposition (3.4), in the case when f has property Q(a,a) at

-G, the behavior of each g &€ J*(f, w) (0) on o, in a nelghhmhood W of G will
be described. First we prove the following: :

(3.3) Lemma. Suppose that f has property Q (e, a) at G and W' is Lhe _

neighbour hood of G such that:
1l df(a,) fIz=alfz—G{ *" for all x € W".

Then the following inequality lrolds:

1 X (@) ng_—‘z— for all z€ WG,
afz—-GJ* :
Proof. For x V one gets: -
Z@) | 20df@) _ 7 2
df (x) Z (x)

| X (@ =

. Tondf@gt ndf@) |
Clearly, by the properly Q(a, a) the set W'\ G is a subset of V. Hence

2 ' ) .
I X(:c) =, = . for all & € W'\ G.
pdf@h —ajle -Gl :
Q.E.D.

! <3.4) Proposition, Suppose that f has property Q(a, a) at G. Take g&

I#(f, ), (G) with some o <-2—i—1 . Then there exists a 'neighborhood Wrof G

such that: - ' ' -
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(1) gis strlctl\ monotone increasing along é,in W'\ G for each x €W\ @,
e, for t; <<t; € J(x) with o, (t]), o () € W'r\G t]’(, fellowing inequality holds:
“(Ux (t)) <T g (8x (t2)).r
(2) If o, (1) € W\ G W1th t>> 0 then g(x)+-t (1 — ——) g(ax (t))\gg(:c)-{-
a . .
4+ t(I + _zi)
&

(3) ox(t)y€ WI\G w:th t< 0 then g(x)+1t ( + 2_w) L glo, (1) = g(x) +
a .

—|-t(1— 2“’).
a

t

Proof. First, by using the assump’uons we can find a neighborhood *

W* of G, such that:
I df Gz l=aflz—=Gj=-
and : fdf () —dg@) | =w|z~G| =
for all z¢< W‘\G We shall indicate that W' is the neighborhood we are

looking for. Indeed, for 2 EWING and o.() € W\ G witht€] (x) the following
"equality holds ' :

d a a. d :

= gout) = -2 ot — (o)) — ~ oy

T By =3 (a())_{b[dt‘g(d()) - (“”)J.
= df(ox(t)) X(oy (D) + (o]

=1+41.]
whete
[--] = dg(a(0) X(ox(t)) — df(ox(h) X(a\(1))
= (dg(y) — df(y)) X(v), wilh y = o(l)
Since ' .
PLedr= i dg(v) —df(y) !l | JL()7) H
=uw G -1,
= Hy ‘III}T—G“a_[‘
a
d : '
gl —_— L1 0
ence m glox(l)) >

(1) now follows from:

. b '
8(ox(lp)) — gox(ly)) = f% glos(t)) dt

tg

, : 9
To prove (2) and (3) one deduces from [T < 22
’ - a

i.e.,

| %g(o‘x(t)) —11< -2—0-j-«the following inequality :

a

1 Em-f_%.rf(o'\([))<] _;_2L,
° a



Thus, we get for >0

1 ' .-
d o .
g(o'x(l)) = g(a)) + j‘ ‘—ri-‘; g((}'x (b)) ds

=g x)+t( L)

and

5(GAD)Z><ﬂx)4«t(' 20 )
a

This proves (2).(3) can be proved in the same way. Q.E.D.
In that follows our investigating object is the neighborhood W* deter-
Cleaﬂy, by the compactness

mined as above by a f1\ed w with O < w <

. of G such a W™ can be chosen th'it Wr is contampd in an '11b1l1r1ry given
- neighborhood O of G. :

l"!

[ B}

EWGVum—Gu<i

Then W¢ W' and for each rx:g_W\G the pomt ox(t) belongs to W’\(; if

tej(x)._]-q(a:), i(x)[ where i(®) =ollz—G |~ .
Proof. Let us consider a point x& W\G. Then there is a point p&€ 3G

) Setting r{x) = --2— | £—G |l then

! (3.5) Propesition Let VV =W

such that & belongs to the ball B (p,

..:

r{x) = —1— lx—q | for some q& 3G. Now for y € B(x, r(x)):

hy —=Gll=ly—ql (for some q’ € 2aG)
Ellr—q I~y —%U .
>&x—qil —1r(x)
= 2r(x) — r{xr) = v(x)
and . '
Ny —Giu=ny-—pi
<uy—xn+nx—pn

?ilquuﬂlx—pu N .
1

-é—ilx —pl+fix—pl
%ux—pn<—-5—=—3—r

2 2 4
- Thus Bz, r@)c WT\G -
FFrom Lemmq (3.3) we obfain :

I X(Y)H= for all v & B(zx, r(x)), Consequenth

2
ally—Gj %!

#

X)) L= ——2-—7 = : H(x) for all y € B(x, r{x)}
a(r(x))*” o
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[t then follows from Theorem (4.1y  that thele exisls a solulion curve

gx J—a(x), a(@) — Bz, r(x)) with a{x) = I;Em; > (r(a:)_)“‘. So E}x{t) belongs

to B(x, r(a)) for all t € 1— a(a), a(ﬂ:){.\ But i) =wilx— G ¥ = w@ra)* =
= m2°‘(1‘(;r:))°’“ < % (r(x))* == a(x).. This means Lhat I{x) C ]—a(®), a(a)[ whal
implies Ux(t) € WG for all t<l(x). Q.ED.

3.6. Propositien. For each =z éW\G there exists one and only one
t(x) € I(xr) such that g(x) = f(o(t(x)) = f(g(l(x), x)). By setting t(p) = 0 for
P € G we then have a centinuous functions t from W into R. .
Proof. First, assume that f(x) < glx) or glx) — f(x)>0. It follows:
g@) = 1) + g@) — @)
- = i(x) + |g(@) — f@)]
Apply (3.2) we oblain: '
| o g <f@ +olr—Gl°
: . = f(x) + i(x) = {(pli(x), x))
Thus the following inequality holds:
f@) = (90, x)) < glx) < f((P(i(CL“), x))
Observe Lhat f is strictly monotone increasing along o(., ) we conclude that
there is only one ((x) Wlth 0 <t(x) <Zi(x) such that
[(p(t(x), x)) = g(x)
If f(x) > g(x) then we can write = f(x) < — g(x). As above a L(x) Wlth
—i(®) << W) < 0 can be found such that: : . .
f{p(t(x), ) = g=@)
CIEf(x) e Cf(.L) then by setting t{x) = 0,
L @0, ®) = f(x) = g(x).
Now we prove the continuity of the function t at every & W.

Two following cases are to be invesligated . 2
(1) o e WA\G
2 =D &G
(the case x = p & int G is evident by the def1m[:10n of t).
to (1)

Given a sequence x; — &. We can obviously. assume thal x; € W\ G. We
have to show that for any &> 0 there exists a i so that |t(z;) — t(x)] <Le
for i > i First ¢ (t{x), ) € W'\G. Since W'\ G is open and ¢ is uniformly
continuous there exist &, Iy € I(@) with.l; < t(x) < ts, |t — s} < ¢ and an
open meighborhood U of x such that ¢ (t, y) € W'\ G for t € [{;, 2] and y € U.
Comsequently, there exists an i, such that g ({, =) € Wi\ Gforallt € [t,t;] and
i>i, Settlng a = (9 (k. x)), b = f{p (12, x)). a; = £ (p (b D), b; = [ (@ (ta, x3))

i
'
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"I‘hié means lhat | —s(y), s(v)[ ¢ [(z) and therefore 1 < I(z). Il follows:
¥ = o.(—1) < Bz, v(2)) {see(3.5)) where
1 T’

—_— = e—

23 6

1 )
| 1(4}:3—]]4—(1[]._
Apply the trianglé inequality and & <~ —g—- we come to the foﬂowing contradiction :

R

Pa Al = ES =1 PR IR e
which plioves (1).

fo (2). Suppose that t*(y)gs(y)_ but there exisfs an g > 0 such that
oy() =Gl >¢ for some Y € B(p, e)\G, all O0=t<<t(y). Choore s such thal

0<s < t*(y) and Hy) —s<<w e;x.

Put 7 = oy(S) then i) =wlz—-G|* > o s?. Since s € 1 —sy), s(m)]
. .

and z ¢= G hence z € W3NG (see above) such that o(t) is, by (3.5), defined
for t € I(z) = | —i(z), i [. Bul i(») > o] thus we] € I(@). Tt follows that oy(l)

is defined for t = s + me? since z=:¢y(s). This is a contradiction to t+(y)<ws?—}- s.

Hence there exists a sequence (; € oG and a sequence |; — *(y) such that
Boyt) — qi | — 0 as i—» co. Now, by the compactness of G one can even assume
that q; — g€ 8G as i — oo, Then' q is a limit poinl of ay(t) -for 1 — t*(y) since
1oyt —q || = | oyt — Gli+Ilq—ql. - .

0 (3). The prool is the same as by<(2) /o (1) and (). (4) follows
immediately from the fact that [ is strictly monotone increasing along oy (see
[8, Lemma 6.9]) and (5) from (4). Q.E.D.

3.8) Proposition. Let 0 <1’ < v and h =1 "Z_w . With fes ect Lo this
~ P a P

X and r' let B(p, &) be the &-ball chosen as in proposition (3.7) for some p €sG.
Then for each vy < B(p, &) there exist two poinis z; and z, on the closure of ay
such that the path connecling 7;, z, lies in W' and the following inequality .
holds: - ' .
8(z1) <TE(y) < g(z2) »
‘ Proof. (a) Suppose that f(y) <g(y). We have by (3.2) gy)—owlly —
-G < {(y). If —s(y)y << () < iH(y) << 5(y) then we can put z; =y, z; =q’,
q' being the limit point of oy() as t —i~(y). Clearly, we have
802 = g(T) = H(q) <) < g(v) = glzw). .

If t(y) << — s(y) < t(¥) << s(y), then put z; = v and 2 = oy(—"s(y)). By the
Proof of (1) by (3.7) we have seen that - '

‘ : r

oy € W
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fort €1—s(y) 8(37)[n][—(3'), L+H(y)[, whatimplies z; € WT' . Apply now Propositi-
on (3.4) and the definitjon of s(y) we get: , o
glay(—s()) < g — S (1 _ 2 )
L a ’
o =gy —ely -G <<y
Thus ) : g(zy) < 1(y) < g(22)-
It , L) < —s(y) <) < VR
(or —s(y) <t (¥) < s(y) < tFY),
then let Za =¥, &1 = oy, (— s(y)) (or 22 = y, 71 = ) and we still have, by an.
argument analogous to the aboye,’
| oz < f(y) <glz)) ,
- 1) Suppose that f(y) > g(y) This case can be investigated in the similar
way as by (a). Notice that by choosing z; and z, as above the path connecting

z; and zz obviously lies in WL .
) Supposé that f(y) = g(y)- This case is evident since g is strictly mono-
jone increasing along oy in W*. The proof of (3.8) is complete. Q.E.D.
Now the proof of Theorem (1.4) follows direcily from the following:
) T

(3.9) Proposition. Define 2 mapping ®: W = W>— V by selling -
' o(x) = ? o(i(x), ) for & € WN\G
: P forx=pc
Then : ‘
(1) @ is continuous on W, &(W) ¢ Wrand
_ f®(x) = g(x) forall ' W

(2) @ is an injective mapping from W onto O(W)

(3) @ is an open mapping from W onto ®(W), thus ¢ is a homeomor-
phism from W onto O(W). :

Proof. lo (1) Evidently ®(W) ¢ W and f &(x) = g(@) for ail oW

If x < WN\G then ® is continuous at x since t and g are continuous at x. -~

Hx=p&c alx thentlet us consider a sequence xj - P We shall show that
&(x) — p- Obviously, one can assume that all z; belong to W\G. Therefore

allcp(t(f.ci),x;) belong to B(mi, r(xi) where r(xi): —12— na; — GIl. So our states

ment follows from. - ..

L0 () — pll= 1 QUG X)— Pl
' = Jotx)x:) — %l + 11X — Pl
1
= hxi— G+ ixi—7Ppl
1 ' 3
= lei‘—pil—l-llz_ci—pn-—-—z—nx,—pﬁ

B
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then a << g(x)<b and g << bs. When x; tends to =, 50 a;—4a, b — b and.
g(x:) — g(x). Therefore, Lthere is an > o such that o
. _ a; <7 g(ﬂ?,) << bi fori 2_ i1.
This is nothing but ' '
f (@ (ts, 1)) < (@ (t (@), 20)) < £ (@ (t T0))
for i 2 i, It follows that - ) :
< t@) <t or [t@) —t@i<b—t<le.

in so far as i =4

to (2) . _

Let @; — p, ::EW\G. Notice that by Lemma (3.5) we have shown that
t(e) € (@) = ] —i(xzy), i(w) [where i(x) = w| ; — G|} % Hence it follows
that t(z;) — 0 = t(p) if x; — p and this completes the proof of (3.6) Q.E.D.

(3.7) Proposition There exists for every p & $Gand 0<r<ran s> 0
such that for each y € B(p, &)\ G and for s(y) = -;\— oy -G *with0<TA<{1
the following properties hold: _ ' ‘
(1) oy () € W for all t € ] —s(¥)h s(y) [n] U@, T 1
() I t7(y) = s(y) then og(l) has a limit point q € 8G-as L — L*(y)-
(3) K t-(y) = —s(y) then 8y(t) has a limit point q° € aG as t — 17(¥)-
) If —s(y=tm<ttMH= s(y) and q, ¢ are limit points of oy(t) as
{ — tr(y) and t —t=(y) respectively, then q = o .
(5) If B={p} then from tH(y) = s(y) it follows that t=(y) << — s(y) and, il
sy =) th?'ll te(y) > s(y)- ' : ‘

Proof. to (1).

- ) ) g . W ._1_
Let p € aG. We chose ¢ >0 such that e <~%and B<% A ® wherep =

sup jRz—Gli:z QB(p, el
For all y € B(p, g)\G we have
1 r r’

| N m
s = Loly=01s <o <o 577) =0{5)

- 1- I‘, .
Now the proof will be finished if oyt) & W3 with WE = §mev:nx—(3u<
]

< _},—a for cach y €B(p, eN\G and tE€ }-— s(¥), s(¥) [A]tE@ I Assume
3

that there’is a t1 €] — s(y) s(MHINTE G, t+(y)[ such that if z = oy(t) then

-

v T o 3
2 C oW = x.:ua:,*Gn;}B_%. | .
“Then ‘

l“Z—_‘G“:—%‘ and'i(z):wuz_-G'u“:m(r?) .
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Nole thal @ is lrivially continuous at & = p < int G.

fo (2). Given z;, x; € W. We shall show that @ (x) = D (x,) implics
) = x». Clearly we can restrict ourselves to the case x;, o € WN\G. Firsl
gr)=1{.0{x)=1.0x,) = g(xz) On the other hand y = @ (x} = ¢ (I(%),
T = @ () = @ (L(x2), x2)- Hence x; = ¢ (—1(x)), v) and xy = ¢ (—1t(xy), ¥) lie on
. the solution curve o, starting at y, which implies x; = @, since g is strictly
monotone increasing along oy in W' and g(a:l)__ g(xq).

lo (3). We shall show that @ (M) is open for each open set M & W.
Given z = @ (x) € & (M), =M. One has to show that there exists an
¢-ball B (z, ) contained in @ (M)y'i. e., to cach y’= B(z, ¢) there exists a " €M
such that y' = @ (x’). By the definition of @, such a B(z ¢) obviously exists
when x = p &€ inf G. It remains two-following cases {o investigate :
(A) z = @ (x) with x = M\ G. :
_(B) z = @ (x) with x = p<& oG, thus z = PcMnaG.
lo (A). Suppose that i (x) = >0 (the case t(:c) <70 can be proved in tlhe
smnlzu w 33) We have:
= O N7) = ¢p(—H(x), z) €M\ G
Evidently there exists a 8 > 0 and an & > 0 such that ¢ (1, )« M\ G for all
te 1l =1—Hx) — 6, t{x) -+ §[ and y" &€ B(z, g). Choose t;, t; €Lt; < — (%) <L
an_d denote =; = @ (l;, 2), Lo = o (i3 2z), x’l = ¢ (t, ¥ ® = ‘(p (ts, _y’) for
' some ¥y e« DB(z, ¢). By fixing 6 and reducing e one gets x’1 — :r:'l,xh — &g,

which deduces g (a:’ )= g(®T), g (sc’ )— g (x3). On the other hand, it follows that

[y = 1@ =g and since G(a:l) < g (xy=1(z) <  g{x;) there ex1sts an e such that
glxy) < I(y") << g(wy) for all ¥° € B(z, ¢) Consequently, thercis a = =<p(t’ ¥
WIth i <t"<ts, satisfying g(x’ ) = f(y"). Together with g(x’) = f(t(x"), ') one con-
- cludes that y° = g((x'), @) == ®(x’), what implies B(z, ) = ®(M). _

fo (B) Choose r'’>0 such that B(p, r')C M. Clearly we have B(p, r’)yC W™,
By Proposition (3.8) there is a B(p, ¢) such that for every y € B(p, &)\G there
exislts two points z;, zo on the closure of oy, satlsfymg 8(z1) <f(y) < g(za) \\ here
the path connecting z; and £, lies in W*. Consequently there is a & on this
path such that g(zx) = f(y). As before we obtain y=g(i(x), 2)=0(x) with x & W*.
Then, sincef = g on G and { is strictly monotone along oy, it follows, that 2¢=G,

thus & W™\ G. As seen by (3.5) we have Hm—y\|<—ﬂx Gy, thus;lx v[]<i1

Using the triangle mequahty we obtain: ||® —pl=jz—5¥) -+ lly—pl <-3« + &

L

It follows < B (p, ') if we choose 'B(p, ) as above with s<—r— . Then z & M

and this means that B(p, e)\GC ®(M). Hence B(p, %) C CD(‘VI) The proof of
(3. 9) is complete Q. E. D.

To conclude this section we set the following:
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(3.10) Problem. The property Q(a, a), o> 1, of a function [ near a poinl
B, as has been proved by I. Bochnak and S, Lojasewiez in [2], is a necessary codi-
tion for f to be local homeomorphic at p to "each geJ*{)(p) defined on R®.
However, for the infinite dimensional cases it has not been known, whether
t would have property Q(a, 'a) at p when f is local homeomophic at P to
cach g€ J*([, w) (p) for some w > 0. In the same way we can ask the question
relative to the property Qu, a) at a compact set G and to the set J*(f, w) (G),
defined on R" or on an infinite dimensional Banach space. This is whether f
has property Q(a, a) at G, if f is local homeomorphic at G to each g€
I, w) () for some w > 0. '
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