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Introduction.

Let G be a connected and simply connected Lie group. In order to find
irreducible unitary representations of G, the famous Kirillov’s orbit method
has proposed some procedure of quantization, starting from a linear (i.c.,
one-dimensional vector) bundle over a G-homogeneous sympletic manifold
(see [2], §15). We remark that the quanium syslems can be constructed, star-
ting from an irreducible representation, in general, of an arbitrary dimension
of the stabilizer Gr of a poinl F in a K-orbit Q (see [2], [4]).

The goal of this paper is lhe exposition of the new procedure of
quantization in the general case, starting [rom an arbitrary irreducible G-bundle
associated with the given Hamiltonian mechanical system. The new procedure
of quantization gives us a large number of irreducible represeniations of the
group G. In particular, we obtain a lot of known irreducible unitary repre
sentations of Lie groups and groups of diffeomorphisms.

In §1 we will generalize the usual construction of holomorphically
"induced representations. The Tepresentations thus obtained will be called the
partially invariant holomorphically induced representations (in L*-coho-mologies)
and denoted by (L*col) Ind (; p. p. F, 0) In §2 these representations
~will then be illusirated as representations obtained from the natural general-
ization of the Kirillov’s procedure of quauntization, which we call the
mullidimensional quantization.

e

§1. CONSTRUCTION OF UNITARY REPRESENTATIONS

In this seetion we eonstrucl unitary representations of the Lie group (r
in the space of partially invariant, partially holomorphic square integrable
sections of multidimensional G-bundles over the K.orbits, or in the spaces
of higher L2-cohoimologies of suilable sheals.. To do this we musl generalizo
the conslruction of holomorphically induced representalions. The prineiple
differcnee of our construction from the usual one (sce [1] — {4]) is the another
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neaning of the concepl ol polarization. A polarizalion in our sense is consists
»f a Lie subalgebra p and some of its irreducible represcalalion p of solne

{imension. N

Let us denoie by & a connecled Lie group, by'g its Lie algebra, by
1o = J@C the complexilication of g. It is clear that gc is a complex Lie algebra,

here exuts the natural anti- dlltOIﬂOI‘])hlSln of complex conjugation in whieh.
For the clement z = @ + iy < g We denote its complex conjugate element by
=a — iy. It «is a subsel of gc, we deline:
a=|zi:€al
Supposc thal D is a closed subgroup (not necessarily connected) of G
with Lie algebra d, o is some fixed irreducible unitary representation of D in
a separable Hilbert space V.

Definition 11. A (D, ‘&) — polarizalion is consists of, a collection (p,
H, o) such that:

1) H is a closed Lie subgroup of G, containing D, p is a complex Lie
subalgebra of gc such that pAg = h is the Lie algebra of the Lie group f.

2) The Lie subalgebra p is invariant under the operalors Adgc a, x€D.

3) Theie exists a closed Lic subgroup M in G, containing H such that
m = (p + p) Ng is its Lie algebra.

4) ¢ is an irreducible unitary representation of the group H in a separable
Hilbert space V such that the restriction oD is a multiple of the represenia-
tion @, i.e..the space 1 is a lensor product V' @ V’°, where V'is a Hilbert
space, and

g [ l) = ]\r ® G’
Let us denote by do the corresponding [2] representalion of the Lie algebra h.

£) p is a representation, satisfying all the conditions of E. Nelson (see,
for example, (2], 10.5, Th. 3) of the complex [ie algebra p by hermition
operalors (in general, unbounded) in the Hilbert space V such that

Proposition 1L.1. I (p, H, p. &) is any tD, o) — polarizalion, then we
have: ‘
pnp=he /
p+p=m
where fig, m¢ are lhe complexications of I, m, respectively.

Indeed, from the deflinition 1.1., we have
"he=h+ih=phg+ipngcpnp,
me=m4im=(p+png+ipt+rpneSp+ o
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Conversely, assume thatz=x +ig.If z€Epnpthenzcp N p,

X = ; (z+z)cpNpngeh

1 _ —
Y= (z—DEPNPNEED.

-

Hence z &€ hie, and he=pnp. I
2 € p+ p, then
z€p+p

x:%(z-{*g)é(p —;—ﬁ)ﬂg = m

21 (z—7) €(p+DP)Ng =m

y =

Thus, z € m,.. a}ld P+ ;: m,

Theorem 1. Supposé that (p, H, p, &) is any (D, @) — polarization. Then:

1) There exists a structure of a mixed manifold of type (k, 1) in the space
x = D\, the space of all right cosets clases, where:

k = dim G—dim M 4+ dim I — dim D
= —])— (dim M — dim H)

2) In the smooth G - bundle 60-“3 = G XYV, associaled with the represen-
o|D . ,

tation oiD, there exists a structure of a partially invariant (seeifs exact defini-
tion in the proof of this theorem) G — bundle Go-,p such that the natural
representalion of the group G, arising in the space of partially invariant and
partially holomorphic sections of éc,p is equivalenl to the representation of
this group by right tianslations in the space C=(G; p, H, p, o) of smooth
functions f on G with values in V and satisfving the following system of
equations: -
f(he) = o (W)f(x) ; YheH Vred,
Lxf+peX)f =0; vVK&p
where Ly is the Lie derivative along the veclor field &g on G, correspon-
ding to X.

Proof. From the first asé.ertion of the theorem 1in § 13.4 of [2] we have
that there exists a structure of a mixed' manifold< of type (&, 1) on the right
G—space H\ G, where ¥’=dim G —dim ¥/, 1 = % (dim M — dim H). Ohviously,

D\G is a smooth fibre bundle over the baseHH\G with the typical fibre
D\ H. From the direct constructing of Charts of mahifolds D\H, H\ G, D\G,
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Wwe see that the structure of the mixed manifold on the base H\G induces
the structure of a mixed manifold on DN\G. The easy computing of dimen-
sions shows that D\G is equiped by the structure of a mixed manifold of
type (&, 1), where

k = k" 4 dim (DNH) = dimG — dinaM + dimH — dimD,

1

I = = (dimM— dimH)

m]

The first assertion of our theorem is thus- proved.

Let o be the representation of the local group 133, corresponding to the

W . ~
representation p of the Lie algebra p, and let M¢ be the local Lie group
corresponding to the Lie algebra me. Then 6() = Mg x V is a holomorphic

o~

. r
Mc-bundle over P\ M. Obviously & 0 Is equixalent to the resiriction of (he

bundle 6, = M X V to the corresponding neighborhood W of lhe initjal point
H
"z, = IH} (= H\ﬂf.‘

To define the structure of a partially holomorphic bundle on & g We
use the idenlification of its reslriction Lo subsets of the form W, with the
holomorphic bundles what are obtained from G 0 by translating. Thus we have
the structure of partially holomorphic hundle on G- The given bundle is
denoted by dé,p. Now we consider the natural projection map p: D\ G — H\G.
The inverse image bundle e 5,0 is a bundle over D\G which we call the
partially holomorphic partially invariant G-bundie.

Obviously in the category of smooth vector bundles p“ég’p and éulj)
are equivalent. :

The sections of the bundle éo,l p are identified with the functions on G
with values in V satisfying the equations

' fthx) = ech)f(x); h €D xcG.

If the functions satisfied the stronger - conditions
fthz) = e(lyfiz); h € H, = € G,

Ixf — o(x)f = 0; X € p.
then they are called partially invariant partially holomorphic sections of the
partially invariant partially holomorphic G-bundle p* 60,, o Clearly the space
of all partially invariant and partially holomorphic sections of G-bundie p*é’d,
Is the image in the natural embedding of the space of partially holomorphic
sections of the partially holomorphic G-bundle & a0 into the space of all smooth
sections of the G-bundle éo’[D Thus the theor‘em is proved. Q.E.D.

\
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We see ihat if we have a (D, o) — polavization (p, H, p, &) on b\G,
theti we have a parlially invarianl partally holomorphic G — bundle p* éd;p.
To obtain an unilary representalion we apply the usual conslruclion of unitary

G — bundle ([1], p-4d).
Suppose thal Ag (resp., Ap) is the modular function of the group G

(resp., D), $2(h) = Ap(\Ag(h), h€ D, is the non-unitary charactler of D. We
consider the G — bundle _# = G xC, associaled wilh {he non- -unilary characler

D
% of the subgroup D. The posilive measurable sections ol lhe bundle A

and the quasiinvariant measures on X = D\ G are in a bijection.
We denote by 4! the bundle, associated with (he character 8 =(Ap/Ag) 2

" Thus the bundle Eo, o=P" Gy o ® M is an G —bundle over D\G.If sisa

section of the bundle @. _ then |ls])? is a setion of the bundle . This the
o, p v ’

.IIS\F:J‘ n'snf 1

NG
is defined and we can define a scalar product of a pair of sections of Lhis ‘typc
by the formula o
(o) = [ (i@ @) ds
D\G

Now we fix a section p = px of the bundle M, i.e., a quasiinvariant
measure on X.Let L2(G; p, H,p, o) be the Hilbert space, which is the completion

integral :

with respect to the written above scalar product of the space I‘(g; p) of sec-

tions of g ¢ p of type S =s. MR wheres is a partially and invariant partially

holomorphic section of p*é . In this Hilbert space L*(G; p.H, p, o) on ehas

the natural umt‘u y repr eseutqlmn of the group G, which e will be denoted by:
Ind (G; p, H, p, @) '

and will ealled the partially invariani holomorphically induced represenlalion.

The further genelahaahon of this construction gives us repr escntatlons
of the group G in L? — cohomologies (see also [3], 86, 7).

Suppose that & is the sheaf ‘of germs of parlially invariant beCLIOIIS of.
the bundle p‘é p over the mixed mfuutold DN G. We denole by & the sheal

of differential 1011115 of type (o, ¢) on DN\G wilh values in bhe bundle
p* (5 . Here e call a form of type (o0, ¢) any expression of Ly pe:

Zp. iy ¥, z, f)a'/,i1 AL /‘mt,';,i(1

11 ees d
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in a local syslem of coordinales on y (the real coordinales j = (y, yeorny Ui
define the projection of Ure point v« X in lhe manifold M\ G, the complex
coordinales z = (z,...., zp delive the place of the point z in the fibie I¥ing over
the point g of the bundle 11 \ @, and the roal coordinales [ = ({, ...., fexh)
define the place of (he point = jn the fibre Iy¥ing over (he point (y, z) of
the bundle D\ 6), where P (5 D) are f1111cf.i0115 in a neighborhood of
lhe point @ € X wilh values in V. In the lramsition from the local charl (4, =, 0y
to the other chart (y°, =%, 1) ihis expression is changed by : :
ijl___jq(y I )C!‘j1 AL A(qu ’
where
Yi.j¥ = O =uly, =, 1) Em,-l,__jq(y(y‘).- Rl )

8Zit D

=7 oz,
354 i

and u(y* z, 1) is the lransilion funclion of our hundic.

The following sequence of sheafs is exacl: -
0 - &4 G G ceen = G -0,

where (he mapping G — Geo is induced by inclusion of the space of partially
invariant partiaily holomorphic sections of the bundle échp into the space

of smooth sections, apd the following mappings are induced by the usual
operalor d”, mapping a form of type (o, ¢) intoa form of Lype (o, g + 1).

The exact sequence of sheafs defines a complex of spaces of scclions

0= TF) ->T(F) - ... > T(FH )0

the coho mlogies of which coincide wilh the coho mologies of (he sheaf G
(the analogue of Lhe Dolbeault's theorem). ' '

I'he space of smoolh forins of Lype (o, q) on D\G is isomorphic io Lhe
subspace Cp, H; C=((6G) ® V) in the tensor product G=(G) & Al(pihe)* ®V
This subspace consisis of H-invariant clements. If the subgroup f is connecled
then the / -inVariance can be changed inlo fA-invariance (or the samet
he-invariance), The mentioned subspace coincides exactly with the space
CUp, he, C=(G) @ V) of relalive g-dimensional cocycle of Lhe algebra p. Thus
the cohomologies HYI\G; F) ‘coincide with the relalive cohomologies
Hi(p, H; C*G) ® V) of the Lie algebra p.

Assume that there exists a M — invariant Hermitian structure in p/fi,
Then the induced hermitian struclure arises in AT(p/lcy* Now e denote by
7l the unilary representation of group M in AYp/hcy*. The space Cip, H
Z(G) P V)can be interprefed as the space Mo e, p) of partially invarian,
sartially holomerphic seclions of the 6 — bundle 6o’ ® @, p, associated with
he unitary representation ¢t & o of the group H. i
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" Denote by Lz(—%"arrI & 0, p) the complection of the space of partially -
invarianl partially — holomorphic square integrable sections with respect to
the natural scalar product of sections. We have the complex '

—~ dt e do -ty _
o - L} (60, p) — LY Ga' 0, P) > .o — Lz(éo‘] Ba,p)—0 .
The orthogonal complement of Im (dh) in Ker (dyy1) 18 2 Hilbert space
in vwhich the natural unitary representation of the group G arises. We denote
this representation by (L° — Colw) nd G; p, H, p, @) and we call il the
partially — invaaiant holomorphically induced representation i k — dimensional
L? — cohomologies.

Now we return Lo the problem of the construction ol unitary represen-
tations of the group G, associated with the orbits of the coadjoint representa-
tion (shortly, K — orbils). As we see above, a choice of a subgroup D, ils
irreducible unitary representation 5 and a (D, ) — polarization (p, fl, p, o)
plays a principal role. The orbit melhod gives us a canonical choice of these
objects. . ‘

let g* be Lhe dual space of lhe Lie algebra ¢g. It is easy to sce that the
f;oadjoint represenlation (shortly, K _ representation) of the group G in g*
‘divides ¢* into K — orbits. We denole by O(() the space of all K — orbits ol
the group G.

Now we fix an K — orbits Q@ € 0(G) and a point ¥ in 1t Assume thal Gy
is the stabilizer of the point F, gr is the Lie algebra of Gg. It is known thatl
in the category of hologeneous G —spaces the following isomorphism has place

Q ~ GpNG .

Suppose that (Gr) is lhe connecled component of the idenlity of the

group G and (Gr)o = S.R is its E. Cartan — Levi — Malsev’s decomposition.

¢ is an irreducible unilary representation of Gp such thal olgp = I, the identity

representation ofa suitable dimension, ;:ldu is the corresponding represen-
tation of the Lie algebra g and hence, also, of its complex hull.

(gr); = gr @ G
R

Definition 1.2. A (:;, [*) — polariziion of the K—orbits Q is consists of a
triple (p, p» 6o) such that:
1) p is a complex Lie subalgebra of gc, containing the Lie subalgebra gg.

2) The subalgebra p is invariant with respect lo the operalors Adge 2,
xr e GF.

3y The space p + " is the complex hull of some real Lie subalgebra m,
i, e,

(p—i—ﬁ) Nng = m
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4y All the subgroups an. HAn. M. It are closed in G; where M, (respecti,
vely H ) is the connected Lie subgroup of G with its Lie algebra m (resp.-
h = 12 g) M= GF.MO, H = Gp.]’fo.

3) o, is an irreducible unitary representation of the group fi  in the
Hilbert space V such Lhal:

a) The restriction g | Gr N H_ is ﬁmultiple of %r ._; where
defl 127<7F,.>> ) —~ : ~
r(exp()=—e¢e s i.e. ¥V = V'@V, and o, Gy N H =1 @%. ¢

0) pis a represcolation of the complex Lie algebra p by hermitian opera-
fors (in general, u]jbdunded) i the Hilbert space V = V* @ V which satisfies

the E. Nilson's condition and pit = do_, where de, is the represcenfation of the
Lie subalgebra A in V corresponding to o,

Propesition 1.2. Lel G be a connected Lie group, then the following
condilions are equivalent: :
1) There exists a character Xr t Gp—=T = S such that iis differential dXp,
def

(%) (X)) = _i]f (R (XX P)icer & < gr is equal o d‘XF = 2xF
¢ , ‘

e,

2) The. Kirillov's [orm B, belongs Lo an integral de Rham’s cohhomology
class. .

Proof. See §15.3 in {2] or [{}. Q.ED

Definition 1.3. If one ol the conditions of proposition 1.2 is satisfied,
then we say that the K-orbit Q is inlegral. '

Theorem 2. Suppose thal Q is an integral K-orbit, F € @, %t Gr—-T
is a characler of Gy, o € Gr, the dual of Gp, such that ;{R = I, idenlity rep-
resentation, (p, p, ag,) is a (';, I")-polarization of the K-orbit Q, H, (resp., M,)
is the connected closed subgroup of G, the Lie .algebra of which ish = png
(resp,, m = (p+ p)ng), H = Gr.Ho, M = Gp.M,. Then:

1) There exists a structure of mixed manifold of lype (k, 1) on the
G-space @ = Gp \_ G, where: ‘
: k=dim G — dim M = dim H — dim Gy

1= ,})_ (dim M — dim H)

- 1
2) There exists a unique unitary representation e of the subgroup H

such that the 1‘est1‘icgion o/Gr is a multiple of the representation Xg. ¢ and
de — p|h

3) On the smooth G-bundle éo'lGF =G x V,associated with the repre-
’ o|Gr
sentation o/Gr there exists a structure of .a partially-invariant partially -
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holomorphic G-bundle 6, 3uch that the representation of the group G arising
in the space of partially mvauanl partially holomorphic sections of (a" a.p is equi-

valent o the representlalion ol Lhis group by right translations ip the space
C™ (G; p, I, p, o) of smooth funclions [ on G \\J[h values in V, and satisfying
the following syslem ol equalions:

f(hx) = o(l) [(x), YheH vyxegG,
Lal F o(x)f =10, vX &p, .
where Ly is the Lie derivative along the vector field & on G, corresponding to X.

Proof. From the definilion of a (D, ;) - polarization it follows that
(Gr), c H,. Then (Gr), is the connected component of identity in H, N Gr, and
we have:

0o | HoNGr = Iy @ (e, o) [ Hopn Gr
On the other hand the subgroup Gy normaliser I{,. Thus Gr acts on the
dual I;T; ol subgroup /I, However from the assumptions of our theorem, o, is
fixed over the action of Gg, then the formula
(@, ) | (Iv 18 %ro)(®) o (h)
(lcilnes a representation of the product G x M, in lhe space V.

n Iacl on one hand we have
(-’1? b). (=, h) f— (v’ (2." Ly o) (@) o (h) (v ® XF @) (@) o)
= (v ® %]:q)(:vx’) (v ®%Lp 0')(517')]"60(11)(1\" ® X U)(m’) . ,‘%(ll’)
= (v ® %a) (@2) (=", ,) (h) oo(h) |
= (Iy' @ Xpo)@T") . oo(hl) _
On the other hand, according Lo the definition we- have
(@ W)@, ') = (327, hhY) | (Iy’ @ Ypo) (2" )oo(hh').

The representalion (x, h) i— (v @ Xg u) (x) o () is t11v1a1 on the

kernel of the sur jection ~
Grp X H,— Gp.H,
(x, h) |— x. I
Thus there exists a unique representation of the semidirect product
H = Gp.H,. We denote by o this representation. Obviously that the given represen.
t‘}ilon o is irreducible and ¢ | H, = o,

i Gr =1y @%ja

Now the complex (p, H, p, ¢) is a (Gr, %p ;)H— polarization (see Def. 2. 1.
above). Hence the theorem 2. {ollows from the theorem 1. Q. E.D.
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We denole the corresponding unitary representation of the group G by
Ind (G: p, o, F, a,). If there exists an invariant hermitian sletcture on p/he,
then we also have unitary representations in L? - cohomologics, which we
denole by (L2-cohy) Ind (G p, o, F, a,).

We' remark that (J2-Cohy) Ind (G5 p, e, F, 0,) coincides with Ind (G
p’ P P‘r do)- )

In the set of all (;, I} - pelarization of the K-orbit we introduce the
following ordered relation, '
Definition 1.4. We say thal the (o, F)- polarization (s ps 0o) is smaller

than the (o, F)-polarizalion (s 0. 0,) and write (p, p, @) << (P, p', a,) il
and only if: : |

() pCop.
b) o)|H, ~ 0,
¢} pllpe=~p

Remark 1.1. Our binavy relation of (o, F) - polarizalions salisfics all
the axioms ol a parlially linear ordered relalions. Thus (here exisls the maxi-

mal elements in the set of all (o, ) - polavizalions.

Propesition 1.3. I} the (_;’ I) - polarizalion (p,. p, o,) is nol maximal,
then lhe partially invariant holomorphically induced representations (in L2
cohomologies) \

' Ind (G; p, p. F, 0,) |
(LP-cohy) Ind (G; p, p, F, a,)
are reducible.

Proof. Il the (?, F)- polarizalion (p, g, 0,) is nol maximal (hen there
exisls a (;, F) - polarization (p', o’ o,") such that

(ps oy 00) << (P, P, @)

In this case L*(G: p, o', F, ¢.) is included in L2 (G P, o, F, @) as an
invariant Hilbert space. Thus the representation Ind (G; Ps p. 0,) is reducible.
Analogously, the represenlation (L - coh,) Ind (G e F, 0y) is also reducible.
Q.E.D.

§2. PROCEDURE OF THE MULTIDIMENSIONAL QUANTIZATION
In this section we shall show how the above described construction ef
unitary representation arises from the natural generalizalion of the usual
Kirillov’s procedure of quantizalion.
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In general, a quaniization means a procedure of constructing quantum
systems.from given classical systems. A majority of the existing methods of
quantization are subsumed under the following schema ({2}, §15). Consider the
physical quantilies associated with a syslem. Among these we single out a cer-
tain sct ol primary guanlities forming a Lie algebra undcer the Poisson brakels.
We suppose lhat when®we go over the quantum mechanics, the commulalion
relations among primary quantilies are preserved in the [ollowing sense. Lel &t
he the Planck’s constant and [ the quanlum mechanical operator, corresponding
to the primary classical quantity f. Then the following rclation must be sati-
sfied :

ik oy
, = — [f1, . 2.1
, lf! fz] o (f1, f2l (2.1)
This means that the correspondence
ih o )
f— o f .

iis an operalor representation of a Lie algebra of primary quantities. Ordinarily
constamis are included among the primary quantities, and one requires that
the relation :

1 = I (identily operalor) (2.2)
holds.
We consider a fixed classical Hamillon system (Q, £,). Suppose that
F e Gp is the stabilizer of F, and the K-orbit Q is infegral, ¥s o is
rreducible representation, described above, of the slabilizer Gg, (p, p, 0,) is a
(?, F)-polarizalion of the K -orbil Q.
Proposition 2.1. The choice of a (F;, F)-polarization (p, p, ¢,) defines
a giving of a integrable G-invariant distribution L of the complex hule of
the tangent'bundle TS, such [hat‘ L+f is also integrable. The maximality of

the (o, F ) - polarization is equivalent to the maximality of the distribution L.

Proof. Suppose lhat p,: gc— (TrQ)c == (g/gr)c is the mnatural projection.
We define the distribution L at the point F € Q by the formula ,
Lp = Po(D) )
The G -invariance defines our distribution at all the other poinls of
the orbit. The remaining assertion is obvious. Q.E.D.

To construct a quantum system we choose the Hilbert space which is
the completion of the space of all partially invariant square integrable sections
of the unitary &-bundle

Gu,p = p* 6o, p @ My = p*G X V) M,
c .

w
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From the local iriviality of the bundle & p We can choose a covering

[Ui].el of the K—orbil Q by open sets U;, i &€ I, such lhal
o ’
éd,p | U5 =2 U; ><.V.
Then a seclion over U; is a function ¢; on U; with values in V. shorty,
¢ = {9}, where ¢; = ¢ U} and -
PT) = g (@) (), Y € Uyn Uy,

g are the iramsition functions of éo,,p. ‘ R

Now to the smooth function FEC=(Q) we lel correspond the operator F,
acting by formula:

F:g = [cpj]‘-—m»Fcp:: {Fie;},

o 2m
where: ‘ Fi=1y & (TH_ EFJ. + Fj) + Of-j(‘ér-‘i s
a=}a;] is some defferential 1—form on Q, the value of which at a point
is an hermitian operator in the corresponding Hilbert fibre of the bundle éo.’p

Remark 2.1. In the intersection U; N /) we have:

g - Fx+ Fj. g

~ 2
In fact, gk . Fx = g ® (—I—I:i Erx + Fk) + 8ik° o (Ere) =
21 o. o
;= O (St F) gt e )t

j€1 is a differential 1—form. Hence we have:

—

Fiop = Fj(gn on)

= (Fj gir) @x

. = gix Fr ¢u.
This shows ths Ty

his shows that | F; (p,]jel

dperator in the space of sections.

because o = fal

i)

defines a section. Thus the action F is an

Proposition 2.2. The correspopdence /7 — I defimes a procedure of -
Tuantization if and only il the-differential form o salisfies the relation

2(ly @ By) Gr. &) = Eralte) — Er aEr) — « ([E E']) + }2_1:—1: [o€r), a(Ee)]

Proof. It is clear that the correspomdence F — F. satisfies Lhe. relation

2.2). To prove that the operation F —»I?gives a procedure of quantization it
§ necessary and sufficient to verify the relation 2.1).
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From the local Lriviality of the bundle we can restrict our proof to local
cage of irivial bundie. We have:

ih = o, _ ih 2m A\ K ’ 2T, .

oo [F, F] = o L@(ih Er +'F) 4 ar), Iv® (ih B+ 1 )+ a(‘;-.p)]

= ﬁ“? h @ &l + v @ [&r F'1 + Ty @ [F &l + [Iv ® &, altr)] + [o(r),
. ih N 2T oIy

WO &)+ o [t a@) = T V@ B ) + v @IF T + oy o

% [a(Er), a&ry)). = [F.F]

ih

— 2(ly @Bg) (&r» Er') + Era(Br) — EF,G(EF) — a (& &']) + 5 [a(Er)s a(Er)]

—a(Er &) — Iy @[T, ' + Era@r) — & a(r) +

Thus the proposition is proved. Q.E.D.

Remark 2.2. Il [a(%r), a(ir)] = 0 then we have the condition of propo-
silion 2.2 in ordinary form: .

“(Iv @ By) Gr» &) = EraEe) — B ar) — o ([Er &r'D) = 2 (da) CGp, E)

Hence: da =Iv @By ' ]

- Now the space of partially invariant sections of the bundle p*éo, 0 is
illustrated as the space of section, covariant derivative of which along every
direetion from the distribution L (see proposition 2.1) is equal o zero:

_ 0 =vep = Fx~Ivy ®Fpyp, V<€, N

where Fyx is the generating function of the field Ex. In facl Ver = Fx — Iy © Fx
enjoys all of the properties of a covariant derivative along the veclor field Eg.

For-simplicity in the sequel, we ‘denote the generaling function Fyx
of the field Ex, X € g by the same lelter X. That is well, because x € ¢ can
be in the same time regarded as a funclion on the dual space g*.

The representation of the group G is defined by the lormula

.2“/\

- X
T(expX) = ¢ = k&

The relation (2.1) and the self — adjointness operators X guaranlee that
the condition

T(gi.g0 = T(q) T (g2
holds and the operator T(g) are unilary in a certain neighborhood of the

identity, This «local» represenlalion admils a unique extension to a multi —
valued representation of &, which will be single — valued on the simply

connecled covering group G of the group . In a following paper ol this series
we will show :
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+ Theorem 3. The partially invarianl holomorphically induced represen-~
lation of connected and simply connecled Lie group G coincides wilth the
representation of this group, arising in the procedure of multidimensional
quantization.

This theorem gives a physieal illustration of our construetion of partially
invariant holomorphically induced veprescnlation. Thus it shows lhe inverse
application of physical ideas in the represenfation theory as one of. the purely
mathematical lield. '

Added in Proof. Some nolations and stalements just have heen precised
in the note « Construction des représentations unitaires par les K-orbites et
quantification» C.R. Acad. Sc. Paris, t, 291 (1980), pp 295 — 298.
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