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§ 1 — Preliminaries.

Let 7 and § be two separated locally compact spaces with o — finite
positive Radon measures w and A, respectively. Let £ be an arbitrary .
B - space over real (or complex) number field ®. For a-real number

q(1 < ¢ < o) by Lq(S A) or Lq(S) we shall denote the .space of A — measu-
rable functions f on § to E such that |[f|| 1< oo, where || || 4 is the norm of

an element # A (S AY and is defined as:

[f 1 fesy n dhdsyntair 1<q<.,.

uflqu “J“ { 8
Lq(S) vrai sup {IIf(S)'”E' I g=o
o A sES :

In particular, if E = @, the space L?D(S, A) is denoted by LS, &) (or LI(S)).
Let X(T) be a linear manifold dense in the space LY7, ) and let Yg(S) '

be a B -space 1mbedded in the space L] 1S A) B\ {Y(I‘)—+ ’(I(S)] we shalil

denote the class of all continuous linear operators F: X(T) — Yg(S),where the

continuity of each opefator F belonging to [X(T)TY%(S)] is- defined by the

‘norms of LT, p) and,Yg(S), i.e

WEfH o o SUE o NN (V)€ X(TY. (L.
Yg(S) [(XT)5 YR8)) LY(T)
AFN = sup § I Ff I e XM, 1t <1 (1.2)
xepyien T e Ly
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In the special case that X(T)=LY(T. p), by [LNT)— YE(S)] we denole the
class [LY(T) 7 YIE,I(S)]. In this paper, we shall consider the kernel representation

of an operator F & [X(T) T YE(S)], (1 < g<{ ) — namely, consider the exis-
lence of a function Lk: SXT — E, such thai ‘

[FF1s) = J ks D fucdty (ws € Smod 2), vf € X(T)) (1.3)
;

In particular, if X(T) = L'(T, p) and Y%(S) = L(S, &), the above problem has

been investigated upnder any more strict assumptions for the operafor F. Cone-
retely, it supposes (see [4; p. 379]) that F is a-compacl operator from LYT, p)
to LI(S, &) (1< g o) or Fis a separable operator from LY(T.p) to L%S, A)
(I <<g<Toe). If g = 1 suppose (see[5; p. 547}) that F is a weakly compact ope-
rator from LXT, g) to a separable subspace of L¥(S§, ).

Itis well known that the kernel representation of F belonging Lo some other
classes ol linear operators has heen also considered in Refs (8], {9]. [10], [1},
[2], [15]. As applied examples, in this paper we shall also consider the kernel

representation (1.3) of an operator Fe[X (T) 7 Y(&)(S)], where X(T) and Y%(S)'

are a number of functional spaces playing an important role in the theory of
partial differential equations. '

§2 — The kernel 'reprelsentation of some operators belonging to [X(T) —T Y%(_S)]-.

First we study the special case when X(T) = LT, w).

Theorem 2.1 Let F is a weakly compacl linear operator from LT, w)
to Y%(S) (1< g o), where T, S,‘ E, Y%(S) satisfy the conditions quoted ip the
preliminaries. Then, '

Iy there is a A‘xu-es}sentia]ly unique, A X p~-measurable function & on
SxT to E such that :

[Ff1(s) = Ik(s, B f(yp(dt) (ys € S(mod ), vl € LT, w)), (2.1),
T Z
2) fora fived t € T: k(.,1) < Y% (S) and . ra
(2.2) sup Fkoe., I) I

F=
e Y%(S)} " i - v,

NI E =@ forafiveds € S (mod A): k(s,.) e L=(T, u) (¥

(*) It is well known (see [4; p. 379]) that this theorem has been formulated in the

. : 1
particular case that I is Euclidean, W is Lebcs’guc measure, ¢=1, E=®and Yp(S) = L', A)
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Proof. Since [7 is a weakly compact linear operator from L'(T. ) to
the B - space g (S) and T is a separated locally compact space with positive
Radon measuré g, so (SLC [6;p.882]) Lhere exists a p - measurable funclion® on T

ie Y%(S) such that

2 2.3
KGN ¥l <1Eq L ~ ¥4 ) (vi€T.. (2.9)
Ff = [f®mzm p@) (vf € LT, w). (2.4)

a ‘

Because I'f ¢ Y% (5 C L% (S, A), hence by (2.4):
[Ff] (s) = [I F(O & p (D] () (Vs € S (modd), V€ LT, 1)). (2.5)
T .

For each f € LI(T, p). Lhe functional f(.) i8 iz - measurable on T, therefore -the
function f(.) x(.) transforming T into Y%(S) is also - measurable (see [5: p
120]) Besides, by (2.3) we have

A L.z | SEROINEOY < |fW]. "F”[LI(T)-»Y% (3)](W &T)

YRS Y3 ()

Henee (sée [5; pp.131 — 132)) the function'-f(.)m(.) transforming 7T into Y% (5
is p -integrable. But the spz'lce Y% (S) is imbedded in L% (S, A), thus the

function f(.) = () transforming T into L%‘ (S, M)is also p-integrable. It is known
that p and A are o - finite positive measures, then (see [5; p. 218]) there is a
function g¢; corresponding to the p-integrable function () x(.), such that g;
is a A Xp-measurable function on SxT lo E and

g, t) = ft)y.zt)y (Vt €T (mod;LI), v & LYT, u). (2.6)
Moreover,; for a fixed's €S (mod A): g;(s,.) is p-integrable on 7 and the inte-

gral Igr (s, 1) p(dl), as a function of s, is equal to the clement Im(t) [ pldhe
T T ‘

€ LIS, n:
(g5 pqdty = [f a:(z)f(i) b (dD)] (5), (Vs € S (modh)). @27
T . . .

Since (1) € vY 7S ¢ LE (S,2) (Y €T), the functlom k defined by
ks, )= [a:([)] () (V (s, 1) é SXT) (2.8)
ir a;nsfouns SxT into Thon (see (2. 6)): '
g8, ) = f( k(s 1), (Vs € S (modh), Vi€ T (modp), ¥/ e L' (T, o). @2.9)
bh&



Therelfore from (2.5), (2.7) we gel (2.1). And by (2.8) it [ollows that k(. )=
=x(l) € ¥4 E(S) (VI € T). By (2.4) it is easy to scc that

1 F (Lr) — (g)} sup I I q( )} = ':élp [ ||]‘( Y

f rgeo

‘Hence from (2.3) we gel (2. 2)
Beeause the measure g is o - finite, then we can wrile T = UTn, where p
n
(Ts) < oo (yn). Put (D) = %o (1) (VI €T), it is clear that [, & LI(T, p) (¥n).
Therelore (see (2.9)).

ks, D) = gr_ (s, ), if (5,1} & S X Ty (mod AX ). (2.10)
It is known that g, is AXp - measurable on SXT(¥n). Hence by (2.10) it follows
thal kis also AXw-measurable on S X T

In order Lo prove that the function k is A xp-essentially unique on SxXY,

suppose thal there is an other A Xp-measurable function I on SXT to E such thal
(Ff1¢) = J T O, (vs € Sumodd), ¥ & LT, ). 2.11)
T ‘

Then, from (2.1) we have

f [Kk(s, 1) — fcu(s, Dludh =0(vs € S (modik;, VA CT:w(d) < oe) -

Thereclore k(s,1) = k (s, ) (V(s, 1) € SXT (modhxw). This complctes the proof
of conclusions 1 and 2.

Now, we consider Conclusion 3. Here, suppose that £ = ©. Since F&[L'(T) —»
— Yg-,] and Y%,(S) C A (S, A), so

| LFf] (5).1 <C o= (ys & S (modd), Y € L' (T, p)). (2.12)
By (2.1) and (2.1%) it lollows thal for a fixed s € S(modd): £ (s,-.) f(yeLXT, w)

(Vf &€ LY (T, u)). Therefore (see [5; p. 380 k (s..) & L= (T, p) (Vs € S(inodi)).
Q.E. D. '

" Now, we study the case that the domain of the operator F is a linear ma-
nifold X(7) demse in L'(T, w).

Corollary 2.2 Let F (X (I) 3 YL (1 <g<< o, whereT, S, B, Y9, (),
X (I') satisfy the conditions quoled in thc plehmmaues.
Suppose that Yq () is a reflexive space. Then,

1) there eusts a AXp - eﬁ;sentmlly unique, A X w - measurable function
k on S x T to E such that

Ef1 () = | k(s D) fyp(dD) (ys € S (mod ), Vf € X (T, ©@.13)
A :

A
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Fe (L) » YL (§), where Ff=] &k, 0f @) u @, 2.1k
b

2) for.a f;\ed teT: }c( Hhevl (S) and

| o P ) (2.15)
sup [n ( )Il ye o S)i I [xm Yq ()1

3y if E (IJ for a fixed s € § (mod A): (s, ) € L”(F ©).

Proof. Because FelX({ e Yq (1, Yq (S) is a B — space and X (T)
-ls dense in. the space L' (T, ), then {see {11; p.124]) there is umquely an
extension F c LT > Yq (8)] of the operator F: X (T) — Yq (8), i.e.

Ff=Ff (vf € X D), (2.16)

oy ¢ =IF] . (2.17)
[LYT)- Yy ()] [X(Tyy Yp®]

Since the space Y%(S) is reflexive, so (see [5;‘ p, 520]) Tis a weakly compact

- linear opefator from L(T, ) to‘Yg. (S) Then, by Theorem (2.1).it follows that
there is a A X p - measurable function k on S x T to E such that

1) = [cs. iecan (vs & Stmodny, ve g LT, B, (218
T - .

Besides, it fulfils Conclusion 3 and k(., ! € Y% Sy WleT) and

sup {11k, D | . =¥ L @19
t€T Y5 (S) fr! (T)—+Y 2 (9)].
By (2.16) — (2.19) we have (2.13) — (2.15).

~In order to prove the uniqueness of the fuhction k defined by (2.13) —
(2. 14), suppose that there 1s another A X p - measurable function i on S x T
to E such that :

[Ff] (s) = [ hes, ty Fp@dt) (Vs € S (mod A). VI < X(TY), (2.20)
rl\ - 1 hY X
H € [L'(T) — Y (S)]. where Hf = J' h(., t) (bt (2.21)
‘ ] 3 |

By (2.13), (2.20) (2.21) it follows er Ff(vf € X(T)) ie. He [L}(T)—> Y%] :

is also an ex{ension of the operator IF & [X(T) e Y% (S)].

) !



From the uniqueness of a conlinuous linear exiensiou,_ we have F = H.
Therefore (see (2.21))

[F] (s) = [Ti(s, ) £ (yp (D) (ws€ S(modd), v €LI(T, w)) (2.22)
'rr .

By. (2.18), (2,22) and Conclusion 1 of Theorem (2.1) il is easy to sce that
ks, 1) = h(s, 1) (v(s. 1) € S X T (mod A X p)). Q.ED.
Corollary 2.3. In Corollary (2.2)if replace the assumptlion that Yg (S) is

a reflexive space by the following assumption: the imbedding of Yg (5) in
Lg (S, Ay is compact. Then, in the conclusiﬁus, YE{I(S) isreplaced by Lg('S, p).
_ Proof. It is known (see the proof of Corollary (2.2)) thal Lhcrg is the
exlension Fe [L? (T)»Yg(S)]'of the operatof FelX (T)_f Yg (S) for which
we have(z.m).'sut Y X(S) is imbedded in LX), then I € [L1 kT)-»Lq(s)] and
Fe [X(F) —*Lq(S)] Therefore, by (2.16) it follows that the operator [‘ LY —
LE(S)] Is also an extension of F &€ [ X(T) 7 Lg] and we have (see [11; p. 124])
IE . = i Fy |
[x(r)—> = E(s)] [ £ (r)—>LL(s)). L (223
On the other hand, Fe [L‘(T)—>Y§(S)] and the imbedding of Yg(S) in
LJg(S)'is compact. Then (see [5; p. 523]) is a compact linear operator from
LY(T, ) lo Lg (8, A). Therefore, sillnilarly as in the proof of Corollary (2.2),
using Theorem (2.1) for FG[L‘(T)-—»LE(S)], by (2.16), (2.23) we gelt the con-

_ clusioné of Corollary (2.2), where Y'g.(S) is replaced by LE(S A Q:E'.D.

§3. SOME EXAMPLES

* Let p and A be the Lebesgue measures deflined on Euclidean spaces
R* and R™, let T = Qr and § = Qg where Qr and Qg are two bounded open
domains of R® and R™ with boundaries of the class (=, respectively. It is
tlear that T" and S are separated locally compacl spaces with finite positive
Radon measures p and A. Let Y“(QS) be the bp‘lce L3(Qs) (or the Sobolev space

4% (QS), the Besov space BB (Qs) the space Hq(QS) of Bessel potentnls) where
1 Q g < o=. 0 <l <Coe. Then (see [12; pp. 79 —81]) LYQs) is a rellexive space
imbedded in LI(Qs). Hence, by Corollary (2.2) we can represent an operator
Fe[L'(Qn) —~YUQq)] in the from (2.13).
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Let X (Qr) be the_ space Wﬁ(QT), (or B?)(QT), Ly (Qy), C(Q), where 1 <p
< oe; <Coo; r=0,1, 2,.,). Then it is easy lo deduce (see [12; pp. 81-83]
Lhat X(Qr) is a lincar manifold dense in 1! (Qr). Therefore, Irom Corollary (2.2)
we can also consider (he kernel representation of an operator I € [ X(Qr)—

Y8(Qg)].

We investigaled the existence of the kernel &, for which the given ope-
rator F isrepresented in form (L.3) of an inlegral operalor. With the aid of an
overaging operalor (see [ 3; pp. 39—41]).il can approximalely- deferminate ‘the
kernel k. Therefore we may approximale the operalor F by an integral operator
and approximate the solution of some operational linear equations by the
solution of Fredholm integral equations. As is well known, various probability
models have been constructed for eslimating the values of an integral opera-
lor- and for solving a Tredholm integral equalion of second type (see [7],
[13], {14]) Then, with use of the results in ihis paper, we may estimate (he-
values of operators and solve some classes of operational equations by the
Monte-Carlo method.

The author wishes {o express his gralitude {0 the Professors B. Bojarsk,
and A. Piskorek for many valuable discussions and remarks.
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