A CHARACTERIZATION OF MIXED - STABLE LAWS

NGUYĒN VĀN THU Institute of Mathematics, Hanoi

The aim of this note is to prove the following theorem:

A probability measure on \mathbb{R}^n is mixed-stable if and only if it is completely self-decomposable.

Throughout this paper the symbol R^n (n=1, 2,...) will denote the *n*-dimensional Euclidean space, with the usual norm $\|\cdot\|$ and the inner product $<\cdot$, >. For every positive number a we define a transform T_a on the class of Borel probability measures on R^n by

$$T_{\mathbf{a}} \ \mu \ (A) = \mu \ ([a^{-1} \ x : x \in A]) \ (A \in \mathbb{R}^n).$$

A probability measure μ on R^n is called stable if for every positive interger k there exists a positive constant a_k and a vector b_k in R^n such that

$$\mu^{*k} = T_{ak} \mu^* \delta_{bk}$$

Further, μ is called mixed-stable if there exists a triangular array $\{\mu_{mk}\}$ of stable measures μ_{mk} on R^n $(k=1, 2,..., k_m; m=1, 2,...)$ such that the sequence

$$\mu_{m_1} * \mu_{m_2} * \cdots * \mu_{m_k} m$$

converges weakly to μ as $m \to \infty$.

The concept of completely self decomposable measures has been introduced in [3]. Namely, a probability measure μ on R^n is called completely self-decomposable if for every sequence c_1 , c_2 ,... of numbers from the interval (0, 1) there exists a sequence μ_{c_1} , μ_{c_1} , c_2 ... of probability measures on R^n such that

$$\mu = T_{c_1} \mu * \mu_{c_1}, \ \mu_{c_1} = T_{c_2} \ \mu_{c_1} * \mu_{c_1}, \ c_2,...$$

Proof of the theorem. It is well-known (see, for example [1]) that if μ is a stable measure on R^n , then it is a Gaussian measure or there is a number $0 < \alpha < 2$, a finite Borel measure σ on the unit sphere $S = \{x \in R^n : \|x\| = 1\}$ and a vector $a \in R^n$ such that

$$\widehat{\mu}(y) = \exp\left\{i < a, y > + \int_{S} \int_{0}^{\infty} K(\rho x, y) \frac{d\rho}{S^{1+\alpha}} \sigma(dx)\right\}$$
 (1)

where
$$K(x, y) = \exp(i \langle x, y \rangle) - 1 - \frac{i \langle x, y \rangle}{1 + ||x||^2}$$
 (2)

On the other hand, from the general form of characteristic functionals of completely self-decomposable measures on Banach spaces ([3], Theorems 6.4 and 7.2), it follows that if μ is completely self-decomposable on R^n then $\mu = \rho * \mu_1$, where ρ is a Gaussian measure and

$$\widehat{\mu}_{1}(y) = \exp\left\{i < a, y > + \int_{\mathbb{B}} \left(\int_{\mathbb{S}}^{\infty} K(sx, y) \frac{ds}{|S^{2}| |x|^{1+1}} \right) \frac{\sin \pi ||x||}{||x||^{2!} |x||} m(dx) \right\}$$
(3)

 $(y \in R^n)$, where a is a vector in R^n , m is a finite Borel measure on the open unit ball $B = \{x \in R^n : ||x|| < 1\}$ vanishing at 0 and the kernel K is given by the formula (2). Consequently, for a degenerate measure $m = \delta_{X_0}$ where $x_0 \in B$ the formula (3) is of the form (1) and then μ_1 is a stable measure on R^n . Since for every

finite measure m on B there exists a sequence of measures of the form $\sum_{k=1}^{\infty} \lambda_k \delta_{xk}$ where $\lambda_k \geqslant 0$ and $x_k \in B$ (k = 1, 2, ..., u) converging to m, it follows, by virtue of the formulas (1) and (3), that every completely self-decomposable measure is mixed-stable.

Conversely, let μ be a mixed-stable measure on R^n . Then it is a weak limit of a sequence $\mu_{m1} * \mu_{m2} * ... * \mu_{mk_m}$ where μ_{mk} ($k \leq k_m$; m=1, 2,...) are some stable measures on R^n . By virtue of Proposition 1.9 [2] it follows that every stable measure on R^n is completely self-decomposable. Consequently, every finite convolution of stable measures is completely self-decomposable. Since the class of all completely self-decomposable probability measures on R^n is closed under the weak convergence it follows that every mixed-stable measure is completely self-decomposable, which completes the proof of the theorem.

Received January 17th, 1979

REFERENCES

- 1. J. Kuelbs, A representation theorem for symmetric stable processes and stable measures on H, Z. Wahrscheinlichkeitstheorie verw. Geb. 26, 259 271 (1973).
- 2. A. Kumar and B. M. Shreiber, Self-decomposable probability measures on Banach spaces. Studia Math. $53,\,55-71$ (1975).
- 3. N. V. Thu, Multiply self-decomposable probability measures on Banach spaces, Studia, Math. Vol. 66 (2).