## ON DOÉBLIN THEOREM FOR RANDOM MEASURES

by HÖ ĐĂNG PHÚC and NGUYỄN VĂN THU
Institute of Mathematics, Hanoi

A famous theorem of Doéblin [2] asserts that there exists a distribution belonging to the domain of partial attraction of every one-dimensional infinitely divisible distribution. The multi-dimensional version of this theorem is made by J. Baranska [1] in a Hilbert space and recently, by Hồ Đăng Phúc [5] in a Banach space. The aim of this note is to prove Doéblin theorem for random measures on a locally compact second countable Hausdorff topological space.

Throughout the paper we shall denote by  $\sigma$  a locally compact second countable Hausdorff topological space. Such a space is known to be Polish. Let  $\mathcal{M}$  denote the class of all Radon measures on  $\sigma$  endowed with the vague topology. Then  $\mathcal{M}$  is also a Polish space. Further, by  $\mathcal{M}_b$  we shall denote the subclass of  $\mathcal{M}$  consisting of totally finite measures. It hints at,  $\mathcal{M}_b$  is a dense subset of  $\mathcal{M}$  in the vague topology. By a random measure on  $\sigma$  we mean any probability measure on Borel subsets of  $\mathcal{M}$ . In what follows the convergence of random measures will be considered in the weak sense. Let  $\mathcal{I}$  denote the class of all positive Borel functions on  $\sigma$ . Then the Laplace transform  $L_{\xi}$  of a random measure  $\xi$  is defined on  $\mathcal{I}$  by the formula:

$$L_{\xi}(f) = \int_{\mathcal{M}} exp(-\mu f) \ \xi(d\mu) \qquad (f \in \mathcal{J})$$

Since  $\mathcal M$  is an additive topological semigroup then the concept of convolution and hence the concept of infinite divisibility of random measures on  $\sigma$  are well-defined.

Recall ([3], Theorem 6.1) that a random measure  $\xi$  on  $\sigma$  is infinitely divisible if and only if L<sub>\xi</sub> has the following canonical representation

$$-\log L_{\xi}(f) = \alpha f + \int \left[1 - \exp(-\mu f)\right] \lambda(\mathrm{d}\mu)$$

(f  $\in \mathcal{I}$ ), where  $\alpha \in \mathcal{M}$  while  $\lambda$  is a measure on  $\mathcal{M} \setminus \{0\}$  satisfying the condition:

$$\int \left[1 - \exp(-\mu f)\right] \, \lambda(\mathrm{d}\mu) < \infty$$

for any  $f \in \mathcal{F}$  with compact support. Since the canonical measures  $\alpha$  and  $\lambda$  determine  $\xi$  uniquely it will be convenient to write  $I(\alpha, \lambda)$  instead of  $\xi$ .

Let  $\xi$  be a random measure. For every c>0 define a random measure  $\Gamma_c$   $\xi$  by the formula :

$$(T_c \xi) (E) = \xi(\xi \mu : e \mu \in E) \qquad (E \subset \mathcal{M}).$$

Following Doéblin [2] we say that a random measure  $\eta$  is universal for the class of all infinitely divisible random measures on  $\sigma$  if for every infinitely livisible random measure  $\xi$  on  $\sigma$  there exist a sequence  $\{\alpha_k\} \subset \mathcal{M}$ , a subsequence  $\{n_k\}$  of natural numbers and a sequence  $\{a_k\}$  of positive numbers such that the sequence  $\{T_{a_k}\eta^{*n_k}*\delta\alpha_k\}$  k=1,2,..., converges to  $\xi$ . Here the asterisk denotes the convolution and  $\delta\alpha$  denotes the unit mass at the point  $\alpha \in \mathcal{M}$ .

Modifying the technique developed by Doéblin [2] one can prove the following theorem:

**Theorem.** There exists a universal random measure for the class of all nfinitely divisible random measures on  $\sigma$ .

**Proof.** By vitue of Lemma 6.6 [3] it follows that the class of infinitely livisible random measures  $I(\alpha, \lambda)$  with  $\lambda(\mathcal{M}) < \infty$  is dense in the class of all nfinitely divisible random measures. Further, by Theorem 6.3 [4] such a neasure  $\lambda$  can be approximated by measures whose supports are finite subsets of  $\mathcal{M}_b$ . Consequently, one can choose a countable dense subset  $\xi_n$ , n=1, 2,..., of the set of all infinitely divisible random measures on  $\sigma$  such that  $\xi_n = I(\alpha_n, \lambda_n)$  and  $\lambda_n$  is supported by  $\mathcal{M}_b$  (n = 1, 2,...). Put, for j = 1, 2,...,

$$\mathcal{M}_{j} = \left\{ \mu \in \mathcal{M} : \frac{1}{j} \leqslant \mu \sigma < j \right\}$$

t is clear that  $\mathcal{M}_b = \bigcup_{j=1}^{\infty} \mathcal{M}_j$ . Hence we may assume that  $\lambda_n$  is concentrated

on  $\mathcal{M}_n$  and that  $\lambda_n(\mathcal{M}_b) \leqslant n$  for n=1, 2,... Putting  $k_n=2^{n^3}$  and taking into account the inequality

$$\sum_{n=1}^{\infty} 2^{-n^2} T_{k_n} \lambda_n(\mathcal{M}_b) \leqslant \sum_{n=1}^{\infty} 2^{-n^2} n < \infty$$

we get a totally finite measure γ defined by the formula

$$\Upsilon = \sum_{n=1}^{\infty} 2^{-n^2} T_{\mathbf{k_n}} \lambda_n$$

We shall show that the random measure  $\pi = I(o, \Upsilon)$  is universal in the lass of all infinitely divisible random measures on  $\sigma$ .

Let  $\xi = I(\alpha, \lambda)$  be an arbitrary infinitely divisible random measure on  $\sigma$ . Without loss of generality we may assume that  $\alpha = 0$ . Then there is a subsequence  $\{n_p\}$  of natural numbers such that  $\{\xi_{n_p}\}$  tends to  $\xi$ . Let  $a_p = 2^{n_p^2}$ . Our urther aim is to prove that the sequence

$$\pi_p = T_{k_{\Pi_p}^{-1}} \pi^{*a_p}$$
 (p = 1, 2,...)

converges to §. In fact, let us put

$$N_{p}^{1} = \sum_{m > n_{p}} a_{p} 2^{-m^{2}} T_{k_{m} k_{n_{p}}^{-1}} \lambda_{m}.$$

and

$$N_{p}^{2} = \sum_{m < n_{p}} a_{p} 2^{-m^{2}} T_{k_{m} k_{n_{p}}^{-1}} \lambda_{m}.$$

It is evident that

$$\pi_p = I(o, \lambda_{n_p} + N_p^1 + N_p^2)$$

$$= I(o, \lambda_{n_p}) * I(o, N_p^1 + N_p^2).$$

Consequently, to prove that  $\pi_p \to \xi$  it suffices to prove that

$$\lim_{p} N_{p}^{1}(\mathcal{M}_{b}) = 0 \text{ and } \lim_{p} N_{p}^{2}(\mathcal{M}_{b}) = 0.$$

The first limit is clear, because

$$N_{p}^{1}(\mathcal{M}_{b}) \leqslant \sum_{m > n_{p}} a_{p} 2^{-m^{2}} m \leqslant \sum_{m=1}^{\infty} (n_{p} + 1) 2^{-(2n_{p} + m)m} \to 0 \text{ as } p \to \infty.$$

To prove the second limit let us denote  $S_{\epsilon} = \{\mu \in \mathcal{M}_b : \mu\sigma > \epsilon\}$  for every  $\epsilon > 0$ . Since  $\lambda_m$  is supported by  $S_{1/m}$  then  $T_{k_m} \frac{-1}{k_{n_p}} \lambda_m$  is supported by  $S_{k_{n_p}/mk_m}$ . Therefore all  $T_{[k_m k_{n_n}]}^{-1}$ ,  $m = 1, 2, ...., n_p - 1$ , are concentrated at

$$C_p \colon= S_{k_{n_p/(n_p-1)}k_{(n_p-1)}} = S_{(n_p-1)^{-1} \cdot 2^{(3n_p^2 - 3n_p + 1)}}$$

which implies that  $N_p^2$  is concentrated at  $C_p$ . If  $N_p^2(\mathcal{M}_b)$  is not convergent to zero then there exists a positive number  $\delta$  such that

$$N_{p_q}^2(C_{p_q}) = N_{p_q}^2(\mathcal{M}_b) > \delta$$

for some subsequence  $p_q$ , q = 1, 2,..., of natural numbers. In this case we have

$$\int_{\mathcal{M}_b} \mu \sigma \ N_{p_q}^2(d\mu) = \int_{S_{(n_{p_q}-1)^{-1}} 2^{(3n_{p_q}^2 - 3n_{p_q} + 1)}} \cdot \ N_{p_q}^2(d\mu)$$

$$> (n_{p_q} - 1)^{-1} 2^{(3n_{p_q}^2 - 3n_{p_q} + 1)} \delta \to \infty \text{ as } p_q \to \infty.$$

On the other hand,

$$\int\limits_{\mathcal{M}_{b}} \mu \sigma \ N_{p}^{2} \left( d\mu \right) = \sum\limits_{m < n_{p}} \int\limits_{\mathcal{M}_{b}} k_{m}/_{k_{n_{p}}} \mu \sigma . \ a_{p} . \ 2^{-m^{2}} \lambda_{m} (d\mu)$$
 
$$< \sum\limits_{m < n_{p}} 2^{-m^{2}} \ m^{2} \ 2^{(n_{p}^{2} + (n_{p} - 1)^{3} - n_{p}^{3})}$$
 
$$< 2^{-2n_{p}^{2} + 3n_{p} - 1} \sum\limits_{m = 1}^{\infty} 2^{-m^{2}} m^{2} < \sum\limits_{m = 1}^{\infty} 2^{-m^{2}} m^{2} < \infty$$

for all p, which contradicts the above proved relation that

$$\int_{\mathcal{M}_b} \mu \sigma \ N_{pq}^2(d\mu) \to \infty.$$

Consequently, the sequence  $\{N_P^2(\mathcal{M}_b)\}$  must converge to zero, which completes the proof.

Received May 5th, 1979

## REFERENCES

- 1. J.Baranska, Domain of partial altraction for infinitely divisible distributions in a Hilbert space. Colloq. Math. Vol. XXVIII (1973), 317 322.
- 2. W. Doéblin. Sur l'ensemble de puissences d'une loi de probabilite. Bull. Sci. Math 6 (1939) 71-96.
  - 3. O.Kalenberg, Random measures, New York London 1976.
- 4. K.R.Parthasarathy, Probability measures on metric spaces, New York London, 1967.
- 5. Ho Đăng Phúc, Universal distribution for infinitely divisible distribution in a Banach space, Bull. Acad. Polon. Sci., Sér. Sci. Math., Astrom. et Phys. (to appear).