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0. — INTRODUCTION

In 1963, in his arlicle [4], MacLane has introduced the notion of calégory
wilh an multiplicalion denoted by @. Furthermore, this multiplication may satis-
fy the associative, commutative and unit constraints; these are Lhe isomorphis-
ms of functors: : ‘

Cdaipic: A@ (B®C) 3 1®B) C.,® (asseciative constraini)
¢ Caypl A@B SER A (commutaiwe cons!rami},

gatASI®A, dy: _,A@l

the triplet (1,g,d) forms an unit constraint; in which 1 is fixed object of the con
sidered category, the associalive constraint must verily the pentagon axiom, the ~
commutative consiraint must have the following property:

Cya- Carg = 104 @n

and g, ==d, for the unit conétraint . .
In this paper, by ® — category we mean a category with a multlplloatlon ®

: An associative econstraint a (commutative constraint ¢, umt conslraint
(1, g, d) of a category 4) is said to be strict il ay, 5, ¢ = ida@p@c for all A B Ce
ObA (resp, Ca,p = idy@p, ga = ida =da).

A g-category 4 together with-an associalive comstraint a and an unit
-constraint (1, g,d) isa ®-AT caiegory il the lollowing triangle commutes -

y
Ae(198) 418, (1005
i ®gs AR Céj@bdg
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A ® - AU category is said to be striel if a and (1, g, d) are btnct, we also
call A a @-strict AU category.

A ® - category together w1th an assoeiative c‘onstraint a and commutative
conslraint ¢ is a g - AC category if the hexagon axiom is fullilled [4].

' A® - category together with an associative o, commulative constraint ¢
and an unit constraint (1, g, d) is called a @ - ACU category if 4 isa ® - AUt
calegory and a ;- AC category. A ®@ - ACU category is said to be sirict if a,-+c
and (1, g. d) are sirict; e Walso call 4 a & - sirict ACU category.

A @ - functor from a { - category A'to a @ - category 4 is a pair (r, I\;)
of a luncior F: 4 —4" and an isomorphism of bifunctors
‘ F‘{ - FAX)® F(Y)—>F (Y.

<1y

A - lunctur (r, }') is said to be etnct it F (XAQY)=F(X) FF) and
IXI = idy g, for all X, Y € ObA.

A®-lun clor (F, Ty from a & - AU category . A to a®- AUcategory A’ is said
to be a @-AU lunclor il there exists an isomorphism F 1" 5 F(1y)and the following
diagrams commules:

S’
Fyy®z
—

| oy
FYXQ FY®FZ) _”‘_@J_’ FXQF (Y ®Z) F(XQ(Y®Z))

F(a

XY, Fz XV, %)

(F

o TFyyideg :  Fyars
NRF)ymFz 2T COFE pivayys Fz ZX2YZ p(x@Y)®2)
. : (0.2)
Fqy ! Fdy :
px 0 FaA@y) X F(X®1)
A 4 e
9y Frx t d’rx Fy 4
I . b i
sy Poid . L idrx®F
1y @ry — SN by @FY Fyety — YO pxeFi,
(0.3) T

The purpose of this paper is to prove that every @ - AU category is ®-AU
équivalent to a @ - strict AU category (in the sense of [2]. Hence we obtain
h: MacLane s coherence theorems [t - i

1. A-CATEGORIES 7

Definition 1.1. Let X be a category, A a ®- AU category We say that
4 right action of A on X is given :f we have;
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a) a functor w: X><A-->X

we write o(X, 4) = X. A, o(u, ) = u. f for all X € ObX, AE ObA and u: X -7,
f:A— B;

b) an isomorphism of trifunclors
X, A B~ X (1@8)—}(\ '{) B

¢} an isomorphism of functors
bx: IZX. 1

such that the following diagrams are commulalive

s iy
X(A®(BOC) —=X “ABC, X(A®B)OC)

o< :
XAB8C *x,A®@B,C

(X.A)-(BoC) (X(A®B)).C

By i pold
“h((m)s)c hale

(1.1.1

X teA) XA, (x .4 - KABD ZHAL(CA). !

LC&.g,A JX-LdA i,dx.dzA o JX.A
XA | X.A

(1.1.2) AL

Definition 1.2. Let A be a ® - AU category. A category X is said to he a
right A-category if and only if a right action of A on X is given.

Example 1.2.1. Let R be a commutalive ring with identity element and
Mod R the category of all R-modules. It is easy lo see that Mod R is a ®-AU
“category, in which the multiplication ® is the tensor product of R-modules, the
associative and unil constraints are the canonical isomorphisms: !

as, p. C-A®(B®C)—;-(A®B)®C.
PAS Re4, d A ARR

Mod R will be a right Mod R - cafegory if we define a right actlon of Med R

on itself as follows:
w{X, A_) =X®A,
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&y, 4. B —-—a\ LB3 X@(4‘1®B)~—>(X® 4® P,

In general, il A is a ®- AU category with an AU constraint («, (1, g. d)),
A is a right A - category il we define a right action of A on itsell as follows:
w(N, )= X@®A4,
Ax A = A A B
by = dx,
Then the right A-c’ategory A is denote by Aq.
Similarly, we can deline a lelt A-calegory.

Throughout the rest of this paper we will only consider the right A-cate-
gories, which will simply be called A-categories.

Definition 1.3. Let X be an A-category, X' a A’-categor} A fuanctor from
A-category X to A’-category X’ is a triplet (F, F (T, T)), in which F is a functor
lmthoX (T, T): A— A" is a ®-AU functor;

Pt F(NLA) S FX.TA
isan isomorphism of bifunctors, such that the [ollowing diagrams are commutative :

— S

® idrx. T a.B
~FY, TA@ B~ ™ FX.(TAGTH
F (oix,A,B) ldFX. TA), TR
' 7 Fes id
1
FUX. 4. B) —2 0 Fx.a). 7B —SR (FX TALTB
(1.3.1
F (bx .
‘ I _ Gy F(x.1)
FX l - j
. ,oddex. T -
FX 1) ——— FX.T'1,
(1.3.2

Af A =4, (T, T) = (1d id), then (I, F, (id, xd)) is called A- lunc[or and deno-
ted by (F, .

Example 1.3.3. Assume that Aisa @-AU category and A is an objeet of A
" Consider the functor ®;: Aq — A4 defined by

Oy (X)=A® X, ¥ € ObAq
d’A‘ (H) == ldA ® u, u G FIAd

Set (dh\)x,B = fa,xp 0 tbx (X. B) S&,(X) B 1t is Lasv to verify that (®,, <I)A) 18 an
A-functor. .
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Proposmon 1.4. Let (F, F (T, T)) be a functor from an A-category X fo an
A’-eategory X' and (F’ 7, aT, T ")) a functlor from the A’-category X' o an A”-ca-
tegory X", Then (G, G, (U, 1)), in which :

G = F'F, (U, T} = (T'T, TT),

and G\,\ is defined by the following commutatwe diagram

F 1—(}( A) =G(X.A) ,__L__, GX.UA =FFX.T'TA

FOFy a) | F/
A FUEX.TA) FXTA

(1.4.1)

is a funetor from the A-category X to the A”-category X"
Proof.—It is sufficient to check the commutativity of (1.3.1) and (1.3. 2) for

(&, G. (U, 7). First, we consider the 101!0W1ng diagram (1.4.2), in which (I) is

commutalive by the definition of (I, F, (T, T)), (I) and (V) are commutative
since F’ is an isomorphism of bliunctors (III) and (V) commute obviously; (IV)

commutes by the definition of @, F, (T, 'I‘)) Therefore the ouler border is
commulatwe and this is just the dlagram (1.3.1) for (G, G, (U, ).

Now consider the diagram (1. 43) in which (I) commutes obviously; (II) is

_. commutative by the deflmuon of (F, F, (T, CI)) (111) by the definition of (F’, F
r T3 (IV) is commutative sinee I is an isomorphism of bifunctors. Therelore
the outer border is commutatwe and it is just the diagram (13.2) for (G, G U, U))

: Fr(EX,A@B F FX,T(AB) tde'es. T Th.p)
FE(X.(A®B) —* F'(FX.T(A@B))-—'"—'——’—-F'FY T'T(AQB) ~——— F'FX.T(TA®TH)
F’(idFXQ?A.B) i y (ID ld:-"Fx.T’ (TA.B) (11D !dgr’TA»TBT

, FEX.TA®TB ld@T 14, 1B
F(FX(TA®TB)————#F FX.T(TAQTB™

F'Flox.a.p) (D F'(&'Fx.ra,18) ‘ : (Iv) La-”F’FX.'l"TA,’I"TB
\ :

» - .‘ I‘" X. [} F d y 1 y
FUUEY . TA.TB——2TA02 B (FX.TA..T'TB --ﬁf—‘—li»‘f(r FY.T'TA).T'TB

= i . o~ ~,
Y F'(Fx,a.idT) l {V) F(Fx,A). ]idT’TB (VD) 1 F rx,1AldTTB

s ) F,(\,F"'~ )‘.d A ’
PR(X.A).B) — F(FIX.A).TB) Froa). 12 FHEX.A) . .T'TB ————= F'(FX.TA4).TB'TB

(1.4.2
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(b
FFY e pRY X e b

(D ' ’F'(f”f-'x) (1D IF’(Fx.l)
L)
F(8' ) Fud.T)
FPY =2 pp gy D) e i)
67"y (IID F'FX.L\‘ vy L F'rx, 1
F'FX. 14" — = FFX. T 13 ——— — F'FX.T'I't
id. F'udy, T(T)

{1,4.3)

Definition 1.5. Let (F, F, (T, Ef')) and (G, G, (', f’/)) he two functors from an
A-category X to an A'-catégory X'. A pail ((p, z),-in whichg: F— G, ©: (I, fj —

(U, T, is called a morphism flom (F, F, (7, 1‘)) to (G, G, (U, L)) if the following
diagram

¢ - -
V n e I"x.‘\ hE Lol s
F(X.A) —» FX.TA

\ : ®x- A l > L PxTa

}x!A *

, ‘ G (X. A) —> GX.UA
C(1.5.1)
_is commutative,
When A= A', (7. T’) =, 0) = (d, id}. (9, id) is denoted by ¢ and called an
. A-morphism. .
' Example 1.5.2. Assume that (®,, QA) and ($g, d>B) are A- funclon. from Aq to
itself, f: 4 ~» B is a morphism in A, (example 1.3.3). Set

(Df (A):f@ ldx: A‘(R)-—-)‘DB (‘\).

"Then ®; is an A-morphism. In fact, from the fact that the associalive constrainl a is
- an isomorphism of frifunctors it follows that ke following diagram

(®x o |
B XD =48 (N @ D) — = (4 @Y) @ D =0, (X).D
: ’ O (X. 1)) l O (X).idp
E - leV(X D=B®X®D) (B®X) @D =0y N).D

(Be)x.p :
‘commulative : ; i.e we obtain the diagram (1.5.1).

Definition 1.6. A [unctor (F, F, (T, T)) is Ldlled an equivalence if and only if
ad T are equivalences.
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2. ® - STRICT AU CATEGORIES .

2.1. In this section we'-on'ly use A-categories .1q and A-functors. Then the diagrams
(1.3.1) and (1.3.2) have the simple lorms:

F(X.(1® B)) L®A0 . FX.(A® B)

) I'(ax,4.8) ' 1 AN
FX.D.B) ——— FX 4B - (FX..HH DB
Fyoag Iy oidyg
(2.1.1)

/F(X 1)
c?\
FX FX1/

(2.1.2)
Definitien 2.2, 4 ®-4AU category A with an AU constraint («, (1, g, d)) is .
called siricl if and only if
e spsc == idA,]x,c for all 4, B, C & ObA,
gy = idpy = d,  forall .1 &€ ObA.

Propesition 2.3. The category End (Ay) of all “A-functors from A, to itsell
with. the multiplication ® defined by the ollowing relalions:
(F", Fy @ (F, Ty = (F°F, F'T') for all (F, I, (F, I”’) in End (A (23.1)
' ’ =9, o) = . (2.3,
@ Q@) =g () (9L (2.3.2)

for g1 (F, ) (G, G). ¢: (I, ) = (G, G’),
is a @ - striet AU calegon
Proof. It is easy to see that End (Aq) is a categon’ Now we prove that the

multiplication is a bifunctor. First, we verily thal ¢’ @ @ is an A - morphism. In
fact, we have the following diagram

. P ) : o
E'F(Y . A) XA FP(FX . 4) FX.A F'FX. 4
: ’ e L .
F (fpx_A)l @ F (cpx.mA)l (1) Fg,- l,d,,
— g ot i
FPG{X..) FlGy ) FU(GY. ) F6xX:d o FGX. A .
"9 a(x. 1) [ Mmn Pexa ‘L (v l(p’ﬁx-idA
GGX + A) —————— s G(GX . A) = —~ G'GX .+ 4
G'(Gx,a) G ox.a

188



in which (I) and (IV) are commulative since ¢ and.qa’ are the A— morphisms ; (1I)

e
commutes since I is an isomorphism of bifuncfors; (III) commutes since ¢ 1s an
isomorphism of functors. Therefore the ouler border is commutative and this pro-
ves that ¢'®p is an A-morphisn. :

From (2.3.2) it follows that:

(id e oy ® Bd(p T )x = idppy - Flidpy) = idppy, Mdppy =
= idppy = dE Fy@ ¢, P )
idip oy ®idp R =de P eE:
Let ¢ : (F, F) - (G, (T) e (I, F”) — ({7, (;/)
v (G G - (I v (6, &) —»dr, I,
We have :
[0 ®¥) @ @ 9)lx = (1 ® Wx (@ @ Px = Pz 6 (¥x) 9gx F7 (#5) =
- HHX (?HX F (ux) F’ (px) = ('{ij @ Dux I ((’LIJ(P)\) = (I-P (P '® Pp)s. i.e
WO @R =1"178 v .
Thus End (Ay) is a category. Furthermore, from the diagram (1.L1), il
follows that : -
' (F"FYF = " (I’ F).
Hence we have :
(F”, By (17 F)) (. F) = (7 B By (F7F) )
(F” (" F), F° F By (. Ty (F Py (B ).
We also have:
(id, id) ® (F, Iy = (F, ') = (', I') @ (id, id).
Moreover, for ¢: F -G, : F' — G, 9”1 F”" > &7, we have:
(9" ® tp) @Px =@ @lx F” F (9x) = (p;'cx F” (guy) P (F ¢x) =
= Oprox I (0px 7 (@) = 9oy F7 (97 @ 9)0)=(9" ® (¢° ® ®))x
and [or ¢: F = G, id : id — id, we have obviously :
| (d ® 9)x = ox = (9 & id)x.

Thus, End (Ad) is a @-strict AU category.
Theorem 2 4. Let A be a ®-AU category with (a, (1, g, d)) as AU consltraint,
Then A is @ - AU equivalent o the @ - strict AU category End (Aq).

Preoof. We define a @ - AU lunctor (9, fD) liom the ® - AU calegory A 1o
the @ - AU calegory End (A4) as [ollows:
Al (P o)
f[""* q’g .




’

wilh (@, 6_\) and @; given b.y the examples 1,35 and 1.5.2 1'espectively_; and

O, @0, >0, o

is an isomorphism of [unciors define by
(@ )= Qpx' Py ® P N) > P gy "
One can easily verify that (®. 6) s0 delined is a @ - AU funclor.

Now we define a quasi-inverse
i End (Ag) > A

of ® by the following relations :

w (B, Ty = FI, tor all (F. F) € Ob End (Ay), (2.1.1)
W (g = ¢, for all ¢ & I'l End (Ay), (2.4.2)
Y is a functor because : .
Wiid ~) = Id _:: dlld - '
F.F lp' [‘ o
(F,F) ( &

¥ () = (ho), = wl Py =y () ¥ (¢

We deline the isomorphisms ©: y ¢ = ida: z5: OV S 1dE a(ag) 88 10110?&%
ry=d7l _ (2.1.3)
T =1y 1 ' oy
(r (F. 1“))x = I (qx_ ) F].X' - (.-)a.:L.i)
We sec that T,(r}") is air A - morphism. In fact, we have the [ollowing diagram.
L] 9 hd
in which () commutes obviously ; (II)is jusl the commultative diagram (,2. 1. 1); iD)
is commultative since F is an isomorphism of bilunctors ; (IV) commutes since A
is a ®@ — AL category. Therelore the outer horder is commulative and thlb proves
that ¢° _ ~ is an A-morphism,
(F, F)
Oy (X 4) = [1 ® (X ® ) Frpys = = apxa (1@ X)® 4 = ¢11(X)
.o
Tl*l\\(l) Tn\a :
Fa @(\ ®=rFA@E®4) ) |Fu.id ,
. (l\)[(ﬂ;\\)l—»](dl\\) | T

‘ 1v‘<gx®,\uf«1 ee.l) 1 r1e)) e

Flgx@idd) = T P(gxidy) () T F(gx).idy

N

FX@A)=rXed Iz Fyed
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v

. Thus ¥ is a quasi-inverse of ® and (@, ®) is a @—.1" equivalence, so the lheorem
is proved. ' '

. Lemma 25 Tet A and .1" (o be the @ - Al "valegories, (¢, ®): A — A" a
® — AL Tunclor, X a product of a linite family (N);e; of objects in o4 and X" a
producl in A’ in which when instend of X; we have ®(Xp). Then every morphism
@i ON <> X" construeted from &1, %, id and @ in A

is equal.

‘Proof. We proceed the proof of lemma by induction on the numbers of
elements-of 1. Faor I = | o} onr lemma holds obviously. Assume t{hat [ has n > 1
clements and the lemma is true For every & < n. We always ean wrile N =Y @ Z.
Since p constructed from -1, @', id and ® in A% we see that w must be (he
composition of the lollowing morphisms:

. - 3 -

. LY . L Y®A . ;
V) =0V ®72) — 0()® ¢) —= V'@ 2 here Y and Z are the products .
of (X)jey, and (Niher, respectively, [y | | fo = L Y. 2" defined as the same of

“ o S ey
- X7and v. & are construcled from &1 &', id and @ in .. X'=Y'® 7", By assump-
tion v. A are unique. Therefore the lemma is proved.
Corollary 2.6. (Maclane’s coherence theorem). Let A bea ®-AU category with
an AU constraint (a. (1. ¢, )). Then a. ¢. d are coherent (in the sense of [41).
Proof. Assume that we have the diagram
' V.
3,4
: 5 —> Y4
g V2?3 : ) \’475
rY . . Y
2 S
e /
T s ! . ;’
\)1}2 A
Y «— Yn y
n.4

"in which Y is the producl of a Cinite family (Xj)_iéli_ li == ¢ and the set of Is.jel

sdch thal Nj<= 1 is the same for i = l.., n; vy and vy are constructed from
a,a’', g, g4 d, d-1, id and @ in A. i = l.... n—1. We must provet hai this diagram
~Is commutative. We can always assume that every v consists only one of a, -1,
gL d dY

To prove the commulative of the given diagram, we will prove that the
following diagram commutes in End (Ajy)
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- G
ey — &y,

@(\y \JCP (\) A 5)'

O, ,
O 5, 2001 5,/

(2.6.1)

here (®. ®) is the @-AU equivalence in the proof of theorem 2.2. By the compali-
bility of (&, 5) with AU constraints we can consiruct on each edge of the diagram
(2.6.1) a rectangular which opposition edge of @ (v) is identity. Thus we can extend
the diagram (2.6.1) to the diagram

a
P

Ya
@Ys (3,4_) QK‘_/

%’,3\ \@(

Yz —28 — Vs
) ,’,, p
'\@("4 2 Y |
&( p
4
\ Y
Y

in which ¥; is the product in A’, in which when instend of X, j&I; we have
® (X,). i=1...., n and the morphism ®}; — Y, is constructed from E)—},ﬁ"’, id and
® in End (Ay). By the lemma 2.5 the rectangulars are commutative, The outer-border
is commutative obviously. Therefore the diagram (2.6.1) is commuiative. Since @ is
- an equivalence, so the given diagram is.

Theorem 2.7. Every @-ACU category is ®-ACU equiv dlcnt to a @-ACU Y

category which is a ®-strict AU category.

Proof. Assume that A is a @-ACU category. Then End (A,) is also a ®-ACU
category, furthermore it is a @-strict AU category, The ®-AU equivalence (®, 5) is
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compatible with the commutative constraints (Ch. 1, 1, prop. 5, {2]); i. e ®-ACU cate-
gory A is ®-ACU equivalent (0 the ®-ACU category End (Ag).

Theorem 2.8. Every @-associative category is ®-associalive equivalent to a
®-St1 ict associative category. ;

Proof. Let" A he a @-category with an associative constr’unt a, We construcl
a @-AU category € as follows:

0bC=ObAU f1}.

where 1 is a symbol.

Home (4, B) = Homy (4. B), if A, B € ObA, (2.8.1)

Home (1, A) = Homge (A, 1) =¢. for all 4 € ObA ) (2.8.2)

Homg (1, 1) = id;, (2.8.3)

d®e B =4®B. il A, B € 0ba, (2.8.4)
¥ d®1 =1@® 4 =14, for all .1 € ObC {2.8.9)
) [@ch = @[ sh il [, h € FIA (2.8.6)
f®idy = idy® [ = [, lfor all [ € FIC (2.8.7)

From (2.8.6) and (2.8.7), it follows that:

ids ®c idg = ids @ ids = id s @p. if A, B & ODA.

id, @ idy = idy = id; ®s = id, @c ida. o,
‘(f ®cg)(he@k)=fh@gk. il f,g. Ik & FIA,

(f ®c idy) (h @ idy) = [l = [h @ id

(id ®@cf) (id @ h) = fh=id ® fh. -

In C we define the AU constraint (a, (1, g, d)) as follows:

@ yae = dane il A, B, C &€ ObC,
a'ra.p = @y = Capg == id,@p lor all 4,B& ObC

. gg\’ = ld\ = d_,\'.

t is easy to see that «’, ¢’ &’ are isomorphisms of lunclors and satisfy the
.axiom and the diagram (0.1)

_ rmore, they are compqt]ble

WE can estabhgh a ®-AU cquivalence.

(0. ): C ~ End (Cy).

tegorvy (A) @-slable generated bj’ ® (A) [2], in which each




(F. F) = ((b*x ?ﬁ 1® . ® (s, 5: ) Al,l. A < Ob4. We denote it
by < @ (A) >. It is easy to see that < @ (dy>isa @qtl iet associative category and
the resirict on A of (@, ®) is @- -associative functor from A 1o < ® (4) >, The resir Ict

on << ® (A) > of (¥, ‘}’) is also a ®@-associative functor from <OP(A)>toAd since

WOy 0 )B @@ L @y ) =0, .. D (1) =

= 4840 . QA O .) = 4,8 (4, ®(.®(Ar, R A)..) € ObA.
Thus A = <O(A)>,

1
r

Corollary.2.9. Let A be a ® - associative category wilh the assoclatlve cons-
traint a. Then a js coherent (in the sense of [4]).

~ Proof. It follows immediately {rom the theo‘rem 2.8 and the corollary 2.6,

Theorem 2.10. Lvery [-AC! category is - AC equivalent to a ®-AC
category which is.a & — strict associative category.

Proof. Assume that A is a @ - AC calegory with associative consiraint a and

commutalive conslraint ¢. We counstruct a & - -category C as in the proof of the
theorem 2.8, on which we define the commutative constraint ¢’ as fOUO‘.\S.

€y, = Cp,p» if A. B € ObA,

1= c’-1 4 = ids forall 4 € ObC.

It is easy to see ﬂl'tl ¢’ is an isomorphism of bifunctors and C isa @ - ACU
category.

As the proof of the theorem 2.8, we oblain: ' ’

A <OA)>
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