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1. INFRODUCTION

In ils general form, the Bilinear Programming Problem can be stated as
follows ‘
min {f(z, y): z€X, y€Y}, ' (1)
where X, Y are given closed convex polyhedral sets in R", R™ respeclively
and f(z, y) is a biaffine fynction of x andy.

The recent investigations by a mumper of authors ({13, [2], {3], {4]) have
revealed a close relationship -between this problem and the concave minimi-
zation problem as first studied by Hoang Tyy [5]. Indeed, as will be pointed out

later, the algorithm proposed by G.Gallo and A. Ulkueu in [4] for solving pro-
blem (1) is in fact the adaptation of Hoang Tuy’ s method [5} o a conecave
ploglammlng problem equivalent to the given bllmear programmmg problem,

In a converse direction, M.Altman [1] and H. Konno[?] have shown thal
the minimization of a concave quadratic function under linear constraints can
be reduced to a bilinear programming problem. On the ether hand, it is known
by a result of M.Raghavachari [6] that the general zero—one integer program-
- ming is equivalent to a concave quadlatlc minimization pxoblem under linear
‘constraints. Thus, the general zero—one inleger programming can also be
reduced to a bilinear programming. Further, in [8] A.M.Frieze have redueed
the 3-dimensional assignment problem to a hilinear programming problem
and then to a special concave piogramming problem. It seems, however that
no attempt has been made up to now to disclose the full connection between
the hilinear pr ogramming problem (1) and the concave minimization problem,

It is the purpose of the paper to show that the bilinear programming
problem is in fact fully equivalent to the concave piecewise linear minimiza-
tion problem under linear constraints, in the sense that the former can be
reduced to the later and vice versa. Hence, each algorithm for solvmg once
problem can. be used, on principle, to solve the other.
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Since every concave function can be approximated wilh arbilrary accu-
racy by a concave plecewise linear [unction, the general concave minimiza-
tion problem under linear constraints can be reduced to a bilinear program-
ming problem,

Furthermore, we' shall sho“ thai finding a feasible solution of the con-
vex (linear) complementarily problem is equivalent Lo solvi ing a concave (concave

piecewise linear, resp.) minimization problem. This fact extends a result of
O.L.Magasarian in [9]. ‘

2, CGONCAYE PROGRAMMING FORMULATION OF THE BILINEAR
PROGRAMMING PROBLEM

We shall assume below that
min f(x, y) :
vyeyY . (2)
exisls for every & X and that Y.has al least one vertex (for example, these
requirements are fulfiled if Y is}bounded and noneinply). Then we have

Theorem 1. The problem (1) can be formulated as a concave p1ecew1se
linear minimization problem under linear constraints.

Proof. Denote by Y the set of vertices of Y. From the theory of linear
programming it follows that the optimal solution of problem (2) is altained in

at least one vertex of Y/i.e., in some element of Y. The problem (1) can now
he restated as

min f(x, v) = min { . min . f(:t. y)i
r€EX, v €Y - rE€X yvey
: = min° | min [z, yv)} == min  g(x),
<X YEY - xeX
where g(x) = min [(x: ¥) = min fe,v).
vEY Co vEY T ’

Thus, the problem (1) is equivalenl I(),l.ho problem
min g(x).
r€X 6]
\T()tlce lIml the sel Y is, tinite and for each v & Y f(zx, v} is an affine -
function of :1: s0 g{x) is a coneave piccewise linear lunclion of x,i.e., (3) is a
concave piecewise linear minimizalion problem uuder linear constraints.

Remark 1. If the bilinear programming problem is slaled in the form

max {fiz, ):z€X, y €Y} (1"
then under previous conditions probrem (1') i$ equivalent Lo the problem
' ! max  g(x), ‘ (3")
TEX ’
where g(x) = maux fle, y) = max f(z, v) is a convex funclion of x.
' JE€Y yEY
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3. BILINEAR PROGRAMMING, FORMULATION QF, THE CONCAVE PIECEWISE
LINEAR MINIMIZATION PROBLEM UNDER LINEAR CONSTRAINTS

Consider now the coneave minimization problem
min g(z). ¢
. r€X
1ere, as before, X isa gi\"o’n‘ closed convex polvhedral sel in R" and g(x) is
ronvave piecewise linear function defined as the pointwise minimum of m
ffine functions
! ‘ . 11(3;), U] lm(x) :
gx) = min li{x).
i=h..m

Theorem 2. The problem (4) can be formulaled as a biltnear programming
wroblem. :

Proof. We conétruct a biaffine funection f{(x, y) of variables x € R" and
F &€ R™ as loliows ‘ .

m n
. f(w, }') = ::;: }"i ]j (x). ) ' ( ' (5)
i=1 '
Let ns deline
. m . i
V={veR": 3 vi=Ly>0} J (0
i=1

Then Y has exactly m vertices v%..., y®, with y' being the i-th unit,
vector of B™ and from (5) we have f(x, v') = 1x), i = 1,..., m. Consequently-

min f{z,yv) = min f(z, vH
vEY i=1,..,m
= min l{x) = glx)

ci=liee, m
for cevery o < M.
Thus, the problem (1) can be i‘eslaﬁ@d as
min gx) = min | min f(zx, W}
TE€X ) r€X  v&€Y .
=min {f(x, V:z€X, y€Y]. _ ‘ ) (7)

Since f(x, v) is obviously a biaffine function and Y is the standard
(m — 1) - simplex in R™, (7) is a bilinear programming problem.

4.- CONCAYVE PROGﬁADIRIING FORMULATION OF THE
) COMPLEMENTARITY PROBLEM

Consider now the following complementarily probnlem: Find an n ~ vee
tor x satisfyving - | ) o
xeD (x>0, gy >0 {[(m, gx))=0 )

'
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Where D is a given convex set i BY fo) == ifyua), o, 1s P D, B) = (Gl ws

Ex{T)) are given vecior functions aml (j, ¢y denntes the sealar product of f
and g. Let .

1l
lz) = = minf(x), g,
i=1 .

We have the lollowing.

m, be concave functions on

i
* Theorem 3. Let [i(x), gi{x), 1 =1,
D, Then (8) is equivalent to the problem

min {l(zy:x € D, () =0, g@) 0] (9)
in the sense:x € R" is a solution ol (8) il and only if ;is,a'n optimal solution

of (9) with I(z) = 0,

Note that the objective function of problem (%) is concave and its set of
feasibles solutions is convex [JG(‘&U‘:E ol the assumed concavity of [ and g.
Hence, (9) is actually a concave progrumming problem. . '

Proof. Let x be a solution ol (.\) ”[hen il is obvious thal + is a feasible
sulutlon of (9). Since l(t) 0, g .1)> ) and (l(.l). g(ﬁt)) = 0 we¢ have min
([i(-'B), gl(.t‘)) =0Tori=1 .. m, ie, I(;) = 0. But Itz) > 0 for every feasible

solution . of (9). Consequenll)'.? is an optimal solution of (Y).

Conversely, l(‘t - be an optimal solution of (9) with L’(:-.":’)=G. Since
fi(x) > 0. g(:c) >0 we have min (1;(z). gi(@) 0. i = 1. ..., m. hence min
(l"i(ﬂ.;), gi(:c)') =0,i=1 .., m This implies (f(:f‘). g(f.;)) = 0. which complcles
the prool. h ' .

A particulAar case ol problem (8) is the linear complementarity problem:
Find an n-vector x. an n-veclor ¥, a p-veclor z salisfying

1’}.13 4+ By + Cz = b,
} 0,

(r,yy=4, ;
X, ¥e 222 0,
where A, B are m by n matrices, C is an m by p matrix, b is an m-vector
and {x, y) denoles, as usuall, the scalar produet of vectors & and y.
As specialized to this problem. Theorem 3 yiclds.

— —— [ad

Corollary. (r, y, z) is a solulion of (10} il and only if (9: } Z) is an
optimal solution of the following prohlem

n
min { {(x.y,2) = Z min(x;, y): Az + By + Cz = b, z,¥, 7>0}. (1)

o i=1
with l(:c. y, z) = ),
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Citeariy the objective funetion of (1l) is a cohcave piecewise linear
{function. |

If A=M, B = —E(E is a’unit malrix), C =0 and b= —q the pro-
blem (10) becomes: [ind x € R" salisfying Mr+q=0. 220 (x, Mx4-q) = 0.
This spesial problem has been considered by O.L. Mangasarian in {9]. Theorem
3 extends Lemma 1 is [9] ol this author. \

Theoren 3 shows that instead of finding a feasible solution of the com-
plementariiy problem (8), we can solve a corresponding concave minimization
problem. ' .

The conncclion among all the problem discused above are sumnmarized-
in the following scheme ‘ : '

Convex Complementa-

- rity Problem
| Zero-One luteger — y
Programming - \ 1
I R
Coneave Concave quadra- I.inear Complementa- '
Minimi tic objective - rity Problem
A function . .
zalion I« - ) l
¢ under 1 i
fnear Coneav iece- —_—
Linear Il'c ave NP . —= limear :
Cons- wise limear e [ ——— .
traints objective PR [ Prog;aml.nmg
“ [unclion Problem
- Concave Minimization —
Problem -
1,

5. REMARKS ON A ALGORITHM OF GALLO AND ULKUCU FOR
BILINEAK PROGRAMMING '

We have seen in the previous section thal the bilinear programming
problem is equivalent lo the concave piecewise linear minimizalion problem
under linear constraints. _ T g

In the light of this facl, we now show Lhal lhe algorithm proposed by
Gallo and Ulksicdt in [4] for bilinear programming can be considered as a sim-
ple adaptation of Iloang-Tuy's method [5] to a concave programuming prohlem

“equivalent to the given bilinear progamming problem.

Let us first recall briefly the essential features of Gallo and Wlkici's

algorithm as presenied in [1]. - ' ‘

-
-
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The blinear progammihg problem has been considered in 4] in the
following form : ’ |
: max{f(z, v)iz € X, v € ] (12)
with ‘ ‘
f(m. ),) - CT.I‘ o J;TQT}, - ('lT.\'»
N={reR:Axa, v 2> 0f,
Y= fy € R" By b, ¥ =0},
, where A is an m by n mairix, B® an m’ by n' maltrix, QT an n by n’ maltrix;
‘e, d, a, b are n, n', m, m'- veciors respeclively. X and Y are assumed to be
bounded and nonempty. | _ )
Using the Duality theory it can be easily shown (hal (12) is equivalent
to the problefn ' )

max  {¢Ye +  min hTu
Ax L - BuZz d4Qx . (I3
x=0 |- cu e :
Define P=f,m:reX,u>n Bu >d + Qu}
and A={fr,wel:hTug I)"i:\\', Yz, w) € P).

let V= fl 2% ..., 2% be a finite sel of points in N. Define
2(V) = max feTaxt 4 I.)Tui,.;: ! 6 V. @i u) € A
und SOV) = 230> 0, B d + Qo ¢V BT V).
As seen previously (see, remark 1)

Remark 2. (12) is cquivalent to the problem max g(x)

. x & X
with §@) = max flr, y)= max "z + (d + Qx)Ty}
TEY yey : t
=c¢Tr -+ - min bTu, - 7 (L4)
Bu>> d + Qx
u =0

Le., g(@) is just the objective function of (13). ‘
Remark 3. From the definilion ol z(V) A, and from (1) we have
2(V) = max {c"o' + bTul: 2t € V, (2, uh & A}
= max fc"z' + min bTusa' € V, Bu> d - Q. u > 0}
= max {g@):z' & V|, ’
.., Z(V)'is the best value of the objective funclion (14y at frhe considered points,

Remark 4.!Fiom (14) and the definition of S(V) we have for every r&S(V),
() < cTx + bT U< 2(V), ie., the value of the objective function g(x) at every
wint of S(V) is not greater than the best value reached at that lime.

- L]
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Gallo and Ulkucu 8 algor:thm.

'p O. Pick in X a 11011 dooc,ncmlc verfex a0, that is, a verlex }\-’ith
exactly 11 neighboring vertices a', 2%, ..., x" TFor any veriex &' of X, call v' the
uml veelor defining the halfline e umlmrf from x° and (ontammﬁ 't Lel

= o, 2 e = = {¥} ., V' and A = lo]. Go loslep 1. :

Step 1. 1f A = ¢, the algorithm Lm minales, aind z (V) is the optimum value
of the objective {unclion. cherwisc, selecl a set w :{v”, v v'“} in A and
go lo step 2. ‘

Step 2. By solving a lincar program for each j=1,..., n, compule

_Bij = max { 85t ® + Bijvij < S(V)}, and go to step 3.

Step 3. Find (A, ..., A; ), anoptimal extreme solution of the linear program
’ 1 n . .

n —
maximize =¥ (1/8i1) Aij
- j=1
n N : ’ ) s
subject o Lot S aviie X

j=1
and go to step 4.

Step 4. (a) If '2]3;1 (ljﬁi'j)kffigl, delete the sel o from A, and go to step 3.‘_5 ,

() Otherwise Icl 29 = a° + 2;’_1 ?\: vil, Inelude 29 in V and

update z(V). For all i with l:. > 0, generate a sct substituting v? in o for v,
then replace o in A by these new sets. Go to step 1.
From remark 4 we see that step. 2 'consists just in constructing for cach

j=1,.., n the farthest’ possible point on the ray from x° through v in which
the v‘lluc of ilie objective function g(x) lS still inferior or equal to the current

best value (V). The step 3 consists in finding the point of X thal lies on’

the opposite side of x° wilh respect to the hyperplane through the n points
just constructed in step 2, and as lar as possible from this hyperplane.

Thus, the steps in Gallo and Ulkiici algorithm for solving the bilinear
prograinming (12), are exactly the same as in Hoang-Tuy’s algorithm for solving
the concave minimization problem equivalent to the given bilinear prograin-
mmg problem The difference is only that at slep 4b:

. The new sels are oene1ated in Galle and Ulkiici’s algorithm only fm

_those j with ?\... > 0, when as in Tuy’s original algorithm they were gencrated

for every ] w llh 7\ =}= 0.
_ Finally it is \\ orth noticing thal no pmof of [inileness has been given
for either algorithin.
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