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I 'INTRODUCTION

-Inthe recent years, many authors have extended the contraction princip-
le to ‘probabilistic metric spaces and probabilistic locally convex spaces.

By the results of Cain and Kasriel [2], it is easy to show thai these
Spacesare special cases of uniformizable and quasiuniformizable spaces (defined
~below). .
This paper will present some new fixed point theorems in uniformizable
and quasiuniformizable spaces. These theorems, on one hand, generalize the
corresponding - results in probabilistic metric spaces and probabilislic locally
convex spaces, and, on the other hand, simplify their proofs,

II. FIXED POINT THEOREMS FOR UNIFORMIZABLE SPACES

' ]
First of all we recall some definitions.

Definition 1, Let X be an arhitrary set. A mapping d: XXX — R+t is ecal--
led a pseudo-metric if for every x, v, zin X:
) 1) d@, y) > 0, d(z, x) =0,
by  dex, y) = d(y, @),
¢)  d(x, y) < d(x, 2) + (2, ¥).
Definition 2. A pair (X, d ) where.d_ is a pseudo-metrie for each « in

an arbitrary index set A, is callezl a unifon;zizable space.

In the sequel we suppose that the family of d, has an additional condition :

d, (x, v) = 0. (YagA) T = y. o

It is well known that a uniformizable space with this properly is a Hausdorf{
topological space, : o . ~ -

Theorem 1. Let (X, d,) be a complele uniformizable space, T be a mapping
in X satisfying the condition : for each a€ A lhere is k, <1 such thal:

. £ .
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d (T, Ty) <k max [d (v, v), d (x, Tx) do(y, Ty), d (. Ty), d (¥. T.r)}
for every x. y € X. -

Then T has a unique fixed poinf 2% and T — 2% as n —» oo for each x&X,

Proof. It suffices to repeat the proof of Theorem 3 in [3] for each agA
and to use the separateness of X, ' :

We denote

r (x, v) = max{d (=, y‘), d (x, Tx), d_ (v, Ty), —;- [d (@, Ty)4d_(y, Ty}

Theorem 2. Lel (X,d,) be a complete uniformizable space, T be a conti-
nuous mapping in X, salisfying the condition: for everye >0 and a4 ihere is
b = 8(e, a) >0 such that ’

(@, y) e+ 6 =d, (Ta, Ty) <, M
Then the conclusion of Theorem 1 still holds.

*

Proof. Iirst, we note that (1) implies the following condition

. r(x, y)>0 = d (Tz, Ty) < T, (X,¥), )
r (@ ¥) =0 = d (T, Ty) = 0. &

&

Indeed, if r (@, y)'> 0 we take & = r{®, ¥). Since 1,(x, y)<<e + 8, by (1)
we haved (Tx, Ty) <<e= r(z y) If r (x, y) = 0 then T (®, ¥)< e 8 for each
e > 0. Hence by (1) we have d (Tz, Ty)<Te for each e>>0,1. e, d, (Tzx, Ty)=0.

We now take x,€X and put Xuyp; =T, n = 0,1, 2,.., Fir acA, it suf-
fices to show Lhat {w,] is a Cauchy sequence for d,. In the sequel N denotes
the set of natural numbers. ~ :

Remark that for each neN we have ‘
Co{®n_t, %) = max {d (a1, Xu), A, (T, Tarr)}.
It follows that if Yo (a1, ) = 0 then r (x,, Tpy) == 0. Indeed,

ru(:vn—l; xn) =0 %du(fcm Lar1) = 0 """"'?llu(xns xn+1) = d“($n+19 xn+2)- If l'“((l?n, $n+1)> 0
by (2) we gel a coniradiclion: _
. du(mm‘-l: mn+2) < da(a:nﬂs 3311-!—3)- )

Thus, we may assume r (a1, ) > 0 for each n. Then it suffices to repeat
the proof of Theortjam 1.1 in [10]. - . ' .

Theorem 3. Let (X, d,) be a complete uniformizable space, T be a
mapping in X satisfying: 7

1) for each « & A there exisis a nondecreasing function q, ' Rt—{0,1land
f(2) € A such that S

. d,,.(sz TY) < ga(df(a) {(x, ) df(,::) (x, ¥)

for every x,y in X. p '
+ 2) for cach « € A and t>0 _

Clim gy () <1,

" n—>oe
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3) there is v, & X such that [or each o € A
K,=sup {dn () (o Tag): ngN |} < e,
Then thiere exists a unique x* € X such that
h 4) % = Ta* and . '

by for each a € A :
_ sup | (l[,n(-a) (vo. T*): NEN| < oo,

Proof. Put x,y = Ty, n =0, 1, 2,..... We shall'show that fa,} 1s a Cauchy
sequence. Fix « € A' then choose n, by assumption 2) so that

Tpoggy (KI<Q, <1
for each n>n,.
" Take n»n,. From assumption 1) it follows
d, (@, Tor) = d (T, Ta,) Qo gy Eamt; Tn)) X oo
X Gpneiigy (Apnggy @ 1) dpngy @er 1). &)
From assumptions 2) and 3) it follows. that for each meln“,.,.,n] we have
dfm(;)(a:n_m, To-mi) < dpmaty)y (@aomety Toom) <o idfn(a) (g T1) S Ko

From (3) we have

dg (@, Taan) < Q) "K,,.
Since Q, <1 1t is eas1ly seen that {x,} is Cauchy and hence -a:n-yb"e‘(
Fuither, fm each o € A we have
Ta*) = da(Ta:D, Tzx®) qa(df(a)(t *)) df(a)(x a*)
o ' S My dpgy (g, 2%,

dcf(xn-!-l"
Henece @, — Ta*, and consequentl'y x* = Taw.

To show that x* satisfies condifion 5) W We fix « € A, m >» n« (defined
above) and take n>>m. Then :

fm(a) (X, To) < d[.m(a) (xn, :cn_l) + ..+ ‘dfm(a) {1 ®,)
< qf-m (;') (dlmﬁ.l(a) (:z:n_i, 3711 _‘))) qu_,.n-g(a) (d Fm+R- l{a) 'gxl_: xo)) )4
X d fo+e- l(q) (xls - o) + .+ df (a) (331 To}

From assumptmns 2) and 3) it folIOWS

Ko
dfm(q_)(:tf.n,. K 2 QJ < I—Q

Hence a* satisfies condition 5).

Finally we shall prove the uniqueness of a*, Let y sat1sfy the condition 4)
and 5), Fix « € A and denote

P (y) = sup [d (a)/(:c y): nEN}
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From assumplion 1y we have .
d (% y) = d- (Ta®, ly) S U,y (df(m) (X* v)) df(a.) (x* ¥) <
th (df(Cl.) (.’L ’ })) . qfnrl(ci,) (dfn(a)- (;’U*, Y)) dfn(a) (:c*, y) (1)
Note that by condition 5) for cach j € N we have ,
fJ(o:) (3:' .Y) < dfj(ot) (.’I,' xo) + df‘](d) (:Uo’ Y) < P (xg.) + P (}’)

Choose.na s0 Lhal F01 n}n qfu(a)(P (x*)+ P, (y)) Q <1, from ({) we have

T, (@%, v < QX" [P, (%) + P (n] .

Letling n — o= we get d_(a*, y) == 0 for each a = A, i.e. x* = y and the

proof is compieted,. i
¥

Remark 1. If we require the, inequality in Condition 2) of Theorem 5 to
be uniform in t then in Condition 1) we can suppose that q, are arbitrary
bounded functions of R+ into iself. So in this form our theorem generalizes a
result of Hadzic and Stankovic [6] Where X is assumed to be lecally convex
and q, to be constant.

Theorem 4 Let (X. d_) be a complete uniformizahle spacé, T be a con-
tinuous mapping in X. Supposo that

1) for each a € A there are a nondecreasing function g : R* — [0,1} and
fy € A Sat_isfying the condition: for each & &€ X there exists m(x) € N such that:

4 (17 @, T8 < quldr oy @ 1) dyeay @ )
for every y € X,
2) f01 each o G Aandt>0

hm dpo(a) (l) <1,

3) there isx, € X such that I’m each a« € A there is n, € N with
K, = sup fden n(g) o> Tée):in»n,, sé\J}~<m

I‘hen there exists a unique x* € X such tlml

-4y x* = Ta*,

5) for each a € A B

sup idf (a) (10, a™in € \I} < oo.

Proof Put m; = m(xy, :c,H =Ty, 1=0,1, 2,..). Takek €N, a e A,
bv assumption 1) it follows that for each n € N we have
) ‘ ATy, wa) = d (THT™i-t, Ly, Tl )

. < qu(duﬂ)(T Lp—ts 1)) qf"“(a) (df (o) (T ’[o . u))d 2 (2 (f x,, ’Lo) (5)

Choose n, such that the condition 3) holds and snnullaneously

qyn (a)(K)gQ <1
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fornZz= n,. .

Put n > n, and p € N. Then ¥uy, = Ptngp—thes thgg
With k = mpyp_1 + - + My iN (5), by an argument analogous to that used in
the proof of Theorem 3 we have ’

. . da(‘rﬂf'[” {En)g 2_nu‘Ku = Cm(n)
for each p € N. From this Jr,} is Cauchy and hence x, — 2* € X.
If in (5) we take k = 1 then we get _
' d (Txy, o) < c,(0)

for each a € A. Consequently, Ta, — x*.

. Since T is continuous, Ta, — Tx®. Thus a* = Tx® Putting

‘ P (x% = max [K_, d (Z,, a*Y, wony Aoty AT %)}
‘we see that x* satisties condition 5). '

The proof of the uniqueness of 2* is similar to that used in the proof

of Theorem 5, here we note that if x and y satisfy condition 4) then Tm(x*);cf::,u*,
' Tm(-‘*)y = v. The 1est of the proof is obvious and it can be omitted.

Note that Remark 1 still holds for Theorem 4.

Remark 2. Under the hypolheses of Theorem 4 we may claim that
lim Tz, = x*. :
n—r oo : ’ .
Indeed, every n& N is of the form n =1.m{x¥) + p. 0 < p << m(x*y Fix
o and choose n, so that dpa, (%o To20) <K, (8= 1, 2,..) and a5 (K, +
+ Pa (z*) < Q, < 1. (¥n 2> n,). Taking n > n, We have

rm(x™ +p m(x*) .
du(Tnxo! ‘.1:'#) = du (T ! Xos T X )‘<~. o <~.

Py x# Pv  x
fﬁ"(a)._( A (T XN Ay, (TS50 X0)e (6)

Note that for each j € {n,,»., r}s we have

e—pmE&M+p . o v
(T Xo» ‘\o) -+ dfl(a)(‘\‘” X*)

S A
< Q. (df(m).('T('1 Dmx )i-pr;, ¥) o q

(e~ Ppm{x*)+p ;
d ; X, x* .
fJ(cx)(T For % )<(1f3(a)
B : <K, + P %)
From (6) we get e '
du(TnX.q’ X*) ""'<~.. Qul"-l'lm [ I{nc +_IJm (X*)]'
Since T —» beas 1 —» s we have d, (T"%, x*)—0 for each a & A and this

- completes the proof.

II1 — APPLICATIONS TO PROBABILISTIC METRIC SPACES
WITH A (a,a)>> 2

_Recall some definitions .
A funetion F: R —[0,1] is called a disiribution function if it.is nondec-
reasing, left-continuous, inf F=0, sup F=1L1 By £we denote the Tamily of
distribution- functions,

L
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Let X be an albitral_\, set, & be a mapping of X x X into £, n-what
follows we shall denote by 'F () the value of & (x, y) at t.

Definition*3. A pair (X, &) is called a probabilistic metric ;?‘pa(;'e (or bri-
efly, PM-space)} if for every o, v,z € X
HFye)=1 (Vi>D =y,
2) Fuy (0) = 0.
3) Fiy = Fy,
DFyM =1 Fp(s) =1=Fu(+s) =
Definition 4. A mapping A: [0, 1]?— [0, 1] is called a A-norm if for
every a, b, e € [0, 1] _— :

H)AW 0 =0, A, 1)=a,

2y A(a,b) = A (h, a),

NA@EDZAE )ifazce b>d,

4y A (A(a, b).c) = A (a, A(b, c)).

Definition 5. A lriple (X, &, A) is called a Menger space. if (X, &) is a
PM-.space, A is a A-norm and moreover

Fy: (U4 8) 2 B (Fry(l), Frafs))

for every x, v,z € X, L,s € I. : g

Throughoul this scetion we assume thal for each a € [o, 1]

: A (a, a) > a. ()

Menger spaces have been delailly considered by Cain and Kkasriel in [2]. Here
we 1eca11 only some imporlanl facts that used in the sequel.

A sequence {x,} is said to be convergent to x in X if for every >0 and
A € (0,1) there is n, € N such that Fy ((e)>1—A for all n>> n, Similarly, for
the delinition of a Cauchy sequence. The completeness is defined naturally.
Denote d, (x,y} = sup ft: Feglt) < 1—a} for every &,y € X; A € (0,1): Then.
d, is a pseudometric on X and
d?\. (x, y)=0 VA&, 1) e x=y.

}
J

Moreover, we have .
Ixy (dy (2, ) << (7

’\Ietllc spdces are special cases of Menger spaces with A(a,a)> a.
Theorem 5. Lel (X, &, Ay be a complete Menger space wilh A(a,a)>»a, T
be a mapping in X salisfying the following condition'; there is'k <1 such that
F'IxTy (kt) > min !ny(t)a FxTx(t)a y[‘y(t)a Fal‘)(L)a x'l\(t)} (8)
for every oy € X, t >0

Then there exists a unique fixetl - point a* of T. Momovm F“J:—»'x“" as
n-»oo for each v € X,

(1) In lact, this condition in combination with 1) in Def. -1 gives A = nip. However
in the sequel eondition 1} in Def. 4 is used nowhers.
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Proof. It suffices {0 shov« that T satisfies conditions in Theorem 1 for
above defined dl

In the contrary case there w ould exisl A, z, v such that
A(I:c Ty) > kmaz {dy(=, y), d;(x,Tx), dy (v, Tv), dg (2, Ty). (th,T:r,)]
Put t = d, (Tw, Ty)/k. Since L>>max {d?h(x,}),..., da(y, T@)f. Fapt) > 1 = Aoes
Fyr(t) > 1—A. From this and (8) it follows .
FTXT}.(kt) = FTx'l‘3: (dk(TﬁU, r1}’))>1 — A
contradicting (7). The proofl is completed.
Remark that this theorem implies Theorem 3 in [9].
" Theorem 6. Let (X, &, A) be a complete Menger space with A(a, a)

T be a continuous mapping in X, satisfying the following condition: for evely
e > 0 there exists 8 > 0 such that

F'le_y (e) = lnlnlrxy(e + 8), Tra(s +'6), Fy'l‘y(ﬁ.‘i"\ﬁ)!

max[Fyry(e + 8), Fyrele + 8)]) , (9
forevery z, y € X, . ) o ‘
- Then the conelusion of Theqrém 5 still holds.

" Proof. It suffices (o show that T satisfies the conditions in Theorem 2
Let e > 0 we ¢hoose 6 > 0 such thal (Y) holds. Let Ty (X, y) < e .8 then

by (7), Fag(s + 8)>1 — &, Forg(e - 8) > 1 — A, Fyry(e + 6)>1 — A. To show that
FmaX[FxT_y(E +6), Fyrs(e + 8)} >1 -4 we note that in the conlrary case we
would have -

— [dx(r, Ty)+dy (v, To)]1 > 646,

coniradicting the facl that ry(@, ¥)<e + 8. Thus by (9), Fray(e) ~1 23
hence dy (Tz, Ty) <.

Applying Theorem 2, the theorem follows.

Corollary. Let (X, &, A) be a complelo Menger space w1lh A(a a)>» a,
T be a mapping in X satisfying the condition : there exisls an upper semicon-
" tinuous f_rom the right function k: (0, o) — (0, 1) such that

le'lv(k(t)t) > Fx)(t) (10)
for evelvx,\e}x it >0, )
Then the conclusmn of Theorem 5 still holds

Proof. We shall show that (10) implies the following condltmn for
every e > 0 there is § > 0 such that

: Fl\T}(5)>lx)(5+ 6) an

for every o, v &€ X '
Take ¢ > 0 we have k(e)s <Z ¢, Since the function t|-» h(t)t is upper semi-

confinuous from the right, there is 8 > 0 such that .

k(t)t<_81fs<_l<s+6 ;
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Hence for each £<’e+ 6 we have.

F '1:'1‘3(3) > FTxI‘)(I\(t)U > FX} (t)
B} the left-—conlmmty of Fyy, [rom this we have (11). Since (11) implies (9),
the corollary follows. Remark that, lhis corollary generalises Theorem 2.1 in [8].

Theorem 7. Let (X, &, A) 'be a complele Menger space with A (a, a) > s,
T be -a mapping in X satis{ying the condition
’ FTx'l_}(t) > F\y(l) ‘ 7 ) ' (12)
1"01 every x =« y, and t > 0.
Suppose, in addition that lhere exists m, 6 X such thal the sequence
}T“a:o

, contains a subsequence converging to a* € X,
n=o

Then x* = Tz* and T x,—»2* as 1 — oe. “‘
Proof. Put dy as above, from (12) it foliows. '
dy (T, Ty) << dy @, y).

for every x, y, A. Furthermore, if x <=7, there exists t> 0 such that Fry(ty=1--5
for some 6>0 Then t<C dé (@.y) and hence ‘Fryry(t)>1--4. From this
dg (T, Ty) <<t < dg (2, 7).

Applymg a theorem of Ang and Day lun (11, thu theorem follow !

Now let X be an arbifrary sel, [ be any index set, & (i € I) be a mapping -
of X into £. As above the value of Qi(:y) alt t is denoted.‘h'y F;(tx).

Definition 6. A (riple (X. &, A) is called a probabilistic locally convex
space (brleﬂy, PLC-space), if Aisfa A-norm and for every a,v,z€X, i€l

1y F! (t)_1 (VL>O VIGI)(:)\—O
2) FX(O).—_O, ' B ‘ | ' .

t
| ¢l

3) 'Fix(t) = Fl( ) (YL>>0, Ve 0)

4 (L-F ) AF (D, T (s)).

Throughout this section we assume. that A(a, a) 2> a for each a € [0, 1].
It is known that locally convex spaces are special cases of PLC-spaces.

x-’ry

In PLC-spaces the convergence, Cauchy net and completeness are defined
similarly to that in PM-spaces, but here a net stands for a -sequence.

The notion of PLC-spaces has been introduced in [7](h and recalled
n [4]. Following the scheme in [2] we casily obtain the following facts:

1) The author is very sorry that he has no opportunity to see this book.

'
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i) the topology in a PLC- -space is a locally convex Hausdmft topology
which is Uenclated by the family of pseudometrics

dy (&, ¥) = sup {t:Fx_y <1 — Al el Ag (0,;1)),
- (i) The family of pseudo-metrics [dil:i € . A € (0. 1} has the [ollo-

wing properties: '

1) diA (x, M) =0 Vi, ye=sx =1y,

2) for fixed x, y, i the function d., @, y) is noniucreasiﬁg and lefl-con-
tinuous in A.

HF_, @y @ < -4,

1) dii‘. (Az, Ay) = [ A | dil (x, ¥h

5) dy @4z, y+2)=d, @, V), (V2 € X)

(iify The previous properlies characterises a PLC-space.

Theorem 8. Let (X, &, A) be a complele PLC-space with A (a, a) > a,
T be a mapping in X with properties:

1) for each i € I there exists a nondecreasing bounded right-continuous
function ¢;: R+ —[0, 1] and f@i) € I such that

{
Fip_ry @Oy > Fy ©
for every a, ¥ &€ Xi>0
2) for eachi g€ 1

v

lim (D <1,
n-— 0o
3) there is x, € X such that foreach i € 1
- lim Ft \(l) -(t) = 1

t—>oe
uniformly in n & N.
Then there exists a unique 2* & X such that
1) a* = Ta*. !

5) for eachi €1 4

lim Ft (1) L =1

t—> oo

unif'ormly in n € N.

Proof. Put 2 € (L, 1), & = (i, M), qu = q, f(a) = (I(Q), A). We shall show
lhat for every a, &, ¥

d (Tx, Ty) < uldpg) @ YN p(gy (2, ¥)-
In the contrary case there would exist «, @, y such that
du(T2, Ty) > q,(dp gy @ YD (@ 9).
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'B'}; the right-continuity of g, there is t < df(a) (@, ¥) such that
. ri LT Tvy > qa(l)[ = (;(DL

Then we lnw ~

I _py @ (T, [\);> Fl 1y (cm‘t)l)}[‘"k_)_ (H>1 — A,

a contradiclion.

a

To apply Theorem 3 it suffices lo show that condition 5) is equivalent
to the following one: ’ ‘

sup{dfn(a) (o, x¥):0 € N} < oo,

Indeed, ’ g
lim ]*L o .(l) = | (uniformly in n € N} < V(i, 4) 3P, o {x* such that
f—>rco o
1}, (",,gm> L= & (71> Py ) & dpaggy g 0 29 <L (VI P @)

(=)f|1 (o) (X, ¥ <P (a*) with « = (i, &).
The proof is completed. ‘
Note thal Remark 1 applied to Theorem 8 extends a resull of Hadzie [4],
where ; are conskauf. 7 )
Theorem 9. Lel (X, &', A) be a complete PLC-space with Aa, a) > a,
T be a conlinuous mapping in X. Assume

1) for each i & I there are a nondecreasing bounded right-continuous
function q;: R+-»[0.1] and f{) € I salisfying the conchtlon for each x € X
‘there is m(z) € N such thal

i £(i)
’Im(b)a Tm(a,) gy > F )

for every v € X, {>10.

D forecachiel : ’ - | ,
lim ‘(t) <1, '
~ ’ n—~ o i
)} [hele is xo < X such that for each i &€ I there exists n; & \ with
lim Ff (I) _p (D= 1
t—>oo e

Amiformly in n > n; and s € ’\'

Then there exists a unique x* &€ X with
4) x* = Ta*,
- h) for eachi €1
lim F‘f (l)g([) =1

. {—> oo
uniformly inn € N,

’

The: plooi of this theorem is analogous to that of Themem 8 using
Theorem 4 inslead of Theorem 3, and it can be ommitted.
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Iv — FIXED POINT THEOREMS FdR QUASI-UNIFORMIZABLE SPACES

Let X be an arbitrary sel, [d_: o € A} be a family of mappings of
- X x X into R+, ¢ be a mapping of A into itself.

Definition 7. A tripple (x, d,, ¢) 1s said to be a quasi-uniformizable
space if for everv @, ¥, 2 € X and o 6 A we have o

(1) d(x, ¥) >0, d (x, x) =

(i) d,®, ¥) = d 0 x)

(ifi) d (@, ¥) < dgy @ 2 + dpggy(% ¥)-
In the sequel we assume in addition thal
" d(x,y) =0, (VuéA)m}m:v

. Then it is easily seen that (X, d_, 9) becomes a Hausdor[f topological space
with a basis of neighbourhoods consisting of the balls

r Blaye o) = fyeX:d @ y)<<el

(e X, g0, a= \) and their finite intersections.

A standard example of quasi-uniformizable spaces is PLG- bpaces with A
contipuous (1) (without assumption A(a, a) 2> «). ' ‘

Indeed, lel (X, &', A) be a PLC-space with A continuqus. Take A < (0,.1)
_and pul e = G M elx0,0) =4, dr, y)=sup |t: F;(__y(t)g 1——7\[.:

We shall construct the mapping ¢ as follows. Since A is continuous and
A, 1) = 1, for each A «(0,1) there is 3y € (0, 1) such thal

| A —8, 1=8) > 1——7L (V6 67) (13)
Now: we put .
@th) = sup {63 : (13) holds}.
o) = @(i. &) = (@, @A)

We bhall verify that this ¢ satisfies the condition (iii) of Definition 7
Indeed, in the Lont1a1y case, there would exist i, &, x, ¥, z such that

k(x, 7)> d rp(A)(x y) +dlcp(l){\f! ‘-)
"Then there exists t, s such that
Consequently, by (7) we have o :
Fi O>1—gM). FL_5)>1—90), Faa(tds <T—2
This contladlcis the fact thal
FL_ (1493 AF 0, Fyo() > Al -0, 1-¢0n>1-2
by (13). Thus, (iii) holds.. |

—————

(1) In the sequel we need only the weaker condition: sup Ada, a) = 1.

a<l
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Now we state one fixed point theorem for quasi-uniformizable spaces.
Let (X.d,, ¢ be a complete quasiuniformizable space, T bé a conlinuons
mapping in X satisfying condition 1). 2), 3) in Therorem 4. Repeating the argu-
mment in the proof of Theorems 3). 1) we obtain the conclusion of Theorem 4.
Thus we have .

Theorem 10. Theorem 4 still-holds for quasiuniformizable spaces if
fip = oof.

A

Gorollary 1. Theorem 9 still holds for PLC-spaces with a continuous A-
norm. Remark 1-applied to thiscorollary extends a' recent result of Hadzie {35].

Corellary 2. Let (X, &, A) be a complete Menger space with A conti-
nuous, T be acontinuous mapping in X. Suppose there exists a nondecreasing
right-continuous function ¢: R+ — [0,1) satisfving the condition : for each v &€ X
there is m(x) N such that: FTm(Qme(X)V(q(t)t)}}’xy(t) for every ygX, 110,

Furthermore, suppose there exists x, € X such Lhat

lim FTSIO ’xo(t) = ]
| —>» oo :
uniformly in s € N.

Then T has a unique fixed poinl in X.

The proofs ol these corollaries are obvious and they can be omitted.

Received May 15 Lh, 1979.
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