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ON DOEBLIN THEOREM FOR RANDOM MEASURES

by HO PANG PHUC and NGUYBN VAN THU
Institule of Mathemalics, Hanoi

A famous_theorem of Doéblin [2] asserts that there exists a distribution
belonging to the domain of partial attraction of every one-dimensional infi-
nitely divisible distribution. The mulii - dimensional’ version of this theorem
is made by J. Baranska [1] in a Hilbert space and recently, by HO Ding Phuc
[?] in a Banach space. The aim of this note is to prove Boé¢blin theorem for
random measures on,a locally compact second countable Hausdorff topologi-
cal space, .-

Throughout the paper we shall denole by o a locally compact second
countable Hausdorff topological space. Such a space is known to be Polish.
Let M denote the class of all Radon measures on o endowed with the vague

~ topology. Then _ is also a Polish space. Further, by ), we shall denote the

subclass of M consisting of totally finite measures. It hints at, M is a dense
subset of # in the vague topology. By a random measure on ¢ we mean any

" probability measure .on Borel subsets of _#. In what follows the convergence

of random measures will .be considered in the weak sensg. Let Z denote the
class of all positive Borel functions on ¢. Then the Laplace transform Lt of a

. random measure & is defined on Z by the formula :

Le(h) = f exp(—uf) Edp) (T €
M .
Sirice AL is an additive topological semigroup then the concept of convolution
and hence the concept of infinite divisibility of random measures on @ are
well - defined.

Recall ([3], Theorem 6.1) that a random measure & on o is infinitely
divisible if and only if Lg has the following canonical representation

—log L() = af + [ [1 — exp( — uh)] Adp) |
(f € 7), where a & M while A is a measure on AL\ |0} satisfying the condition :
J it —ewpc— unj aaw <

for any f € Z with compact suppoit. Since the canonical measures o and 3
determine & uniquely it will be convenienl to wrile I(a, A) instead of &,
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Let & be a random measure. For every ¢ > 0 define s random measure
I'; & by the formula :
' (Te &) (E) = EEu: cp € E]) (EC ).
Following Doéblin [2] we say lhat a random measurc q is universal for the.
lass of all infinitely divisible random measures on ¢ if for every infinitely
livisible random measure § on o there exist a sequence fax} C A, a subse-
ruence fn} of natural numbers and a sequence far} of positive numbers such
hal the sequence [Takfn*“k * boy) k=1, 2., converges [o E. Here the asterisk
v denotes the convolulion and éa denotes the unit mass at the point « € .
Modifying the technique developed. by Doéblin [2] one can prove the
‘ollowing theorem: :

Theorem. There exists a universal random measure for the class of all
nfinitely divisible random measures on ¢. '

Proof. By vitue of Lemma 6.6 [3] it follows that the class of infinitely
livisible random measures I(a, X) with A(H) << o= is dense in the class of all
nfinitely divisible random measures. Further, by Theorem 6.3 [4] such a
neasure A can be approximated by measures whose supports are finite subsets
f AMy. Consequently, one can choose a countable dense subset &, 1t me 1, 2,...,
f the set of all infinitely divisible random measures on o such that &,=1I(ap, A,)
md A, is supported by A, (n =1, 2,..). Put, for j=1, 2,.., -

My = !ueﬂi 3 -1i—< Lw<jf
N .
tis clear that My = [ JM; Hence we may assime that A, is comcenirated
j=1 ) )
m My and that Au( M) < n'for n = 1, 2,.... Putting k, = 21" and taking into
iccount the inequality. . '

(=>4 _ 2 oo
L2 Ty < Y27 n< oo
n=1 '

. n=1
ve get a lotally finite measure 7 defined by the formula

Go 2
T= 32" Th
n=1

We shall show that the random measurc s« = I{0, ¥) is universal in the
lass of all infinitely divisible random measures on o.

Let & = I(a,, A) be an arbitrary infinitely divisible random measure on @.
Nithout loss of generality we may assume that o = 0. Then there is a subse-
. _ 5
fuence {n,} of natural numbers such that [e_ | tends to & Let a, == 2". Qur
ip

urther aim is lo prove that the sequence

np =T __1:rr*ﬂp p=12.)

v

Np .
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converges to & In fact, let us pui

— a2
N=D a2 r
km k!
m>np ]Ip
and

= ) a0 m T, ot b

m<np L 'np

It is evident that ’
®p =10, A, +NL 4+ N2
=10, &, )*1(0 NJ + N2,
Consequentlv‘ to prove that =, —,5 it sufflces to prove that
lim Np (M) =0 and lim Np (Mpy = 0.
P P
The first limit is clear, because )
71 ~m? = —(Znp+m)m
N ()< S 7,2 m<< M, + 1) 2 —~ 0 as p— os.
P m>n, m=1 .
To prove the second limit let us denote Se= &€ My: po>el for every 0.
Since An is supported by S 1/m then Tkm knp Am is supported by Sknp/mhm
Therefore alt T, -1, m=1,2,.., n, — 1, are concentrated at
1 ml Iip

. - — ' L2
Cre = SI"np/(np—l)k(np——l) B S(np—l)‘l.z(jnp_?’“l’ﬂ)

which implies that N} is conuentfaled at C,. If Nj(Ay) isnot convef‘gent to zero

then there exists a positive number & such that

Nd (C )—-N (—/ffb)>6

for some subsequence pq, q=1,2..., of natu;al numbers. In this case we have
. 2
fsw \T (dp) = fucr : « Np, (dp)
My, ( -t 9(31'1p —-3np +1) .
p I

> (n b “)‘311;) =, T D5 e as Dq —> o,
On the other hand,

fy.a Ng (du) = E . f km/knp Mo . a,. 2_111270,“,((].[.1.)
/" m<np Jt’ib
' < E _ 2—-m2 m? z(n'f, +(np_1)3_llg)
m<ny
<2 2n2 -i—.mpul f’: —m 2-—1112 m < oo

1
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for all p, which contradiets the above proved relation that’

f e N;q(du) - =,
Al

Consequently, the sequence | Np(Aly)} must converge [q zero, which complefes
the proof.
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