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1. INTRODUCTION

In recént years the Kakulani's fixed point theorem for multjivalued
mmappings which is very uselul in optimal theory, complemenlary problem
and mathematical programming* e.l.c. has been extended by varions authors,
I Scarf [11). B.C. Eaves [1] and O.H. Merrill {9] and H. Tui [13], have proved
il by conslructive method. K. Fan extended it to case of lopological linear
locally eonvex Iausdorff spaces. -

In this paper, we shall he concerned with the continuily of fixed points
of multivalued mappings. Let i, ve I} be a system of multivalued mappings

having the fixed poinls {x,, ve& I. The queslion arises as to what happens if

.
JF.,, v€ 1} converges to a mullivalued mapping F in some sense. With some
necessity conditions we shall show Lhat every limit point of a net of fixed points
{xy,ve€l} of [F,, v& I} will be a fixed point of the multivalued mapping F.
Furthermore, we shall apply this result lo obtain. some fixed point theorem
on topological linear locally convex Hausdorff spaces and on melric spaces
Some resulls obtained here are more general than thatof K. Fan (5], C.I. Himmel-
berg {7]. W.G. Dotson {2}, [3}, L.F. Guseman and B, C. Pelers {6], L.A. Talman [12].

2. NOTATIONS AND DEFINITIONS

Let X be a lopological linear space or a metri_c‘ space, K be'a non-empty
subset .of X. We shall denote by 2¥ the family of-all nonempty subsets of K

and B (K).the family of all nonempty bounded closed stbsets of K. K will denote

, the closure of K, and I stands for anindex set with a partial ordering.
In the sequel, we shall consider the ["orllowing multivalued mappings :
FoiK—2% vel
Fi:K - 2% . . :
, Definition 1. A multivalued mapping F is ealled closed if for any net
fr, } <K, z, >z and vofCX ¥, €F(x,) v, >y it implies y& F(a).

?
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Definitien 2. A family of mullivalued mappings [E".\,. vell s calle
convergenl lo Uhe mullivalued mapping I in (he sense (), in symbols F./5F
i E
if for any mel {m,‘,‘}CK, x,, =X for any net {yv ]C X. vy €F, (x,) there exists

a net fz. | CX. 2\,6 F(zx, ) such thal z, — vy, —0 if X is a lopological linear

v
space and cl(zv .+ ¥y )= 0 in the case where (X, ) is a melric space,

Let (X, d) be a metric space, we shall denote by H(B, A) the Hausglorff
distance between two arbitrary sets A and B irom B(K). It is defined by:

H(A, B) = max |sup d(x, B), sup d(A, It
TEA = .

It is a common know]edge that (B(K), H) is also a metric space,

Definition 3. A family {F,, v} is called convergent uniformly to F.
in the topology determined by the Hausdor{[ distance, if : . ;

lim sup H(F (x), F(x)) = 0.
Y xEK

. Definition 4. l.et (X, d) be a metric space. y: X — X is called contraction
if there exists a constant a € (0, 1) such that :

d(e@), $(y) < ad(m, y), forall 2, v € X.

Definition 5. A nonempty subset K of the metric space (X, d) is said to .
have ¢ — confraction structure if there exists a sequence of- contraction

mapﬁings,wg {1_pﬂ}n:0 converging.unifOrmly to the identity mapping id on
K, i.c. for any n there exists a, € [0, 1) such (hat
d (Pu(®), Pu(y)) < a, (l(:c-._’ ¥v), forall »r, v € X
and -
lim  sup d(y,(a), x} = 0.

n—>+coe xR ;

Definition 6. A multivalucd mapping I from a metric space X into itself
is called nonexpansive if .

H (F(z), F(v)) < d(z. y). Tor all z, v € X.

Definition 7. A swbsel K of the lincar space X is %aid to be starshaped
al a point z, it

alot- (1 —o)r € K, for all x € K and a € [0, 1].
Definition 8. A subset K of a topological linear locally convex space X
is called almost convexr if for any neighborhood V of the origin and any
finite subset { Vi vy | € K there exists a fi_ni_;le subset { zy,..., zn} C K such that:

co | zp,..., 2, L <Kand vi-z; €V, for all i =1, 2,....n ; where co denotes the
convex huli. : ‘ ‘

*
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3. THE MAIN RESULTS

Theorem 1. Lel X be a lopological linear Hausdorff space, or a mictric
space, K be a subsel of X. Lel for eachv €1, F, K—>2X be a multivalued map-
ping having a fixed point x, in K. Suppose that F . )F where F:K - 2% is a
closed multivalued mapping.

Then every limit point in K of {x } is a fixed point of F in K,

Proof : Loi Ty~ Zo, We shall verify that z,€ Fx,).

Sinee T, o )F r, =%, and z, € I, (x,) there cxisls a nel {z,}CX, 2, €
F(x,) such thai zy — &y~ [ in the case, where X is a topological linear Haus-
dorff space and d(z,, x,) = 0 in the case where X is a melric space. Hence, in
-both cases, it implies: Z, > T, ‘ o
' " From the closedness of F we have x, € F(x,).
This completes the proof of Theorem.
Applying this result we prove the following theorem, from which it can

be casily obtained the fesults of K. Fan [5}, C.J. Hlmmell)erg [7] (Theorem
I and Theorem 2), -

. Theorem 2. Let K be a nonempty subset of a topological linear locally
convex Hausdorff X, F: K — 2¥ be a closed multivalued mapping such that F (K)
is contained in a compact subset C of K and F (x) is nonempty convex for all
in some dense almost convex subset A of K. Then F has a fixed point in C.

Proof. Let % = | Uy} be a:local base of neighborhoods of O consisting
of closed convex symmetric sets, and Uy, 2 Uy, if va v, (U} 0.
Set
F,(x) = I‘(\()—I—Uv, xe K.
Let [a: } CK, xv—»:cand {vs CX, y, €F,(2,) we have
' v, = 2, —|~uv, “where z, € F(x,) and uveU
Therefore
. o Yo—z, =0, € U,
Since {U,} = 0, hence y,~ z, — 1, and so Fv{“i) Fon K. !

We now ShOV‘. that for any v, the multivalued mapping F, has a fixed ~
point in K, f:

Indeed, since € is a compact subsel and A is dense almosl convex L_
subset of K, hente for any U, there exists a finile subsel {vy,..., v $ A suchihal: ]

1 | S
cc uv+§U,,. . | i

i=1

By the almosl cbm’vxily uof A for ‘])_U" and §vi,.., va{ C A lhere exists a fipgile ,,

subsel {Zy.., z,) C A such thal

. . 1 .
co[zl,..., ZC Aand vy —z € 5 U,,i=1L..mn
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Pul
Cy = cofzynn, #}
and
Hy@) =Fio)nC, =F@)+ UpnC, =z,
It is easy to verify lhat II, is a closed multivalued mapping from C, into ltbclf
and H,(x) is convex compact for all xeC

: . From the faci tIm[

1
F(:B)CCCU[\ +1—U J S U vi— 7 J-71+-_U,
i=1 i=1

we can deduce
(Fx)+ U )N C, = ¢, for all z€K,
wnd .80 Hy(x) &= ¢ for all x<C.,. Applying I\‘llmtanl s lixed poml theorem [8]
mplies that H, has a fixed point x,€C,.
-*We have | d
z, € Hy®) CFy(®y) € C + U,

t means that x, is a fived point of T, in C,. Since F, ( "F on K, and fULthCI‘
rom the compaciness of C it implies that fx,} has at least one limit point xe(‘
\td Theorem 1 shows that - is a fixed point of I in C.

, ~ This completes the proof of Theorem 2.

Remark. This theorem can be proved by constructive method if we

Lpply Searl’s algorithm [4], [9] lo find a fixed point of muyltivalued mappings
1, on C,.

Lemma. Lel (X, :I) be a melric space, K be a nonemply subset of X, Lef
FK— B(X), n = 1,2,,..,, and : K- B(X) be multivalued mappings so that F,

onvel ges unitormly to I in the lopology delelmmed by the Hausdorff distance
{on I\; :

Then T, (*)F

Proof. Since {Fa} converges uniformly to F in Lhe lopolocry delermined
ny the Hausdorff distance I on K, we have

lim. sup H(F.(x), F(x)) = 0.

n—>-+co pK .
¢et [xn; he a convergent sequence in K, we conclude
lim" H (Fu@.), F@.) < lim | sitp H(Fn(x) F(z)) = 0.
? _ n— oo n—>-+4oo xeh

El‘om the definition of H we imply that for any sequence Yo} € X, yu€F o ()
°r any e, > 0, there exists a sequence fza | <X, 2z, € Flay) such,that

d(Ym Zp) — &g < H(Fu(xn): F(mn))r
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Take e \0, we obhtain _
lim d() us Zn) hm HEF(zn), Il u)) = {},

n—>0o= u—% O

(*)

and 50 Fo' = F

Theorem 3. el (X, d) bhe a metric space, K be-a nonempty co'mplc-[e sub-
sel of X having y-contraclion structure. Suppose that F: K—3(K) is a nonexpan-
sive multivalued mapping with F(K) compact. Then I has a fixed poin't inK,

Proof. For any natural number n we define

Fy (@) = F(pu(e)), T € K,
where P, is from the property of ¢- contractlon strueture of I\

We have
Tim sup HEFEL(®), F(z) = lim sup HFW.(z), F(x))
n-+oo <K . n=—roe xEK

< lim. sup d(tpn(:c) x) = 0.
. n=+oe pcK .
It shows that |F,} convcrqcs uniformly to I in the topology determined: by
the Hausdorff distance H on K. '

From the Lemma, this implies that [¥ ,,—-a-I‘ Now, we verify that for anyn,
F, has a fixed point in K.
Indeed, from the fact that:

H(Fo (), Fo(y)) = H(F(Wu(x), F(pa(¥))) < d(qa (), oY) << 2nd(z, ¥), for all z,y€X
~and a,(0,1) is from the definition of the property of y-contraction structure of K. -

Consequently, for any n, F, is a contraction multivalued mapping from
K into itself. Hence, by qulers theorem [10] there exists a point x,:€ K
such that o, € F a(&a).

From the compactness of F(K) it implies t]mt [x,,} has at leasl one limit
point z, in K. Theorem 1 shows that x, is a fixed pomt of F m K and then
the proof of theorem is completed.

Corollary. Let X be a normed space and K be a nonemply bounded com- .
. plete and starshaped at a point x, subset of X. Let F: K—(K) be a nonexpan-

sive multivalued mapping with F(K) compact. Then F has a fixed point in K.

Proof.' Since K is starshaped.at z,, sel

Vo) = — T + (1 ~ i-) z, r €K.
R ' n L
We obtain
. : 1
19@) — 0 I = (1 ey IESS B ER T
for all =,y €.X,
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where ap = (l —~I—) € (0.1). It means that for any n, w, is a conlractidn_
‘ n ‘
mapping from K into itself. Because
- 1 .
Hpp(@) — il = — Jlx;—2x1l, for all €K
i

we have 7 .

—— —_— 2
lim sup |fpn(x)—2 ) < lim sup = nx) =0,
n—oe <K ) n—soe &K N -

and so MJH] converges uniformly to id on K, )
It implies that K has the - contraction structure with ¥ = |y }.
Therefore the corollary follows immediatly from Theorem 3.

Remark. In the case, where F is a single mapping, our theorem 3 and its
corollary include the results of W.G. Dotson [2], [3], L.F. Guseman and B,C.
Peters [6], L.A. Talman [11]. '
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