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Introduction

Let k() be a function which maps from [0, o) = R, into (0, =). Wein- ~
troduce the following notfations:

kG = Ky = 1, 20 K0 =15

— : ;
Vv times . )

K0y =k, o [k, ko) = Ky s kya—k, =1,

Suppose the functidn k() has the following prOpérly which we call
f —properiy. : ' ’ )

k -Property. 1. k() &€ C(R,). k(D) > 0. _

9. If { increases from k,_; to k,, then k() increases from
k, to kyy, for every v 1

3. There exists the derivative kb >0 for 1 € RN [k, v =0, o). It
follows that there exists the inverse funclion h() of k() and iis derivalive
h(y>0fort €[k, \fky, v=1 -}

Consider the following linear homogeneous sysiem of differential
equations: ' ' o ‘ ‘
' x=Alx, t€ R .1

"Here A() is a (nXn) — matrix, the components of which are continuous
(or piecewise-continuous) in Ry and '
Aty = -‘3”—}, 1€R., ©2) -
o 3 1303 .
2(.) is a n-vetor-function, )

As we have noted in [4) (0.2) isa natural condition for that the syslem
(0.1), has a k-generalized pertodic solutien (k-g.p.s.) (), i.e.a solution for
which a(L() = () VI € R,. _

In (4] we have considered the class k, a—GPF of all k, a — generalized
periodic funetions (&, cx,_—g.p.f., a is a real numbers, i.e. the fuaclions x(.),
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for which z(k(H) = a () Vi€ R.. We have studied the structure and some
irﬁportant properties of the ‘class k, «—GPF and proved that 1this class is
independent of well-known classes of periodic or almost periodic functions,

In this paper we will consider £, I — g.p.systems (or, for simplicily,
k ~ g.psystems), i. e. the systems with the condition of the form (0.2). We
first will give withoul proof the generalized Floquet theorem for the sysiein
(0.1). Then we will deal with some problems such as reducibility of the system,
existence ‘and unicity of a solution of the k — 8.p.system. At last we will get
one theorem of the Andronoy-Viti’s type.

The functions in this paper may take real or complex vajues,

§I. THE GENERALIZED FLOQUET THEORY

By standart arguments the following theorem, which is called the gene-
ralized Floquet theorem, can be proved (see also [1]).

Theorem 1.1. The fundamental matrix X(‘!) of sofutions of the system
(.1), normalized at t = 0, can be ritlen in one of he following forms :

Iy X)) =& (1. exp (Au(l)), (1.7)
where O(k(f)) = &), k() = pt) + w, ¢ € Ry, ®(.) €CYR,) (or @(.) is piece.
wise-smool h}, w(.) s a real function, w = const, A is a const-mairiz. 3

2y X() = o). exp (Al), ) (1.2)
where O + (1)) = G . exp | — Alz(t) — 7(0)] L vi€e R, 1) = k() - t.

Remarks. 1, The representations (1.1) and (i.?} hold also for arbitrary'
fundanental system of solutions (it is not nécessary lo normalize at { = ().

The proper values Aj of matrix A are called the charaleristic indices
{c.i.) of &k — g.p.syslem (0,1) (For the correlation between A; and the Liapunoy
¢.i. of nmontrivial . solutions of the system (0.1) see § 11 below), We also call the
proper values p; of matrix X(k(0)) multiplicators of the sysiem (0.1) (p; o= 0
because det X(k(0)) = 0). It can be proved that

A = 1 Ln pj (w = k(0) in the representation (1.2)), and that every mul-
" .

tiplica!or p corresponds to a nontrivial normal solution g(.) such lhaj

E(k(D)) = p.E(), Wt € R, (1.3)
and in opposite, if a nontrivial solution E(.) satislies (1.3), then g will be a
multiplicator for the sysiem (0.1). From this it follo\_vs that (0.1) has a £ — g.p.s.
iff at least one of ils multiplicators is equal to 1. Moréover, the normal solu-
tion (1.3) may be written in the form .

&1 = exp (Au (D). @), where (kD) = o),

O = exp (W) - 90), 9 (kN = 91) - exp [ 4 (¢t) — z(O)y),
| VE€R, A = Lin,, -
. (O]

or '
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v 2, In Theorem 1.1 we have mentioned a function u(.) for which
C pk@) =) + o VIE Ry (u
Suppose - now |k, (.) € C'(K,). As in §V[4] we can prove that for
p(.) € C' (R) it is necessary and sufficient that ‘
Oy = K 0y ISV (1.4)

In what follows we will _supposein general that the tunctaon pi.).
besides the condition (u), satisfies (1.4), too. Then clearly

wiky = 2O vier,. - (1.4)
k) ’
We nole also that besides the condilions () and (1.4) no other.
requirement on the funclion w(.) is required. Bul for easiress we can choose
this funiction satisfying, for example, p'(f) > 0, inf ® H > 0,.

\ t ‘
811, REDUCIBILITY AND ¢ — REDUCIBILITY

First, using the representation (1.2), we examine the Ier.umbillly of the
system (0. ). Put ’

max | w(0) — 70) | = 7 max HO=LL _
S €K k()
min k(t) = A
’ 161\1

The:rem 2.1. Suppose the function k(.) salisfies the following conditions :

. 1
O 2 =t <+ bf [l k >0;
i i V=0

) sup ;mi.'i' <as 4 g+
i

k: k; ki ki &

—1 I P |

Then the k—g.p.system (0.1} is n.duczb[e

< + o=

Prasf. Let ®(.), A be two.matrices as in the representalion (1.2). Usjng
the exchange z ) = ®(Hy(f). the syslem (0.1) becomes into the form y = Ay.

Thereloiv in order lo gel the reducibilily of the systgm (0.1) we have
only to show thai @{() is a Liapunov malrix (see [2]) In the following we -
verily its properiies, ‘

1) sup @) | < o : For { € Kiy; we have

tER. \ » . .

WO | < St i exp LA [ (1)) — 2(0 1T 1O it exp(h AT )<

<na@lPlty . exprnan. (r_+r_1 N <

e (hm(l)) l.exp(llAl. 2, 7,) < max || (D(L) i exp(h Al tg) <
. v=1 .  tcke
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Since the {ast Inequaliiy is independent of 1, the property 1) is established.
2) sup || D) § < o : From (0.2) we have ‘
: \

dti}-u) - .L(Tdtﬂ Dty . exp [A(e(0) = r(h)]} =

= d_ds ]i’(s) . exp {{\(r(O)—uf(s))]} . fl(t) =

s = h(1)
= {®(h(1) — ’(h(EDA]} . exp [A(z(0) — 7(h(1)))] . h(t)
Therefore for ¢ € K; we get .
M(k(t))ﬂ\{ncb(t)n+;r‘(t)r.nAu}."""P(”.A”"‘i) -
’ - i k(t)
'-——-1—- Oty .exp (NAH ) + —_—1—'.iIA||. JTM oexpl Al ) <
k(t) k(t) i
<oy SR 4y Ay m Al T <

=1

exp{ N All. Tiog)

<inethani. +NA L. my . exp(N AN - Tip) M) n

Nt ‘ : S|
AL M exp (1AL .5 = | &b . “p[”if' ‘ji,“““"] +
: =i " =i-1

+0AY. m};,“' cexp[ N A1 Tl + llAﬂ.mi.exp(n-A he <.

G HAN M exp(4 AL J-!—IlAn 1. Loexp[llAD. (r1+r._1)]+
A

_-{-nAIIA ;,’ .exp[HAﬂ-(?i"’{"'f—i—l-l-fi—n)}‘l“»--“]— ’

o R
1

FHAY . —i—i’lr eap[nAn T+ 7)) +

B e _71

+ 1 tb'(h[‘](t)) b expUIA L (Tt 4+ )

o,
Thus for any I € R, we have
eI AN exp(ITATlL Ty ). sup m; + ‘H;:-:_% + k v
_ | T ki k
. exp( A Y. T3)
+123X e . — n <+ e
t& Ko ‘ '
inf [] &y
i v=0

because of a) —c). The property 2) is established.

it



3 - it | d&l Dty 1 = 0: lndeed, we have (& A«m spur of malvix A)s
t& Ru :
| det @) | = | det D) | . exp [{r(ﬂ) ~ z{t})) . ReSpA] >
‘;; | det (D(i): exp{=1.|ReSpAil>. .. 12p | det Dt | . exp(—t51ReSpA[) >0.
& ko '
Thus dll three characterfstlc properties of a. Liapunov matrix are satis-
fied. The proof is ended. :

Remark. The conditions a) — ¢) will be satisfied, for example, in the case,
when k(!) is sufficiently near 1 for. every t.= R,, i.e. the syslem becomes
« periadic» with almost conslant period. In the spemal case when k(/) = t + r,
we get the well-known Liapunov theorem. ~

We now introduce the following

Defuntlon 21 Let p(. ) Ry — R be a given real. function. A linear
homogeneous system (0.1) (without the condition (0.2)) is called p—réduciblc

if we can bring il into the form y = p()By | 2.1
(B is a constant matrix) by the substilution

y = L(hx - ' (2.2) .
where L(.) is a Liapunov maltrix. :
. . t
Ren_aérks. 1. If p!) > 0 then by the substilulion s = J'p('g)d,i the system

. 0
(2.1) can be brought into a system having a constant matrix.

. 2.-A p-reducible system is not always reducible in the usual sense. Indeed.
consider the following equation (n = 1)
x = p(t)o: (2.3
Suppose thal by the substitution y = )z, (2.4)
where I(.) € L (R,,), 0 < inf i) 1 < sup LY | <Toe _ (2.5)
t e R+ 6 R.

and sup | i(f) | < o, we can brmg the system (2. .3) into the foun q = bg (2.5)
gy
From (2.4, (2.6) and.(2.3) we have {(t)x +1(i):i: = l(t)':r—{—[(l)p(l)x =
t
= bl(t)x Hence I{t) = l(t)(b p(i)) or I{t) =exp {bt — J‘p(s)ds]. ‘
. o) )

Let us consider the iuncllon p( ) for which p(k(l)) = f((t‘).
t)

kit &y ) .
Then since f ps)ds = fp(&t (s)). (Ic[ ])(s)ds = fp(s)ds =Js, i, in order to
ok ko ko -

gel (2.5) we must have, at least, sup | bky ~iJ, | < oo, or, pulting d .=J o B,
i
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sup | by id | < oo, Ttis-clear that for some functioﬁs'k(.) there not exists sucﬁ
i .

value d(it exists, for example, if & =L + e, = el <Teo(d =1L
, i )
3. Itis possible to prove that the well-known Liapunov theorem on stability
il t
when x — 0, too) can be extended to the system (2.1} (and to the system

y = p(HBy 4 ¢(t. y)).

By standart arguments we can prove the following theorem of the Eru-
-gin's type. ' ’

of the system y = By (of.the quasi-linear system y = Ay + o, y),

Theorem 2.2. 'The syslem (0.1) will be p-reducible iff one of 'its funda-
"mental mairices of solutions can be represented in the form
‘ , X(1) = L. exp [qD)B), . 2.7
where-L() Is a Liapunov matriz, B-is a constant matrix and -
g = _fp(S) ds.
\ | o |
Coroliary. Suppose a function p(.) salisfies the conditions () and (1.4).
Then the k-g.p.system (0.1) — (0.2) is w' ()-reducible.

This corollary follows from Theorem 2.2 and the representation (1.1).
We also note that the derivative p'(.) has property (1.4) (see Remark 2 in Defi-
nition 2.1). .

. §1If. THE EXISTENCE AND UNICITY THEOREMS

Almost all well-known theoreins for usual periodic systems (see, for exam-
ple, [2] and [3}, Chapter XID) such as the Liapunov’s theorems for linear homo-
geneous and nonhomogeneous periodic syslems, the Massera's theorem, the
Poincare’s theorem. the Liapunow's theorem about asymptolic stability of a
periodic solution, ... can be exiended to k-g.p.systems. For ekample, let us
consider the following system

y = Ay + & . (3.1)

and the homogeneous system corresponding to it
| y= 4y @Y
where A(f) is a (n X n)-matrix, A() € C(Ry), A4 ED :jﬂ)_ , and such that
' - k)

(3.2) has no nontrivial &-g.p.s.

16+
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(Then it is possible to show ihat for every functxon <p()€ C(RL,

o (k(1) = o) , the linear nonhomogeneous system’
' k(l)

'

y=Aby+ed . (3.3}
has a umque k-g.p.s. g(.), moreover, there exists a number M independent of ¢ (.)
and for which :
) ) l{o)

by <M. fnewuds, t €K, 3.4)

Relurn to the system (3.1). . }
. . i, .
Let fthg) e CRe [Nyl < [, g = LED v e R,

R .k (l‘)
By r and furthérmore O,
MR I, VEE K, -yl < T 35
We suppose also inf (kI () =&'>0, v = ,2..; 1 €K,.

ht

Theorem 3.1. Suppose the condilions thot are meniioned above hotd. l’hen
the system (3.1) has al least one k-g.p.s.

» Proof, C0n51der the spacc k- CGP of all continuous k-g.p. I.s g(.) vuth :
the'norm |g| = max |1 gd) W. This space is a Banach space with uniform con-

vergence on K,. Assume g () € k-CGP and [g| < r. As we have just noted
above the system .

.’J Ay + ft, gy - . (316)
has a unlque k-g.p.s. ys(.) which salisfies (3.4) Tvith o (8) = f(s, g (s)) (take

into account .i.hat Flk(), g (k) = f(k(t) gf)) = M)
ki
From {3.4) and (3.5) It foliows that [ygl < r. We define the mapping T:
k-CGP — k-CGP, putting T[g] = y.(.)-
We must show T has a [ixed point.
As we have just seen, T maps the ball S, = {191 < r} into itself. More-
over, from (3.4) we get ‘

| T [g)—T1h] I< M. fu £, gty — fet, h(t)) It

0 ‘

From this the conlinuity of T follows. Fur lhermon e.for every gES we have

(because“f(k[ ](i). 9‘(1{[ ](t)))ﬂ = [1} S, gtk I\’]{im<—1—’ . max ||ty ).
kU ~ E (K50
Conscquently, if ¥ = T[gl, thén from (3.6) (since § y(©) 1 << r) it follows
that || J(t) I << ¥ (¥ is independent of g € S;). Thus T[S,] is totally bounded and
equally continuous, hence ils closure is compacl. From the corollary of the
Tikhonov’s theorem (see [3]) we conclude that T has a fixed pomt
The proof is ended.
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§1v. THE THEOREM OF ANDRONOV-VITT'S TYPE

We first note that the autonomous system

¥ =f@) g “.1)

has no k-g.ps. if K() == 1, Indeed, assume () is a solution of (4.1 and
k(1)) =n(t), VI € R.. Then, since n(k(t)) is also a solution, we have k() =

= NEE) KA = f((k))) = f(n(t)). But (n(l) is a solution) W'(k(®)) = fin(k@®))) =

= f(u(t)). From ihis it follows thai k(ly =1, vt € R,. This is a coniradiction
with the hypothesis ff(.) == 1.
Together with (4.1) we will also consider the system in variations cor-
responding to the solution 7.)
T = [yb). o | (42)
Suppose the matrix 3 is nonsingular for ‘the values of y that are
being considered. Then 1(¢) cannot be a k—g. p.s. of the system (4.2) if £(.)==1,

Indeed, assume ﬁ(t)'is a k—g.p.s. From n(8) = f(n(t)) it follows that rn(t)zg('q'(l)). .
Thus 1(t) is a k—g.p.s., too. But it is impossible as we* have noted ahove.

The three following lemmas may be proved analoegously as in [2], using
the representation (1.1); .

Lemma 4.1, Assume the k—g.p. system x = Pz, , 4.3)

where P(.) &€ C(R,), P(k(t) = % . has a multiplicalor p; = 1, and the orthers
satisfy [ pj | << 1, j=2, .., n. "
' Then (4.3) has a fundamental matfix of solutions of the form

' X(f) = @(t).diag (Ey, exp(Cy. p(I)),- (4.4)

where ®({) is a real nonsingular matrix, D) € CYR.), Bkt)) = (), Vi € R, ;
Ei=1; C is a real matrix of order (n— 1) by (n— 1) having the proper
values A4; with Re A4;<C0,j=1,2, ...n —1; p(.) is a function satisfying the
conditions (i) and (1.4) (see §1). :

] . Lemma 4.2. Let a fundamenfél matrix of solutions of the system (4.3)
X(1) havc the form (4.4) and
X(t)y.diag(D, Exq). X-1(s)  for >
~X(). diag(E,0) . X-%s)  fort<s.
Then 1) G(t,1 —0) — Gitt-+0) = E,;
2) Gi((t.8) = P(1).G(t,s)" for I s:

m.exp [a(pu{s) — ()] Tor f>>s,
m for i<s, a>0, m>0;

Gt §) = ? 45

3)uG(t,s)u<§
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4) the vector-Tunction y() = Xt)d + J' G fsyds. (4.6
where d is an.arbitrary vector of order n such that its first component is

equal to 0((d, ¢)) =0, e = colon (1, 0, ..., 0)), f(.) € C(R,), fﬂ fAY N dt < eo, is

a solution of the nonhomogeneous system

. | y =Py + 1) “.7)

for which lim gy =0 ‘

t—>-1 oo ‘

Lemma 4.3. Let P(t), X, d, G(t, 5) be defined as in two lemmas above,
‘Consider the system .

= Pz + o, 2) (4.8)
and together with it the sysiem
2t d) = X(hd + [ G, ).0(s z(s. dyyds 49)
v - 0 ’ 4 -
where the function g(t, z) salisfies the Lipschilz condilion _
het, 2) —od, DI Lz -z, t €R. IZ1KA,
T=d<<A  ot,0)=0

1f L < < ap’ j8m then for fd i <<d, = mA—- (AXDH1 < m. exp [—au(l)]

see (4.1, the integral system (1.9) has a solutlon z(f, d), which is a (n—1) —
parametric family of solutions of the system (4.8) and has the properly
lim z(l, dy = 0. - (410)
}—>co
It is necessary to note that the function p(.) and 1ts properties play a
very important part in the proof of the Lemmas 2 and 3. :

Let us now consider the system ‘ -
y = a) ) ' : (4.11)

-and together with it the system in variations
x=ahfya@n e, | (4.12)

correspondmg to the solution n() of the system ({.11). Here a(.) : R, = R,

atkety =D inp &y @ > 0.
: : k() (€KY B

Definition 4.1. (see also [2]). Let S be a given continuous surface (with -

its equation ¥(y) = 0, W(y) € C). We say a solullon Yo(-) of the system (4.12) is
S — conditional stable iff for any ils solution‘y(.) starting {rom the point
y(0) g S we have

. lim (&) — g, O] =0

t— o0
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Theovem 4.1, (of Andronev:Vitt's i¥pe).

Assume the system (4.11) has a k-g.p.s, n(.) to which the corresponding
system in variations (4.12) has one zero characieristic index (of the first order)
and lhe orlhers have negative real paris. o |

Then 1)If_f/&(z)/dt<oo, L O (13)

then for every e > 0 lhere exists te and a number P = B(s) such that
' ) —BE(D T <Te, VI, R 7))

~ 2) There exisls a conlinuous surface S, in a neighbourhood of the point
NOYES, such that w(.) ts S, — conditional stable. .

Proof. Firsl we iransfer the origin of coordinates into the point 7(0).
Then the systems (4.11) and (4.12) bgcome into the forms

v =algw), A 414
u = a(t) g2(v, (1)) u, 4.12)

moreaver, v.(.) is a k—g.p.s. of (4.11), v (0) = 0 while the c.i. of (4.12) remain
unchanged and the unique & —g.p.s. E(.) of (4.12) goes over. into the unique
k —'g.pss. u(.) of (4.12). Now if we carry out the turning transformation of
the coordinate system around ifs origin so that the first axis coincides with the
direction of the vector uy(0), then the form of the systems, fogether with the

. properties mentioned above, are unchanged (of course, with orther function

g(.)). Therefore we can suppose u,(0) = ¢, I (0.
The system (4 12') satisfies all the conditions of Lemma 4.1. Hence it has
a real fundamental matrix of solutions of the form (4.4)
‘ U(t) = @) . diag(Ey. exp(Cyul))y,
From this it follows that the first column of matrix is a k-g.p.s, of (4.121,
However, this system has only a unique k-g.p.s. uy(.). _Thus we can write
{exaclly to a constant multiplier) - ' “

. ® - |
mn=[ii——swaq, L.15)

Tugyy " (%19
where e¢ach ’componenf of U'i(?) is a sum of products of the compontents in @,
except its first column, by the components of exp(Ci(f)). -

1) Dilferentiating both sides of (4.11) with v(.) =v,(.) (it is possible

-~ because the right-hand-side of (4.11°) belongs to C1), we get

v, = A (W E)0, +- all)g(oo()).
We consider- this system as a linear nonhomogeneous system for {J.o(.)
correspond'ing to the homogeneous system (4.12") with the free summand
d(t)g(ti;(f)). Therefore, by the method of varidiion of constants we get

20



R ) Lt : .
r}g(t) = (-t (fo)l;(fo) +J~(.-7(I)U*" (S)(i(s)g(vo(s))ds, or, using (4.4)

fo
Do(l) = QU)diag(E:, expCilu) — u(t)]) . d-UL)(,) +
; .
+J‘d(3) - O ._dia{g(E], expCifu) — w()]) . o-1(s) . Q‘(I:J._,{S)dé‘.
1, ’ -
'Iaklng into account that the first column of matrix &) is i :::gi "
can wrile the last correlation into the form \
i .
D (1) = Bl (B + it Lo) + [fa vat, s, 416
Iy '

where B(t,) = (O71(,) . v(f )). Nu,(0)it % (we denote the first component of a
vector {.) by (.));

” ipl(t, tr)) ” < j“1 i exp [—C((Ll(i) - l«(to))l 0 > — & > max Re }LJ(CI)’
Lel, ) § < 12 exp [—a(uid) — H(S))] ry lor { = s.
Therefore from (4.16) we get

I Volt) — Bl i < 1y exp[—a(ult) — p(t))] +
t

+ 13 f La(s) || ds<ry . exp [— ap’ (t —t)] -+ ral. | ai(_s) | ds. 4.17)

to to

20 .
For &> 0 take #, such that J. | a(s) | ds <7 ¢/2. Then choose lg so large

. ty
that ¢, > 1, and

ri. exp[—aﬁ’ (1)) <2, VE 0,
Putting g=p(Z,), from (4.17) we get

0, (E) = Buo(t) Il << . .
-Translaling all this into the language of the initial sfslem of coordinales,
we get (4.14). ,
2) In lhe system (4.11') we use the substltutlon v =04+ z. We have
2=a)g v, 2 + alty o, 2), TS 18)
where ¢(t, 2)’ = [g(v (1) + 2) — 9] — gy wah)z. _
Thus @), (t, z} = g (v,(t) + ) — g‘(uu(t)) But a(.) and v,(.) are bounded
functions. Hence
alfy. ¢, 2) 2 0, a(®) . @24, 2) =z 0 when z — 0,
t t '
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Moreover qﬁ(t. 0) =0 and 9, (£, 0) =0, consequently in the sufficiently

small ball |l z i < A the fanction a(f). g, s) satisfies the Lipschilz condition
with a sufficienily small coelficient L. Thus the system (4.18) satisfies the -

conditions of the Lemma 4.3 {pay our allention on thal «a(}c(i))g;, @ DY) =

== —ﬂ g}(uv(t}) because v, (k) = vty wt € R,).
k(H .

Therefore the system (4.18) has a (n—1) — parametric family of solutions
L dy(d=(0, d,..., dy), 11 d || is sufficiently small) with the properly lim z(, d)=0.

t—>co
Consider the corresponding selutions of the system (4.11")
' ' oy = v () + 2z, d). (4.19)
Sincé p,(0) = 0, we have v(0) = z(0,d) = z°x(d). By [2]. Chapter 1V,
§20, we conclude that in a n-‘dimensionhl space (v, vy ,..., U,) ( (z(?), z(;J,... , z:’)) )

{0) (o) U(o)
n

there exisls a continuous surface S(;)\vith its equation AR ] C PN )

defined in a neighbourhood of ‘the origin O{;) € S(:)and such that every point

(U(IO), vy v(l':))‘e S(:)corl"esponds to one vector d = (0, d,,..., d.) i d s suff‘iciemly

small, and inversely, the solution »(1),v0) = (U(IO),..., v(lf)) corresponds to the

solution z{t, d) (see' (4.19)). Thus, if the trajector,y v(t) initiates from the point
»0) & S(;” then v (f) — v (8) = z(l, d) > 0 when I - co. '

_ Translating all this into the language of the initial system of coordinates,
we conclude that the solution 7(.) is So-condilional stable, where, S, is S(g) in
the initial coordinates, i. e, it has the properties mentioned in the point 2),

"The proof is ended, - , ¥

Remarks. 1. As we knew, in the case a() = 1, &) = 1, 1() 40, 0

coincides with & (t). However, it ff(.) =5 1, then, saying in general, :n(t) cannot
be a fk-g.p.s. of the corresponding system in variations (see the Remark
in §1V), :

The evalution (4.14) shows that, though 'r]'(t) does not coincide with E(D),
these vectors almost lie on the same line for sufficiently {arge i.

2. In 4]} § V we had

@ty = —2O__ o Ak
- kP [ k1))
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The eondition (4.13) is safisfied, for exqmpie il the order of k(.) is higher than °

the second one (then the boundedness ol a(.).i ¢ inf (1:[‘]) (1) >0, is ensured, too).
. 1€k, ¥
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