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0. INTRODUCTION

In [6] it is proved that every ® - ACU category is @ - ACU equivalent to a
&-ACU category, which is a @-strict AU category. But we cannot prove that
every ®- ACU category is ®-ACU equivalent to a @ -strict ACU category,
because for it the necessary condition is that the .commutalivity constraint

satisfies the condition : ‘_
S Cpap = idA@A’ for all A & Obg. 0.1y
The purpose of this paper is to prove that every ® — ACU category G,
in which the commutativity constraint ¢ satifies the condition (0. 13, is & - ACU
equivelent to a @-strict ACU category. But by the result which is obtained

in [6], it suffices to prove the above assertion for a’ @-ACU category which is
stricl AU and the commulativity constraint satisfies the condition (0. 1).

"1, ® - STRICT ACU CATEGORIES

Let C be a @ - ACU category, which is stuct AU and ‘the commutatlwty
constrainl satisfies the condition (0.1) i.e
Choa = 1dA®A’ for all AEObC }
We shall construct a ®-striect ACU category which is denoted by MgC)

First, we introduce some notatlons An object of C, which has the form

A®. ®An ,A;==1fori==1,.,n, is said to be a product, each A; of this product
called factor. An object A:/:I is also said to be aproduct of one factor.

We denote the class of all objects A==1of C* by C* and consider the _

class M{C#*) of all functions .
F: C*-» N,

from C* to the set N of all natural numbers, such that F(A) = {} for all A & C¥,
except for a finite numbers. Thus each F & M(C#*) defines a finite subse 4
of C* and a family (na), ¢4 of natural numbers n, + 0. Conversely, a pair (4,
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(Mady ~_g)» 0 which £ is a {inite subsel of (= and (ny), = 4is a family of nal-
Ac , Aot .
ural numbers, such that Dy == 0 for all A € 4, defines a unique function
Fe M=y, : . ’
S\_uppose that F € M(C"*) defines a pair (-4, (BA)A@#)'
- In the case 4 &+ ¢ we consider all products in €, which contain ny factors

A, for all A € o4, The number of these products is finite. We choose one of

these products and ecall it product of F. For example, F is function defined as
follows: J

F(A)=2, F(B) =1, F(C) = 0 if C =+ A and C == B. Consider all products
which contain two factors A and one factor B. Theseare A@ A ® B, A RB® A,
B®@ A®A. In the set of these products we choose, for instance, ARA®D as
the product of F. ' : ‘

If Fis a funetion such that F(A)=1 and F(B)=0 for B A, then the
product of T is_A, )

In the case 4 = ¢, we say 11is the product of F,

We denote the product of F by @ F.

Thus, each F & M (C*) has a uniqué product. .

When we write (@ F) ®(® () we mean that this is the product, in which
the first factor is the product of F and the rest of G. In general, it is not a
product of some funclion in M (¢ C# 3. :

Now we consider the triplets, which have the forms (F, G, u), where
u; ®F - @G is a morphism from the product of I to the product of G. We have
the following .

Proposition 1.1. We can deéfine a category M( C) as follows:
ODbM (Cy = M (C=), .
Hom(F, G) = {(F, G, w) | v: ®F RG], (1.1,1)

_ tﬁe composition of two morphisms is defined by ‘the [ollowing relation:
(G, H, v) (F, G, u) = (F, H, vu) ' (1.
and the identities have the forms (I, F, idcg)l?) - . (1.1.3)

Proof, In fact, we have:
(G, H, w) ((F, G. v) (E, F, w)) = (G, H, w) (E, G, vu) = (E, H, w(vu)) =
= (E, H, (wv)u) = (F, H, wv) (E, F, u) = ((G, H, w) (F, G, v)) (E, F, u):
; (', G, w) (F;'F, .id®F) = (F, G, u. id®F) = (F, G, u);
(G,}G, id®F) F, G, w) = (F, G, id®F.u) — (F, G, u) ;

Proposition 1.2. M(C) is a @ - category ,with the multiplication defined
by the following relations : ‘ h . ' a
(F®G) (A) = F(A) + G(A), A g (1.2.1)

" (E, G, W& (F, H, v) = (E ®F, G ®H, ¥ (u ®V).},“l)', (1.2.2)
where x: (®E)® (®F) — QE @ F) _ ' "

Y (@%@ (@) - &G e H) ,
are the morphisms built up from the morphisms e, id and @ in C.
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Proof. First from (1.1.3) and (1.2.2) it follows:
‘ id®F ®id, = F, idcg}F)®(G’ G, id®G) =
FQG, FRG, za) (FG, FOG, g gay = “1(1:@0)’
(where 21 (®@F) ® (8G) — ®(F @ G) is a morphisim built up from the morphisms
¢, id, and @ in €).
Furthermore, let
o = (E, G, u):E_)'G,’ p=(F H v): F— ,
T=(G K w:G-EKs=(HHLH:H=L"

and x: (@) ®(8F) -~ ®ERF),

y 1 (®%) ® (RH) — &G & H),

21 (®K) ® (®L) - @ (K® L)
are the morphisms buili up from the morphisms ¢, id, an
(T®0)@®B) = (G, K, W)@ (H, L, ) (E, G, u) @ (I, v)) =

= (G KL, z2cw @)y NHERF, GRILyu® vx—h =
=(E@F, KL, z(w®Hu®v)x™ 1) = .
(E®@F, K®L, z(wu@tv)x 1) =
(E, K, wu) &(F, L, tv} = ' ‘
= (G, K, w) (E, Cu)) @ (H, L, 1) (F, H, v)) = Yo @ 5.

Proposition 1.3. In I_\:‘I_(E)
F@GeH=F®G®H, forall F, G, H g obM (C)
FQGH)—-FeHG

d @ in C, we have:

@

Al

andaF’G’H = idF ®c®H
is the associalive constraint.
Proof. [irst, we have;
TR (GRIN) (\) = FAy+ (G®H) (A) = FA + (GA) + Ay =
: = (F() + Gy + Hd)y = FRG) (M) + H(A) =
(FR®G)®H) (A), A € C~.

Jow Vv \ =i is an isomorphism of trifunctors.
Now we prove thai e dpggen 1 @ . I

Let ) . o

a=(F,F,0),p=(GG,v)T= (L, 17", w)
and 7 . .
' t: (@3RN - GRH),

X (@GHR@H)Y—> QG @H),

v: (P @GeH)-»eF®Ge M)

' (@F)® (@G @)~ F (G @),

are the morphisms built up from the morphisms ¢, id and ® in C, we have:
e ®BRY)=(F F,u)@ (G, G, vyeH H, w) =
FF, @Gl GGeH, x(v® wit—!) =
(F & (GeH), Fl (' @H), 2@ x(v@ Wiy ™) = -
(F®@GwH), P e@ oH) ad@n)@® o w)idet)y7y =
(FQG)®H), ) @G) @I, z2(d @ x) (0 v) & W) (fd @ty )

=

TR TR
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since U@ (v W) =(u&v)g win the ® -slricl’ AU category- C.
In the other hand, if ;
PR #(@G)>(F ®0),
¢ (2P @G -8 G6), .
T @FIMR@M-e(Femel),
(®(F ®G))®(®H )= R(F G’ )® H’),
T Wwe hav
(a®B) ®T = ({(F, F, 1) ® (G, G v)) ® (H, H W)=
=(FRG FeG, qu @vp~H® (H, B w) =
=(FROHRH FRG)QH, s(gqu@p'@wir’ =
= (F@®QH, (FRGF)QH, s(q®id) (u®@ V)@ w)(np®@ilr-h.
Since € is a @' -slricl AU calegory,
@FH)®HI@IM=(IFN@ENS(®I), . 4 » »
®F)SURG)HR@IT)N=(RF)IR (@GN (] H),
and the morphisms y(id ® t) and r(p ® id) are the morphisms [rom (@ F)® ((®
®G)® (®H) lo®(F®G®T) built up from ¢, id and @ in €. Hence

v(id @t} = r(p ®id).

£

Similarly, we have:
z{id @ x) = s(q ® id).
. Thus
cR@BAN =P ®T.
Preposﬂ;lon 1.4. In M (C)
FRG =G ®F
apd CF’ G = idF QG " Fe G —» G ® [ is the commulativity Lonslraml
Preof. In fact,
F ® G (A) = FA) + G(A) = G_(A) + FA) = (G @F) @A), AgCx
Furthermore, ‘Iet a=(F F,u, B=(G G, ), and _
T: N O-QFRGE,y: @R EOG)—-EF CH
are the morphisms built up from ¢, id and ® in C, we have:
2@ =FF,0DG.G,v) = FRG FRG, yu®v)z-l)'=
=FG FeG, Yege, gr (VO 1'1)‘c®1, ®G x1).
But YlQa', ®F and $C®G ®F also ave the morplnsms built ap from e. id‘
and ® in C, .
a®B = (F®G FeG, \C®G SF (v ®u)c®F G ) = PR a.
i.eid FQG is an isomorphism of hifunciors.

Proposition 1.5. In M{C)
F® Fl =F = I’ ® F,
where F1 is a Tunction such that F1 {A) = 0 fon all A € C*



and gp = id; =.dp are isomorphisms of funelors, i.c (1"1. id, idy is an unity

constraint.
\-Proof, We have: ~
FOT) (&) = F(A) 4+ T, (A) =F) + 0 = FA) = 0 + [ =
B =T (A) 4 F(d) = T, @1 (4), A ecx
Now, let o = (F, 5", ), we have: -
o ® idl—‘l =F,F,ue (1_'—1_, l"1 ’idl) T (F & I“L, ' ® I"l, vu® idl_) x ),

where 2:1®(@F) = (9T,)® (@ F) — T @F =@F,
V:1Ie®P) = (® rne ®F) > @ (Ler =8,

ate the morphisms built up from the hwrphisms ¢, id and ® in C. Cince C is
® - striet AU category, then: -

u®id) = u, 1® (®F) = QF. 1@ @F) =P,

. @ =idgr . y=idg,..
It follows::
' ' 4a®idr1=(F,F’,u)=cx.

Finally, it is easy o see -that M(C) is ® — sirict ACU catégory; l.e

we have T '
< Proposition 1.6, M{Cyis a ® - strict ACU category.

i
2, THEOREM

Now we prove the main lheorem of this paper,

Theorem 2.1. Lel G be a ®@-ACU category which is strict AU and the
commutativity consiraint ¢ salisfics the condition (0. 1). i.e
Ca,a=ids®;, foa all A € ObC.
Then_C is ®-ACU eq,gival'ent to the ®'~st1'ict ACU %legory E‘(E).

Proof. We define the functor
F:C— MGy

by the following relations: I .
F(Ay =Ty, _ (2.1.1)
where Iy is the function such that Fa(A) =1, Ta(B)=0fo1 all B A, if A=H1;
and I'y is the function such that Fi(A)y=0 forall A & C*. _

- I'(u)= (T4, Ts,u):u A—B. (2.1.2)
It is casy to see that I' so defined isa functor. In fact, ’
-Tda) = (I, Ty, ida) = idra, T'(vu) = (Ts.Te, vu) = (Iy, I, VI 4, T u) == T(v)[(u).
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For a pair A, B € ObC, we define an Isomorphism of bifunctors [y 4
- as follows; - ’

Fas =T gp- T ® T, %), (2.1.3)
w1 gp. il A®B=@TC\®Ip),
Ca.B ] if B®A : @(FA®FH)

where'

It follows from (2. 1. 3
Tai=(Ty g Ta®T, idy) = ("s, T, ids) = Ty [i®Ly, id) = Try (214
beecause in M(C) I \®T; =Ty =TI,®T, and in C ARI=A=1@A, era=idy=cy,.
From (0, 1) and (2.1.3) it fellows: ‘
| Fin = Taga s Ta®Ta, idy gy s ‘
Iis'an isomorphism of bifunctors. In fact, first it is.easy to see that the inverse
of FA,B is \l:;";'.;—_ (T, @I, FA®B , ) (2.1.5)

Moreover, suppose u: A C, v: B~D are ihe mqrﬁhisms in C. Applying the
" relations (1.1.2). (2.1.2yand (2.1.5) we obtain:

P (v) = (T4, Te, WAy, I'y, v) = (FAQFB, FC'®FD9 y(u®vyz-h= .
== (FC®D’ GC@FD» }f)(FA®B s I—\C®D . U®V) (FA@FB, rA@B s LT )

= TC,D Fuey) FA_’é.

Thus (T, F) is a® - funclor. It is compatible with the associativity conslra-
ints. In fact, it follows from the relations (1.1.2), (1.1.3), (1.2.2), (2. 1:2)y and (2.1.5):

(T's,5@idrc) FA@B,C: (T y@p Ta®Tu )@ (T, T, )T y@pge Fagp®l o Y=
= Iy gp ®Tc Ma@T®T¢, z (x@idc)y-") T o0 Fygp®Te v) =
= Ty @pgc Ta@T®, z(t @ idc)), S
where z.: A@B =@ s®Tp), ¥: (A®B)®C—+ ®(FA®B @I,
2 (@(Fa®T)®T ¢ — U AQTs® ).
are the morphisms built up from the morphisms ¢, id and ® in E

On the other hand,
(dp ®FB,CTFA,B®C =T Te1d)® Cpge Ty @rc;t))FA,B® ¢=
= (FA@; PB®C& FA(FB@;FC), v(idA®t) u—h (r‘A@(B@C), I‘A® I‘E®C, u)
= (Tygnec Ta®Tp 8T, viid, 1),
where {: B&C— @ ,®T ), u’ ARBEC) —» @, ®T,8T ),
Vi AR(®(T®Tc) — &A@t |
are the morphisms built up from the morphismsc, id and ® in C.
Since z(x @ idc) and v(ids @1) are morphisms from (AB)®C (o
@UTa®Te®™:) we have .
Hr® ldc) = V(idA 2 t).
) 119
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. Therefore
Ta@pec: TA®TE® T, 2@®id ) = T ygrge Fa®FR®T ., viid @), i

Ty, 6Bl g, = (dp, T, OF, 100
or the following diagram is commutative:

St

T, ' idp, ®F -
“’B@ErA@r(BcaC)—_—_FA AR BErC)

F(A@(B@C))'

Fagn.c

T id
Sraenerc ABeMTC

I'{(A@B)®() (M-@FBS@FC

Now we prov.e that (T, F) is compatiblé ‘with the commutalivity cons-
traints. It follows from (2. 1. 2, (2. 1.3 ) _ .
Tp,al(ey p) = Tpgar Tp®T 4 YU 4 g, 'pgar Cap) = @ gp 8T, F4,p>
Since y is idB@A Or ¢y 4, then T=yeup is eyp OF id;\@B‘ Therefore

N

Paalcyp) = Tygp Tpd®r,. Yeapt =T p:

i.e the following diagram ‘is commutative

—t

N I . )
raeB A ragre

; - |T(ea,s)

rB;A

F(B¢®A‘) —»TRrA

Since I‘(I__) =T,1is an vunil object of M((Q, the ®-funcior (T, F) is compa-
tible with the unity constraints (Chil, §4, no2, prop. 8, 2D).

By definition of I" we immediately see that it is a full ‘representative,
faithfull functor because the corespondance u |-I'(u) is a bijection from
HOIDC(A,B) to I“Ioml\1<c>(FA, I'B) and evéry FEObR;I(E) is in the form F=I"\®...

®FAH_, hence F ~ I‘(A1®,..®.An). . ‘
Thus, (T, I)isa ®ACU equivalence and the theorem is proved.

Combining this thecorem and theorem 2.7 [6] we obtain:

Thoerem 2.2 Every ®-ACU caiegof'.\.r A in which the commutalivily cons-
traint ¢ satisfies the condition (0.1), i.e Chp = idA®.‘\, {or all AeOb‘i. is®-ACU

equivalent to a ®-strict ACU category

Poorf. Suppose that A is a ®- ACU category with conditiolr (0. 1). Then
by theorem 2.7 [6] there exisls a ® - ACU equivalence ) -

(@.8) : A — End(Ay.
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in which End(Ag) is a @ - ACU cuteg‘o;"}" and a ®-slrict- AU calegory. Fur-
thermore, End(Ag) salisfies also ihe condilion (0. 1). In f'ucf,'by proposition 8,

§5. Ch. 1, 2], for (F. ¥) & Ob End (Aa), ¢ is defined hy the follb-

(F, 1), (F, )

e

- wing commutative diagram :

. -~ \1? ¥ -T B \4’ g V h T
HEHe @ Py ED v e T

~— — e = id
Y ¥, Fir1 T R @

g v Yebhe B X
V(F, 1 @ (F, Ty - HED e (F.T)

It follosws immediately :

‘R, E DT B e E
Thus, by theorem 2.1, we have:

(T, T): End (Ay = M(End(Ay).
Finally, we get a @ - ACU eruivalence ‘ : !

T, I'9): 4 5 MEnd(ds) *

and this establishes (he theorem. v
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