\otimes - STRIC TAU CATEGORIES

NGUYÊN DUY THUẬN Pedagogical Institute N°1 of Hanoi

o. - INTRODUCTION

In 1965, in his article [4], MacLane has introduced the notion of category with an multiplication denoted by \otimes . Furthermore, this multiplication may satisfy the associative, commutative and unit constraints; these are the isomorphisms of functors:

$$a_{A};_{B};_{C}:A\otimes (B\otimes C) \xrightarrow{\sim} (A\otimes B) C, \otimes (associative \ constraint)$$

$$c_{A,B}:A\otimes B \xrightarrow{\sim} B\otimes A. \ (commutative \ constraint),$$

$$g_{A}:A \xrightarrow{\sim} 1\otimes A, \ d_{A}:A \xrightarrow{\sim} A \otimes 1,$$

the triplet (1, g, d) forms an unit constraint; in which 1 is fixed object of the considered category, the associative constraint must verify the pentagon axiom, the commutative constraint must have the following property:

$$c_{B,A}$$
, $c_{A,B} = id_A \otimes_B$:

and $g_1 = d_1$ for the unit constraint.

In this paper, by \otimes — category we mean a category with a multiplication \otimes An associative constraint a (commutative constraint c, unit constraint (1, g, d) of a category A) is said to be *strict* if a_A , a_B , a_B = id $a_A \otimes a_B$ = id $a_$

A \otimes -category A together with an associative constraint α and an unit constraint (1, g, d) is a \otimes -AU category if the following triangle commutes

$$A \otimes (1 \otimes B) \xrightarrow{\alpha_{A,1,B}} (A \otimes 1) \otimes B$$
 $id_A \otimes g_B \xrightarrow{A \otimes B} d_A \otimes id_B$

 $A \otimes -AU$ category is said to be *strict* if a and (1, g, d) are strict, we also call A a \otimes -strict AU category.

A \otimes - category together with an associative constraint a and commutative constraint c is a \otimes - AC category if the hexagon axiom is fulfilled [4].

A \otimes -category together with an associative a, commutative constraint c and an unit constraint (1, g, d) is called a \otimes -ACU category if A is a \otimes -AU category and a \otimes -AC category. A \otimes -ACU category is said to be strict if a, $\cdot c$ and (1, g, d) are strict; e W also call A a \otimes -strict ACU category.

 $A \oplus -functor$ from a \otimes -category A' to a \otimes -category A is a pair (F, F) of a functor $F: A \rightarrow A'$ and an isomorphism of bifunctors

$$F_{X,Y}: F(X) \otimes F(Y) \rightarrow F(X \otimes Y).$$

A \otimes - functor (F, F) is said to be strict if $F(X \otimes Y) = F(X) \otimes F(Y)$ and $F_{X,Y} = \mathrm{id}_{X \otimes Y}$ for all $X, Y \in \mathrm{ObA}$.

All category A' to a \otimes - AU category A' to a \otimes - AU category A' is said to be a \otimes -AU functor if there exists an isomorphism $\widehat{F}: 1_A' \xrightarrow{\sim} F(1_A)$ and the following diagrams commutes:

$$FX \otimes (FY \otimes FZ) \xrightarrow{\operatorname{id}_{FX} \otimes \widetilde{F}_{YZ}} FX \otimes F(Y \otimes Z) \xrightarrow{\widetilde{F}_{XY} \otimes Z} F(X \otimes (Y \otimes Z))$$

$$\downarrow a'_{FX,FY,FZ} \qquad \qquad \downarrow F(a_{X,Y,Z})$$

$$(FX \otimes FX) \otimes FZ \xrightarrow{\widetilde{F}_{X,Y} \operatorname{id} \otimes FZ} F(X \otimes Y) \otimes FZ \xrightarrow{\widetilde{F}_{X} \otimes Y,Z} F(X \otimes Y) \otimes Z)$$

$$\downarrow fX \xrightarrow{F(q_X)} F(1 \otimes X) \qquad \qquad \downarrow fX \xrightarrow{F(d_X)} F(X \otimes Y) \otimes Z$$

$$\downarrow fX \xrightarrow{F(q_X)} F(1 \otimes X) \qquad \qquad \downarrow fX \xrightarrow{F(d_X)} F(X \otimes Y) \otimes Z$$

$$\downarrow fX \xrightarrow{F(q_X)} F(1 \otimes X) \qquad \qquad \downarrow fX \xrightarrow{F(d_X)} F(X \otimes Y) \otimes Z$$

$$\downarrow fX \xrightarrow{F(q_X)} F(X \otimes Y) \otimes FX \xrightarrow{F(X)} F(X \otimes Y) \otimes Z$$

$$\downarrow fX \xrightarrow{F(Q_X)} F(X \otimes Y) \otimes FX \xrightarrow{F(X)} F(X \otimes Y) \otimes Z$$

$$\downarrow fX \xrightarrow{F(Q_X)} F(X \otimes Y) \otimes FX \xrightarrow{F(X)} F(X \otimes Y) \otimes Z$$

$$\downarrow fX \xrightarrow{F(Q_X)} F(X \otimes Y) \otimes FX \xrightarrow{F(X)} F(X \otimes Y) \otimes Z$$

$$\downarrow fX \xrightarrow{F(Q_X)} F(X \otimes Y) \otimes FX \xrightarrow{F(X)} F(X \otimes Y) \otimes Z$$

$$\downarrow fX \xrightarrow{F(Q_X)} F(X \otimes Y) \otimes FX \xrightarrow{F(X)} F(X \otimes Y) \otimes Z$$

$$\downarrow fX \xrightarrow{F(Q_X)} F(X \otimes Y) \otimes FX \xrightarrow{F(X)} F(X \otimes Y) \otimes Z$$

$$\downarrow fX \xrightarrow{F(Q_X)} F(X \otimes Y) \otimes FX \xrightarrow{F(X)} F(X \otimes Y) \otimes Z$$

$$\downarrow fX \xrightarrow{F(Q_X)} F(X \otimes Y) \otimes FX \xrightarrow{F(X)} F(X \otimes Y) \otimes Z$$

$$\downarrow fX \xrightarrow{F(Q_X)} F(X \otimes Y) \otimes FX \xrightarrow{F(X)} F(X \otimes Y) \otimes Z$$

$$\downarrow fX \xrightarrow{F(Q_X)} F(X \otimes Y) \otimes FX \xrightarrow{F(X)} F(X \otimes Y) \otimes Z$$

$$\downarrow fX \xrightarrow{F(X)} F(X \otimes Y) \otimes FX \xrightarrow{F(X)} F(X \otimes Y) \otimes Z$$

$$\downarrow fX \xrightarrow{F(X)} F(X \otimes Y) \otimes FX \xrightarrow{F(X)} F(X \otimes Y) \otimes Z$$

$$\downarrow fX \xrightarrow{F(X)} F(X \otimes Y) \otimes FX \xrightarrow{F(X)} F(X \otimes Y) \otimes Z$$

$$\downarrow fX \xrightarrow{F(X)} F(X \otimes Y) \otimes FX \xrightarrow{F(X)} F(X \otimes Y) \otimes Z$$

$$\downarrow fX \xrightarrow{F(X)} F(X \otimes Y) \otimes FX \xrightarrow{F(X)} F(X \otimes Y) \otimes Z$$

$$\downarrow fX \xrightarrow{F(X)} F(X \otimes Y)$$

The purpose of this paper is to prove that every \otimes -AU category is \otimes -AU equivalent to a \otimes - strict AU category (in the sense of [2]. Hence we obtain the MacLane's coherence theorems [1].

1. A - CATEGORIES

Definition 1.1. Let X be a category, A a \otimes -AU category. We say that a right action of A on X is given if we have:

- a) a functor $\omega : \mathbf{X} \times \mathbf{A} \to \mathbf{X}$, we write $\omega(X, A) = X \cdot A$, $\omega(\mathbf{u}, f) = \mathbf{u} \cdot f$ for all $X \in \mathrm{Ob}\mathbf{X}$, $A \in \mathrm{Ob}\mathbf{A}$ and $u : X \to Y$, $f : A \to B$;
 - b) an isomorphism of trifunctors

$$\alpha_{X,A,B}:X\cdot(A\otimes B)\stackrel{\sim}{\to}(X\cdot A)\cdot B;$$

c) an isomorphism of functors

$$\delta_X: X \stackrel{\sim}{\to} X \cdot 1$$

such that the following diagrams are commutative

$$X.(A \otimes (B \otimes C)) \xrightarrow{id_{X}.a_{A,B,C}} X.((A \otimes B) \otimes C)$$

$$(X.A).(B \otimes C) \qquad (X.(A \otimes B)).C$$

$$(X.A).B).C \qquad (X.A).B).C \qquad (X.A).B).C$$

$$X(A \otimes A) \xrightarrow{\alpha_{X,A,B}} (X.A).A \qquad X.(A \otimes A) \xrightarrow{\alpha_{X,A,A}} (X.A).A$$

$$id_{X}.g_{A} \qquad \delta_{X}.id_{A} \qquad id_{X}.d_{A} \qquad X.A$$

$$(1.1.2) \qquad (1.1.3)$$

Definition 1.2. Let A be a \otimes -AU category. A category X is said to be a right A-category if and only if a right action of A on X is given.

Example 1.2.1. Let R be a commutative ring with identity element and $\operatorname{Mod} R$ the category of all R-modules. It is easy to see that $\operatorname{Mod} R$ is a \otimes -AU category, in which the multiplication \otimes is the tensor product of R-modules, the associative and unit constraints are the canonical isomorphisms:

$$a_{A, B, C}: A \otimes (B \otimes C) \xrightarrow{\sim} (A \otimes B) \otimes C,$$

 $g_{A}: A \xrightarrow{\sim} R \otimes A, \quad d_{A}: A \xrightarrow{\sim} A \otimes R.$

Mod R will be a right Mod R - category if we define a right action of Mod R on itself as follows:

 $\omega(X, A) = X \otimes A,$

$$\alpha_{X, A, B} = \alpha_{X, A, B} : X \otimes (A \otimes B) \stackrel{\sim}{\to} (X \otimes A) \otimes B,$$

 $\delta_X = d_X : X \stackrel{\sim}{\to} X \otimes R.$

In general, if A is a \otimes -AU category with an AU constraint (a, (1, g, d)), A is a right A-category if we define a right action of A on itself as follows:

$$\omega(X, A) = X \boxtimes A,$$

$$\alpha_{X, A, B} = \alpha_{X, A, B},$$

$$\delta_{X} = d_{X},$$

Then the right A-category A is denote by Ad.

Similarly, we can define a left A-category.

Throughout the rest of this paper we will only consider the right A-categories, which will simply be called A-categories.

Definition 1.3. Let X be an A-category, X' a A'-category. A functor from A-category X to A'-category X' is a triplet (F, F, (T, T)), in which F is a functor from X to X'; (T, T): $A \rightarrow A'$ is a \otimes -AU functor;

$$\widecheck{F}_{X,A}:F(X.A) \cong FX.TA$$

is an isomorphism of bifunctors, such that the following diagrams are commutative:

$$F(X, (A \otimes B)) \xrightarrow{F_{X, A} \otimes_B} FX, T(\widehat{A} \otimes B) \xrightarrow{\operatorname{id}_{FX}, T_{A,B}} FX, (TA \otimes TB)$$

$$\downarrow F(\alpha_{X,A,B}) \qquad \downarrow \alpha_{FX, TA}, TB$$

$$F(X, A), B) \xrightarrow{F_{X,A,B}} F(X, A), TB \xrightarrow{F_{X,A}, \operatorname{id}_{TB}} (FX, TA), TB$$

$$(1.3.1)$$

$$FX \xrightarrow{F(\delta_X)} F(X, 1)$$

$$FX \downarrow \qquad \qquad \downarrow \widetilde{F_X}, 1$$

$$FX.\mathbf{1}_A, \xrightarrow{\mathrm{id}_{FX}. \widehat{T}} FX.T\mathbf{1}_A$$

$$(1.3.2)$$

If A' = A, (T, T) = (id, id), then (F, F, (id, id)) is called A-functor and denoted by (F, F).

Example 1.3.3. Assume that A is a \otimes -AU category and A is an object of A Consider the functor $\Phi_A: A_d \to A_d$ defined by

$$\Phi_{A}(X) = A \otimes X, X \in ObA_{d}$$

$$\Phi_{A}(u) = id_{A} \otimes u, u \in FlA_{d}.$$

Set $(\widetilde{\Phi}_A)_{X,B} = a_{A,X,B}$: $\Phi_A(X,B) \xrightarrow{\sim} \Phi_A(X)$. B. It is easy to verify that $(\Phi_A, \widetilde{\Phi}_A)$ is an A-functor.

Proposition 1.4. Let $(F, \widehat{F} \mid (T, \overline{T}))$ be a functor from an A-category X to an A'-category X' and (F', F', (T', T')) a functor from the A'-category X' to an A''-category X". Then $(G, \widecheck{G}, (U, \widecheck{U}))$, in which

$$G = F'F$$
, $(U, \widecheck{U}) = (T'T, \widecheck{T'T})$,

and $\widetilde{G}_{X,\Lambda}$ is defined by the following commutative diagram

$$F'F(X.A) = G(X.A) \xrightarrow{\check{G}_{X,A}} GX.UA = F'FX.T'TA,$$

$$F'(\check{F}_{X,A}) \xrightarrow{\check{F}'(FX.TA)} F'(FX.TA)$$

$$(1.4.1)$$

is a functor from the A-category X to the A"-category X".

Proof.—It is sufficient to check the commutativity of (1.3.1) and (1.3.2) for $(G, \widetilde{G}, (U, \widetilde{U}))$. First, we consider the following diagram (1.4.2), in which (I) is commutative by the definition of (F, F, (T, T)); (II) and (V) are commutative since F' is an isomorphism of bifunctors; (III) and (VI) commute obviously; (IV) commutes by the definition of $(F', \widecheck{F}', (T', \widecheck{T}'))$. Therefore the outer border is commutative and this is just the diagram (1.3.1) for (G, G, (U, U)).

Now consider the diagram (1.4.3), in which (I) commutes obviously; (II) is commutative by the definition of (F, F, (T, T)); (III) by the definition of (F', F')(T', T'); (IV) is commutative since F' is an isomorphism of bifunctors. Therefore the outer border is commutative and it is just the diagram (1.3.2) for $(G, \check{G}, (U, \widecheck{U}))$.

$$F'F(X,(A \otimes B)) \xrightarrow{F'} F(X,T(A \otimes B)) \xrightarrow{F'} FX,T(A \otimes B) \xrightarrow{F'} FX,T'(TA,B) \xrightarrow{F'} FX,T'(TA \otimes B) \xrightarrow{F'} FX,T'(TA \otimes TB) \xrightarrow{F'} FX,T'(TA \otimes TB) \xrightarrow{F'} FX,T'(TA \otimes TB) \xrightarrow{F'} FX,T(TA \otimes TB) \xrightarrow{F'} FX,T$$

$$F'FX = F'FX \xrightarrow{F'F(\delta_X)} F'F(X, 1)$$

$$\downarrow F'(\delta'_{FX}) \text{ (II)} \qquad \qquad \downarrow F'(F_{X, 1})$$

$$F'FX \xrightarrow{F'(\delta'_{FX})} F'(F, 1_{\Lambda'}) \xrightarrow{F'(id \cdot \widehat{T})} F'(FX \cdot T1_{\Lambda})$$

$$\downarrow \delta''_{F'FX} \text{ (III)} \qquad \qquad \downarrow \widetilde{F'}_{FX, 1_{\Lambda'}} \text{ (IV)} \qquad \qquad \downarrow \widetilde{F'}_{FX, T1}$$

$$F'FX \cdot 1_{\Lambda''} \xrightarrow{id \cdot \widehat{T'}} F'FX \cdot T' 1_{\Lambda_1} \xrightarrow{F'(id) \cdot T'(\widehat{T})} F'FX \cdot T' 11$$

$$(1, 4, 3)$$

Definition 1.5. Let (F, F, (T, T)) and (G, G, (U, U)) be two functors from an **A**-category **X** to an **A**'-category **X**'. A pair (φ, τ) , in which $\varphi: F \to G$, $\tau: (T, T) \to (U, U)$, is called a *morphism* from (F, F, (T, T)) to (G, G, (U, U)) if the following diagram

$$F(X.A) \xrightarrow{\widetilde{F}_{X,\Lambda}} FX.TA$$

$$\varphi_{X\cdot\Lambda} \downarrow \qquad \qquad \varphi_{X}.\tau_{\Lambda}$$

$$G(X.A) \xrightarrow{\widetilde{G}_{X,\Lambda}} GX.UA$$

is commutative.

When $\mathbf{A} = \mathbf{A'}$, $(T, \widetilde{T}) = (U, \widetilde{U}) = (\mathrm{id}, \mathrm{id})$, (φ, id) is denoted by φ and called an \mathbf{A} -morphism.

Example 1.5.2. Assume that $(\Phi_A, \widecheck{\Phi}_A)$ and $(\Phi_B, \widecheck{\Phi}_B)$ are **A**-functors from A_d to itself, $f: A \to B$ is a morphism in **A**, (example 1.3.3). Set

$$\Phi_{\mathrm{f}}(X) = f \otimes \mathrm{id}_{\mathrm{X}} : \Phi_{\mathrm{A}}(X) \to \Phi_{\mathrm{B}}(X).$$

Then Φ_f is an A-morphism. In fact, from the fact that the associative constraint a is an isomorphism of trifunctors it follows that the following diagram

$$\Phi_{A}(X.D) = A \otimes (X \otimes D) \xrightarrow{(\widecheck{\Phi}_{A})_{X,D}} (A \otimes X) \otimes D = \Phi_{A}(X).D$$

$$\downarrow \Phi_{f}(X.D) . \qquad \qquad \downarrow \Phi_{f}(X).id_{D}$$

$$\Phi_{B}(X.D) = B \otimes (X \otimes D) \xrightarrow{(\widecheck{\Phi}_{B})_{X,D}} (B \otimes X) \otimes D = \Phi_{B}(X).D$$

is commulative; i.e we obtain the diagram (1.5.1).

Definition 1.6. A functor $(F, \widecheck{F}, (T, \widecheck{T}))$ is called an equivalence if and only if and T are equivalences.

2. O - STRICT AU CATEGORIES

2.1. In this section we only use A-categories A_d and A-functors. Then the diagrams (1.3.1) and (1.3.2) have the simple forms:

$$F(X, (A \otimes B)) \xrightarrow{\widetilde{F}_{X, \otimes A B}} FX. (A \otimes B)$$

$$\downarrow F(\alpha_{X,A,B}) \qquad \qquad \downarrow \alpha_{FX,A,B}$$

$$F((Y, A), B) \xrightarrow{\widetilde{F}_{X,A,B}} F(X, A), B \xrightarrow{\widetilde{F}_{X,A}, \operatorname{id}_{B}} (FX, A), B$$

$$(2.1.1)$$

$$\begin{array}{c}
FX & \xrightarrow{F(\delta_X)} & F(X.\underline{1}) \\
\delta_{FX} & \xrightarrow{FX.\underline{1}} & F_{F,\underline{1}}
\end{array}$$

Definition 2.2. $A \otimes -AU$ category **A** with an AU constraint (a, (1, g, d)) is called *strict* if and only if

$$a_{X,B,C} = id_{A,B,C}$$
 for all $A, B, C \in ObA$, $g_A = id_A = d_A$ for all $A \in ObA$.

Proposition 2.3. The category End (A_d) of all A-functors from A_d to itself with the multiplication \otimes defined by the following relations:

$$(F', \widecheck{F'}) \otimes (F, \widecheck{F}) = (F'F, F'F)$$
 for all $(F, \widecheck{F}), (F', \widecheck{F'})$ in End (A_d) (2.3.1)
 $(\varphi' \otimes \varphi)_{X} = \varphi'_{GX} F'(\varphi_{X}) = G'(\varphi_{X}) \varphi'_{FX}$ (2.3.2)

for $\varphi: (F, \widecheck{F}) \hookrightarrow (G, \widecheck{G}), \varphi': (F', \widecheck{F'}) \rightarrow (G', \widecheck{G'}),$ is a \otimes - strict AU category.

Proof. It is easy to see that $End(A_d)$ is a category. Now we prove that the multiplication is a bifunctor. First, we verify that $\phi' \otimes \phi$ is an A-morphism. In fact, we have the following diagram

$$F'F(X \cdot A) = F'(F_{X,A}) \qquad F'(FX \cdot A) = F'FX \cdot A$$

$$F'(\phi_{X,A}) \downarrow \qquad \text{(I)} \qquad F'(\phi_{X}, \text{id}_{A}) \downarrow \qquad \text{(II)} \qquad F'\phi_{X} \cdot \downarrow \text{id}_{A}$$

$$F'G(X \cdot A) = F(G_{X,A}) \qquad F'(GX \cdot A) = F'GX \cdot A \qquad \text{(IV)} \qquad \varphi'_{GX} \cdot \text{id}_{A}$$

$$G'G(X \cdot A) = G'(GX \cdot A) = G'(GX \cdot A) = G'GX \cdot A$$

in which (I) and (IV) are commutative since φ and φ' are the A-morphisms; (II) commutes since F' is an isomorphism of bifunctors; (III) commutes since φ' is an isomorphism of functors. Therefore the outer border is commutative and this proves that $\varphi' \otimes \varphi$ is an A-morphism.

From (2.3.2) it follows that:

$$\begin{split} (\mathrm{id}_{(\mathrm{F}',\,\mathrm{F}')} \otimes \mathrm{id}_{(\mathrm{F},\,\mathrm{F})})_{\mathrm{X}} &= \mathrm{id}_{\mathrm{F}'\mathrm{F}\mathrm{X}} \cdot F'(\mathrm{id}_{\mathrm{F}\mathrm{X}}) = \mathrm{id}_{\mathrm{F}'\mathrm{F}\mathrm{X}} \cdot \mathrm{id}_{\mathrm{F}'\mathrm{F}\mathrm{X}} = \\ &= \mathrm{id}_{\mathrm{F}'\mathrm{F}\mathrm{X}} = (\mathrm{id}_{(\mathrm{F}',\,\mathrm{F}')} \otimes {}_{(\mathrm{F},\,\mathrm{F})})_{\mathrm{X}} \, ; \\ &= \mathrm{id}_{(\mathrm{F}',\,\mathrm{F}')} \otimes \mathrm{id}_{(\mathrm{F},\,\mathrm{F})} = \mathrm{id}_{(\mathrm{F}',\,\mathrm{F}')} \otimes {}_{(\mathrm{F},\,\mathrm{F})} \cdot \end{split}$$

Let $\varphi:(F,\widecheck{F})\to (G,\widecheck{G}), \varphi'':(F',\widecheck{F'})\to (G',\widecheck{G'}),$

$$\psi: (G, \widecheck{G}) \to (H, \widecheck{H}), \ \psi': (G', \widecheck{G}') \to (II', \widecheck{H}').$$

We have:

$$[\check{(}\psi'\otimes\psi)\ (\varphi'\otimes\varphi)]_{X} = (\psi'\otimes\psi)_{X}\ (\varphi'\otimes\varphi)_{X} = \psi'_{HX}\ G'\ (\psi_{X})\ \varphi'_{GX}\ F'\ (\varphi_{X}) = \\ = \psi'_{HX}\ \varphi'_{HX}\ F'\ (\psi_{X})\ F'\ (\varphi_{X}) = (\psi'\varphi')_{HX}\ F'\ ((\psi\varphi)_{X}) = (\psi'\varphi''\otimes\psi\varphi)_{X}.\ i.\ e$$

$$(\psi'\otimes\psi)\ (\varphi'\otimes\varphi) = \psi'\varphi'\otimes\psi\varphi.$$

Thus \mathbf{End} (\mathbf{A}_d) is a category. Furthermore, from the diagram (1.4.1), it follows that:

$$(F''\widetilde{F}')F = F''(\widetilde{F}'F).$$

Hence we have:

$$((F'', \widecheck{F}'') (F', \widecheck{F}')) (F, \widecheck{F}) = ((F'' F') F, (F'' F') F)$$

 $(F'' (F' F), F'' (\widecheck{F}' F)) (F'', \widecheck{F}'') ((F', \widecheck{F}') (F, \widecheck{F}))$

We also have:

(id, id)
$$\otimes$$
 $(F, \widecheck{F}) = (F, \widecheck{F}) = (F, \widecheck{F}) \otimes$ (id, id).

Moreover, for $\varphi: F \to G$, $\varphi'': F' \to G'$, $\varphi'': F'' \to G''$, we have:

$$((\phi'' \otimes \phi) \otimes \phi)_{X} = (\phi'' \otimes \phi')_{GX} F'' F (\phi_{X}) = \phi_{\mathbf{G}'GX}'' F'' (\phi_{GX}') F'' (F' \phi_{X}) = \phi_{\mathbf{G}'GX}'' F'' (\phi_{GX}') F'' (\phi_{GX}') = \phi_{\mathbf{G}'GX}'' F'' (\phi_{\mathbf{G}'X}') = \phi_{\mathbf{G}''} (\phi_{\mathbf{G}'X}'') = \phi_{$$

and for $\varphi: F \to G$, id: id \to id, we have obviously:

$$(\mathrm{id} \otimes \varphi)_{X} = \varphi_{X} = (\varphi \otimes \mathrm{id})_{X}.$$

Thus, End (Ad) is a ⊗-strict AU category.

Theorem 2.4. Let \mathbf{A} be a \otimes -AU category with (a, (1, g, d)) as AU constraint. Then \mathbf{A} is \otimes -AU equivalent to the \otimes -strict AU category End (\mathbf{A}_d) .

Proof. We define a \otimes - AU functor (Φ, Φ) from the \otimes - AU category A to the \otimes - AU category End (A_d) as follows:

$$A \mapsto (\Phi_{A}, \widecheck{\Phi}_{A})$$
$$f \mapsto \Phi_{f}$$

with $(\Phi_{\Lambda}, \widecheck{\Phi}_{\Lambda})$ and $\Phi_{\rm f}$ given by the examples 1.3.3 and 1.5.2 respectively; and

$$\widecheck{\Phi}_{A,B} \colon \Phi_A \otimes \Phi_B \to \Phi_{A \otimes B}$$

is an isomorphism of functors define by

$$(\widecheck{\Phi}_{\Lambda,\mathrm{B}})_X = a_{\Lambda,\mathrm{B},\mathrm{X}} \colon (\Phi_{\Lambda} \otimes \Phi_{\mathrm{B}}) \, (X) \to \Phi_{\Lambda \otimes \mathrm{B}} \, (X). \ ^{\sim}$$

One can easily verify that $(\Phi, \widecheck{\Phi})$ so defined is a \otimes - AU functor.

Now we define a quasi-inverse

$$\psi : \mathbf{End} (\mathbf{A}_{\mathrm{d}}) \to A$$

of Φ by the following relations:

$$\psi(F, \widecheck{F}) = FI, \text{ for all } (F, \widecheck{F}) \in \text{Ob End } (\mathbf{A}_d), \tag{2.4.1}$$

$$\Psi (\varphi) = \varphi_i, \text{ for all } \varphi \in \text{F1 End } (\mathbf{A}_d), \qquad (2.4.2)$$

w is a functor because:

$$\Psi (id_{(F,F)}) = id_{F_1} = id_{\Psi (F,F)}, \text{ and}$$

$$\Psi (\psi \varphi) = (\psi \varphi)_1 = \psi_1 \varphi_1 = \psi (\psi) \Psi (\varphi).$$

We define the isomorphisms $\tau: \psi \stackrel{\sim}{\Phi} \stackrel{\sim}{\to} \mathrm{id}_A \; ; \; \tau': \Phi \Psi \stackrel{\sim}{\to} \mathrm{id}_{\mathbf{End}} \; (\mathbf{A}_d)$ as follows:

$$\tau_{\Lambda} = \mathbf{d}_{\Lambda}^{-1}, \tag{2.4.3}$$

$$(\tau'_{(F,F)})_{\mathbf{X}} = F(g_{\mathbf{X}}^{-1}) \widecheck{F}_{1,\mathbf{X}}^{-1}.$$
 (2.4.4)

We see that $\tau'_{(F,F)}$ is an A-morphism. In fact, we have the following diagram,

in which (1) commutes obviously; (II) is just the commutative diagram (2. 1. 1); (III) is commutative since F is an isomorphism of bifunctors; (IV) commutes since \mathbf{A} is a $\otimes -AU$ category. Therefore the outer border is commutative and this proves that $\tau'_{(F \cap F)}$ is an \mathbf{A} -morphism.

$$\Phi_{F1}(X, A) = F1 \otimes (X \otimes A) (\widecheck{\Phi}_{F1})_{X,A} = \alpha_{F1,X,A} (F1 \otimes X) \otimes A = \Phi_{F1}(X) \cdot A$$

$$\uparrow \widecheck{F}_{1,X,A}(I) \qquad \uparrow \widecheck{F}_{1,X,A}$$

$$F(1 \otimes (X \otimes A)) = F(1 \otimes (X \otimes A)) \qquad (II)$$

$$\downarrow F_{1,X,A}(I) \qquad \downarrow F_{1,X,A}(I) \qquad \downarrow F_{1,X,A}(II)$$

$$\downarrow F(1 \otimes (X \otimes A)) = F(1 \otimes (X \otimes A)) \qquad (II)$$

$$\downarrow F_{1,X,A}(I) \qquad \downarrow F_{1,X,A}(III) \qquad \downarrow F_{1,X,A}(III)$$

$$\downarrow F(1 \otimes X) \otimes A \qquad \downarrow F(1 \otimes X) \otimes A$$

$$\downarrow F(1 \otimes X) \otimes A \qquad \downarrow F(1 \otimes X) \otimes A$$

$$\downarrow F(1 \otimes X) \otimes A \qquad \downarrow F(1 \otimes X) \otimes A$$

$$\downarrow F(1 \otimes X) \otimes A \qquad \downarrow F(1 \otimes X) \otimes A$$

$$\downarrow F(1 \otimes X) \otimes A \qquad \downarrow F(1 \otimes X) \otimes A$$

$$\downarrow F(1 \otimes X) \otimes A \qquad \downarrow F(1 \otimes X) \otimes A$$

$$\downarrow F(1 \otimes X) \otimes A \qquad \downarrow F(1 \otimes X) \otimes A$$

$$\downarrow F(1 \otimes X) \otimes A \qquad \downarrow F(1 \otimes X) \otimes A$$

$$\downarrow F(1 \otimes X) \otimes A \qquad \downarrow F(1 \otimes X) \otimes A$$

$$\downarrow F(1 \otimes X) \otimes A \qquad \downarrow F(1 \otimes X) \otimes A$$

$$\downarrow F(1 \otimes X) \otimes A \qquad \downarrow F(1 \otimes X) \otimes A$$

Thus Ψ is a quasi-inverse of Φ and $(\Phi, \overline{\Phi})$ is a $\otimes -AU$ equivalence, so the theorem is proved.

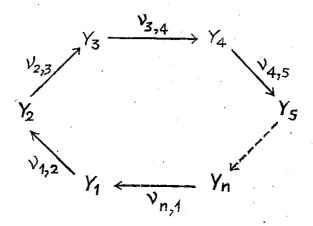
Lemma 2.5. Let A and A' to be the \otimes - AU categories, $(\Phi, \widecheck{\Phi}) \colon \mathbf{A} \to \mathbf{A}'$ a \otimes - AU functor, X a product of a finite family $(X_i)_{i \in I}$ of objects in A and X' a product in \mathbf{A}' , in which when instead of X_i we have $\Phi(X_i)$. Then every morphism $\mu \colon \Phi X \to X'$ constructed from $\widecheck{\Phi}^{-1}$, $\widehat{\Phi}^{-1}$, id and \otimes in \mathbf{A}' is equal.

Proof. We proceed the proof of lemma by induction on the numbers of elements of I. For $I = \{\alpha\}$ our lemma holds obviously. Assume that I has n > 1 elements and the lemma is true for every k < n. We always can write $X = Y \otimes Z$. Since μ constructed from Φ^{-1} , $\widehat{\Phi}^{-1}$, id and \otimes in A', we see that μ must be the composition of the following morphisms:

 $\Phi(X) = \Phi(Y \otimes Z) \xrightarrow{\Phi_{Y,Z}^{-1}} \Phi(Y) \otimes \Phi(Z) \xrightarrow{Y \otimes \lambda} Y' \otimes Z'$, here Y and Z are the products of $(X_i)_{i \in I_1}$ and $(X_i)_{i \in I_2}$ respectively, $I_1 \perp \perp I_2 = I$. Y'. Z' defined as the same of X' and ν , λ are constructed from Φ^{-1} , Φ^{-1} , id and \otimes in A', $X' = Y' \otimes Z'$. By assumption ν , λ are unique. Therefore the lemma is proved.

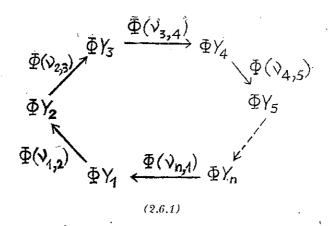
Corollary 2.6. (Maclane's coherence theorem). Let **A** be a \otimes -AU category with an AU constraint (a, (1, g, d)). Then a, g, d are coherent (in the sense of [4]).

Proof. Assume that we have the diagram

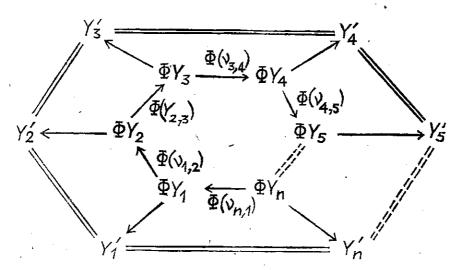


in which Y_i is the product of a finite family $(X_i)_{j \in I_i}$, $l_i \neq \phi$ and the set of j's, $j \in I$ such that $X_j \neq 1$ is the same for i = 1, ..., n; $v_{i,i+1}$ and v_{n+1} are constructed from $a, a^{-1}, g, g^{-1}, d, d^{-1}$, id and \otimes in A, i = 1, ..., n-1. We must provet hat this diagram is commutative. We can always assume that every v consists only one of $a, a^{-1}, g, g^{-1}, d, d^{-1}$.

To prove the commutative of the given diagram, we will prove that the following diagram commutes in $End\ (A_d)$



here (Φ, Φ) is the \otimes -AU equivalence in the proof of theorem 2.2. By the compatibility of (Φ, Φ) with AU constraints we can construct on each edge of the diagram (2.6.1) a rectangular which opposition edge of $\Phi(v)$ is identity. Thus we can extend the diagram (2.6.1) to the diagram



in which Y_i is the product in A, in which when instead of X_j , $j \in I_i$ we have $\Phi(X_j)$, $i=1,\ldots,n$ and the morphism $\Phi Y_i \to Y_i$ is constructed from Φ^{-1} , $\widehat{\Phi}^{-1}$, id and \otimes in End (A_d). By the lemma 2.5 the rectangulars are commutative. The outer border is commutative obviously. Therefore the diagram (2.6.1) is commutative. Since Φ is an equivalence, so the given diagram is.

Theorem 2.7. Every ⊗-ACU category is ⊗-ACU equivalent to a ⊗-ACU category which is a ⊗-strict AU category.

Proof. Assume that \mathbf{A} is a \otimes -ACU category. Then \mathbf{End} (\mathbf{A}_d) is also a \otimes -ACU category, furthermore it is a \otimes -strict AU category. The \otimes -AU equivalence $(\Phi, \widecheck{\Phi})$ is

compatible with the commutative constraints (Ch. I, 1, prop. 5, [2]); i. e \otimes -ACU category **A** is \otimes -ACU equivalent to the \otimes -ACU category **End** (**A**_d).

Theorem 2.8. Every ⊗-associative category is ⊗-associative equivalent to a ⊗-strict associative category.

Proof. Let **A** be a \otimes -category with an associative constraint a. We construct a \otimes -AU category **C** as follows:

$$ObC = ObA [][1].$$

where 1 is a symbol.

$$\operatorname{Hom}_{G}(A, B) = \operatorname{Hom}_{A}(A, B), \text{ if } A, B \in \operatorname{Ob} A, \tag{2.8.1}$$

$$\operatorname{Hom}_{\mathbb{C}}(\mathbf{1}, A) = \operatorname{Hom}_{\mathbb{C}}(A, \mathbf{1}) = \emptyset, \text{ for all } A \in \operatorname{ObA}$$
 (2.8.2)

$$\text{Hom}_{\mathbb{C}} (1, 1) = \text{id}_{1},$$
 (2.8.3)

$$A \otimes_{\mathcal{C}} B = A \otimes_{\Lambda} B$$
, if $A, B \in \mathsf{Ob}\mathbf{A}$, (2.8.4)

$$A \otimes 1 = 1 \otimes A = A$$
, for all $A \in ObC$ (2.8.5)

$$f \otimes_{\mathbb{C}} h = \bigotimes f_{A} h$$
, if $f, h \in FlA$ (2.8.6)

$$f \otimes \operatorname{id}_1 = \operatorname{id}_1 \otimes f = f$$
, for all $f \in F/C$ (2.8.7)

From (2.8.6) and (2.8.7), it follows that:

 $id_A \otimes_C id_B = id_A \otimes_A id_B = id_{A \otimes B}$, if $A, B \in ObA$,

 $\mathrm{id}_{\Lambda} \otimes_{\mathbb{C}} \mathrm{id}_{1} = \mathrm{id}_{\Lambda} = \mathrm{id}_{1} \otimes_{\Lambda} = \mathrm{id}_{1} \otimes_{\mathbb{C}} \mathrm{id}_{\Lambda},$

 $(f \otimes_{\mathbb{C}} g) (h_{\mathbb{C}} \otimes k) = fh \otimes gk$, if $f, g, h, k \in FlA$.

 $(f \otimes_{\mathbb{C}} \mathrm{id}_1) (h \otimes_{\mathbb{C}} \mathrm{id}_1) = fh = fh \otimes \mathrm{id}_1$

(id $\otimes_{\mathbb{C}} f$) (id $\otimes_{\mathbb{C}} h$) = $fh = id \otimes fh$.

In C we define the AU constraint (a, (1, g, d)) as follows:

$$a'_{A,B,C} = a_{A,B,C'}$$
 if $A,B,C \in ObC$, $a'_{1,A,B} = a'_{A,1,B} = a'_{A,B,1} = \mathrm{id}_{A \bigotimes_B}$, for all $A,B \in ObC$ $\cdot q_A' = \mathrm{id}_A = \mathrm{d}_A'$.

It is easy to see that a', g' d' are isomorphisms of functors and satisfy the agon axiom and the diagram (0.1)

Furthermore, they are compatible.

w we can establish a ⊗-AU equivalence

$$(\Phi, \widecheck{\Phi}) \colon C \underset{\longrightarrow}{\approx} \operatorname{End} (C_d).$$

full subcategory (A) ⊗-stable generated by Φ (A) [2], in which each

 $(F, F) = (\Phi_{A_1}, \widecheck{\Phi}_{A_1}) \otimes ... \otimes (\Phi_{A_n}, \widecheck{\Phi}_{A_n}), A_1, ..., A_n \in ObA.$ We denote it by $\leq \Phi(A) >$. It is easy to see that $\leq \Phi(A) >$ is a - \otimes strict associative category and the restrict on A of $(\Phi, \widecheck{\Phi})$ is \otimes -associative functor from A to $\leq \Phi(A) >$. The restrict on $\leq \Phi(A) >$ of $(\Psi, \widecheck{\Psi})$ is also a \otimes -associative functor from $\leq \Phi(A) >$ to A since

$$\begin{array}{l} \psi((\Phi_{A_1},\ \widecheck{\Phi}_{A_1})\otimes ...\otimes (\Phi_{A_n}\ ,\ \widecheck{\Phi}_{A_n}\)) \ = \ \Phi_{A_1}...\ \Phi_{A_n}\ (1) \ = \\ = \ A_1\otimes (A_2\otimes ...\otimes (A_n\otimes 1)...) \ = \ A_1\otimes \ (A_2\otimes (...\otimes (A_{n-1}\boxtimes A_n)...) \in \mathrm{ObA}. \end{array}$$
 Thus
$$\begin{array}{l} \bullet \\ A \approx \underbrace{<\Phi(A)>}. \end{array}$$

Corollary 2.9. Let A be a \otimes -associative category with the associative constraint a. Then a is coherent (in the sense of [4]).

Proof. It follows immediately from the theorem 2.8 and the corollary 2.6.

Theorem 2.10. Every \otimes -AC! category is \otimes -AC equivalent to a \otimes -AC category which is a \otimes - strict associative category.

Proof. Assume that **A** is a \otimes - AC category with associative constraint α and commutative constraint **c**. We construct a \otimes -category **C** as in the proof of the theorem 2.8, on which we define the commutative constraint \mathbf{c}' as follows:

$$c'_{A,B} = c_{A,B}$$
, if $A, B \in ObA$, $c'_{A,A} = c'_{A,A} = id_A$ for all $A \in ObC$.

It is easy to see that c' is an isomorphism of bifunctors and C is a &-ACU category.

As the proof of the theorem 2.8, we obtain:

$$\mathbf{A} \sim \leq \Phi(\mathbf{A}) >$$

Received September 20th, 1978

REFERENCES

- [1] H. CARTAN and S. EILENBERG-Homological algebra-Princeton (in Russian 1960)
- [2] HOÀNG XUÂN SÍNH Gr-vategories Doctorat dissertation.
- [3] S. MACLANE Homology (in Russian 1966).
- [4] S. MACLANE Categorical algebra-Bull. Amer. Math. Soc. 1965.
- [5] B. MITCHELL-Theory of calegories Academie Press 1965.