ON THE EXTENSION OF STABLE CYLINDRICAL MEASURES

ĐỘNG HÙNG THẮNG and NGUYỄN DUY TIỂN Hanoi Eniversity

I - INTRODUCTION

Let X be a separable Banach space with dual X° . Let $T \in \mathcal{L}$ (X^{*}, L^{*}) $0 < \alpha \leqslant 2$ i.e. T is a linear continuous operator from X° into L^{α} . Consider the functional $\lambda \colon X^{\circ} \to R$ defined by

$$\lambda (x^{\circ}) = \exp \left\{ - \|Tx\|^{\circ} \right\}$$

It is easy to see that λ (x°) is a characteristic functional (ch. f.) of a cylindrical measure Λ^T on X. The set of all operators $T \in \mathcal{L}(X^{\circ}, L^{\alpha})$ such that Λ^T can be extended into a Radon measure will be denoted by \mathcal{C}_{α} (X°, L^{α}). The problem considered here is that of determining conditions on T which are necessary and sufficient for T to belong to the class \mathcal{C}_{α} (X°, L^{α}). It is noted that for the case $\alpha = 2$ this problem has been solved by S. A. Chobanjan and V. I. Tarieladeze [3]: If X is of type 2 then $T \in \mathcal{C}_2$ (X°, L°) if and only if T is 2-summing.

In this paper we shall try to solve the above mentioned problem for the case $1 < \alpha < 2$. Theorem 3.1 gives the necessary condition for $T \in \mathcal{C}_{\alpha}(X^{\alpha}, L^{\alpha})$. This condition is also sufficient when X is a closed subspace of L^{p} $(1 and not sufficient when <math>X = L^{p}$ (p > 2). Next, we shall show that the assertion that $T \in \mathcal{C}_{\alpha}(X^{\alpha}, L^{\alpha})$ if and only if T is α -summing holds if and only if X can be immersed in some L^{α} and is of stable-type α . In this way we obtain a probabilistic description of these spaces. It is interesting to note that here for the case $\alpha < 2$ there are no analogues of the results in the case $\alpha = 2$.

II - PRELIMINARIES

2.1. Spaces of stable-type α . Let X be a separable Banach space. X is said to be of stable-type α ($0 < \alpha \le 2$) if for each sequence $(x_n)_{n=1}^{\infty} \in X$ with the property $\sum_{n=1}^{\infty} ||x_n||^{\alpha} \infty$, the series $\sum_{n=1}^{\infty} x_n \, \theta_n^{(\alpha)}$ is convergent a.s. where $(\theta_n^{(\alpha)})_{n=1}^{\infty}$ are in-

dependent identically distributed real-valued random variables with the ch. f. $\exp\{-|t|^{\alpha}\}$.

A theorem by Maurey, Pisier (1976) [7] gives the following purely geometrical characterization of spaces of stable-type α : X is of stable-type α if and only if I^{α} is not finitely representable in X. Example: Each Banach space in of stable-type α with $0 < \alpha < 1$. L^{p} is of stable-type α ($1 \le \alpha < 2$) if and only if $p > \alpha$.

X is said to be stable-cotype α if for each sequence $(x_n)_{n=1}^{\infty} \subset X$ such that the series $\sum x_n \theta_n^{(\alpha)}$ is convergent a.s. in X it follows $\sum ||x_n||^{\alpha} < \infty$. It is known that each Banach space is of stable-cotype α with $0 < \alpha < 2$ (see [7]).

2.2. p-summing operators Let X, Y be Banach spaces. An operator $T \in \mathcal{L}(X,Y)$ is said to be p-summing (p>0) if for each sequence $(x_n) \in X_{\infty}$ such that

$$\sum_{n=1}^{\infty} |\langle x_n, x^* \rangle|^p < \infty \text{ for each } x^* \in X \text{ we have } \sum_{n=1}^{\infty} ||Tx_n||^p < \infty. \text{ In other words,}$$

T is p-summing if T carries each weakly p-absolutely summable sequence from X into the strongly p-absolutely summable sequence in Y. This definition is equivalent to the following one. There exists a constant C > 0 such that for every finite collection $(x_n) \in X$.

$$(\Sigma \|Tx_n\|^P)^{1/P} \leqslant C \sup_{\|x^*\| \leqslant 1} (\Sigma < x_n; x^{\alpha} > |P|)^{1/P}.$$

An operator $T \in \mathcal{L}(X, Y)$ is said to be completely summing if T is p-summing for each p > 0. We denote the class of all p-summing operators from X into Y by $\pi_p(X, Y)$ and denote the class of all completely summing operators from X into Y by $\pi_o(X, Y)$ If $0 then <math>\pi_p(X, Y) < \pi_q(X, Y)$. For more information about p-summing operators see [9], [10]. The connection between spaces of stable-type α and α -summing operators is established by the following theorem.

2.2.1. Maurey — Pisier's Theorem [7] X is of stable-type α if and only if for every quotient space G of the dual space X^* and for any Banach space Y we have $\pi_{\alpha}(G, Y) \equiv \pi_{\alpha}(G, Y)$.

In particular, if X^* is of stable-type α then $\pi_{\alpha}(X, Y) = \pi_{\alpha}(X, Y)$.

2.3. p-Radonnifying operators. Let \wedge be a cylindrical (probability) measure on X. The characteristic functional (ch. f.) of a cylindrical measure is defined as follows

$$\widehat{\Lambda}(x^*) = \int_{\mathbf{R}} e^{\mathrm{i}u} \Lambda_{\mathbf{X}^*}(du),$$

where Λ_{x^*} is the measure on R given by

$$\Lambda_{\mathbf{x}^*}(B) = \Lambda \{x: \langle x, x^* \rangle \in B\}.$$

 Λ is said to be of type p if

$$\sup_{\|\mathbf{x}^{\mathbf{a}}\| \leqslant 1} \left[\int_{\mathbf{R}} |\mathbf{u}|^{\mathbf{p}} \Lambda_{\mathbf{x}^{\mathbf{a}}}(d\mathbf{u}) \right]^{1/\mathbf{p}} < \infty.$$

We say that Λ is a Radon measure if Λ can be extended into a Radon measure on X. Then its extension is also denoted by Λ .

A Radon measura μ is said to be of order p if

$$\int\limits_{\mathbf{X}}\|x\|^p\,\mu(dx)<\infty.$$

Let X, Y be Banach spaces. An operator $T \in \mathcal{L}(X,Y)$ is said to be p-Radonnifying (p > 0) if for each cylindrical measure Λ of type p on X, $T(\Lambda)$ is a Radon measure of order p on Y. The following theorem which will be repeatedly used in this paper establishes the relationship between p-summing and p-Radonnifying operators:

- 2.3.1. Chwartz's Theorem [10], [11]
- i) If the operator T is p-Radonnifying then it is also p-summing.
- ii) Conversely, if T is p-summing and 1 then T is p-Radonnifying.
- **2.4. Stable measures.** A measure μ on X is called (symmetric) stable if for any a, b > 0 there exists c > 0 such that the ch. f. $\widehat{\mu}$ of μ satisfies the equality $\widehat{\mu}(ax^*)\widehat{\mu}(bx^*) = \widehat{\mu}(cx^*)$ for all $x^* \in X^*$.

Below we shall list some properties of stable measures which will be used in this paper.

2.4.1. Theorem [12] (The representation of the ch.f.of stable measures)

If μ is a symmetric stable measure on X then there exist a constant $\alpha (0 < \alpha \le 2)$ and a finite measure γ on the unit sphere S of X such that

$$\widehat{\mu}(x^*) = \exp\left\{-\int_{S} |\langle x, x^* \rangle|^{\alpha} \gamma(dx)\right\}.$$

The constant α will be called the index of μ . The measure Υ will be called the spectral measure of μ .

- 2.4.2. Theorem [1] Every stable measure of index α (0 < α < 2) is of order p for each $p < \alpha$ and not of order α .
- 2.4.3. Lemma [4] For each $p < \alpha$ there exists a universal constant C_p such that for each stable measure μ of index α on R with the ch. f. $e^{-\|bt\|^{\alpha}}$ we have

$$\left(\int\limits_{\mathbf{p}}\left|\,t\,\right|^{p}.\mu\,\left(dt\right)\,\right)^{1/p}=\,b\,\,C_{\mathbf{p}}.$$

III - THE PROBLEM OF EXTENDING STABLE CYLINDRICAL MEASURES

Let X be a Banach space and let $T \in \mathcal{L}(X^{\circ}, L^{\alpha})$ ($0 < \alpha \leq 2$). Consider the functional $\lambda: X^{\circ} \to R$ defined by

$$\lambda (x^{\circ}) = \exp \left\{ - \| Tx^{\circ} \|^{\alpha} \right\}. \tag{3-1}$$

It is essy to check that λ (x°) is positive definite, continuous with λ (0) = 1. Therefore λ (x°) is a ch. f. of some cylindrical measure on X, say $\bigwedge T$. Let $\mathcal{C}_{\alpha}(X^{\circ}, L^{\alpha})$ denote the class of all operators $T \in \mathcal{L}$ (X°, L^{α}) such that $\bigwedge T$ is a Radon measure. It is easily seen that if $T \in \mathcal{C}_{\alpha}$, (X°, L^{α}) then (3-1) is the ch. f. of a symmetric stable measure of index α . Conversely, the ch. f. of every symmetric stable measure of index α may be represented in this way, Indeed, by Theorem 2.4.1 the ch. f. of a symmetric stable measure of index α has the form

$$\widehat{\mu}(x^{\omega}) = \exp\left\{-\int_{S} |\langle x, x^{\omega} \rangle|^{\alpha} \Upsilon(dx)\right\}$$

$$= \exp\left\{-\|Tx^{\omega}\|^{\alpha}\right\},$$

where the operator $T: X^a \rightarrow L^a(S, \Upsilon)$ is defined by

$$Tx^{\circ} = \langle \cdot, x^{\circ} \rangle$$
.

Our aim is to give a description of the class \mathcal{C}_{α} (X*, L^{α}), where the space L^{α} is infinitely dimensional. In what follows we shall only consider the case $1 < \alpha < 2$. We begin by proving the assertion which gives a necessary condition for T to belong to the class \mathcal{C}_{α} (X*, L^{α}).

- 3. 1. Theorem Let $T \in \mathcal{C}_a$ (X*, L*). Then
 - i) T is a compact operator
 - ii) T is completely summing

Proof. 1) Suppose that B^* is the unit ball of X^* and (Tx_n^*) is an arbitrary sequence in TB^* . We have to show that (Tx_n^*) contains a subsequence which converges in L^* . Since B^* is $\sigma(X^*, X)$ -compact (x_n) has a subsequence $(x_{n_k}^*)$ such that $(x_{n_k}^*)$ is convergent in $\sigma(X^*, X)$ -topology to some x^* in B^* . So

$$\lim_{k\to\infty} \exp\left\{-\|Tx_{n_K}^* - Tx^{\alpha}\|^{\alpha}\right\} = \lim_{k\to\infty} \exp\left\{-\|T(x_{n_K}^* - x^*)\|^{\alpha}\right\} =$$

 $= \lim_{k \to \infty} \int_{X}^{e^{i\langle x, x^*, -x^* \rangle}} \bigwedge^{T} (dx) = 1 \text{ by virtue of Lebesgue's dominated convergence}$ theorem.

This implies $||Tx_{n_K}^* - Tx^*|| \to 0$ i.e. $Tx_{n_K}^* \to Tx^*$ in L^* .

ii) It is sufficient to show that T is p-sunming for each $0 . Since <math>x^*$ considered as a random variable on $(X, \mathcal{P}(X), \wedge T)$ presents itself as a stable random variable of index α with the ch. If $f(t) = \exp\{-\|Tx^*\|^{\alpha} \|t\|^{\alpha}\}$, by Lemma 2.4.3 we have

$$\|Tx^*\|^P = C_P \int_{\mathbb{T}} |\langle x, x^* \rangle|^P \wedge^T (dx).$$

For each finite collection $(x_n) \in X \otimes we$ have

$$\sum \|T x_{n}^{*}\|^{P} = C_{P}^{-P} \int \sum |\langle x, x_{n}^{*} \rangle|^{P} \wedge^{T} (dx) \le$$

$$C_{P}^{-P} \int \|x\|^{P} \wedge^{T} (dx) \left\{ \sup_{\|x\| \le 1} \sum |\langle x, x_{n}^{*} \rangle|^{P} \right\}$$

$$= \left| C \sup_{\|x\| \le 1} \sum |\langle x, x_{n}^{*} \rangle|^{P}$$

where we put $C = C_p^{-P} \int_X \|x\|^p \wedge^T (dx)$. $C < \infty$ because $\int_X \|x\|^p \wedge^T (dx) < \infty$.

by Theorem 2, 4, 2,

This proves that T is p-summing.

3.2. Theorem. Suppose that $T \in \mathcal{L}(X^a, L^a)$ such that the adjoint operator T^* operates from L^a ($\beta^{-1} + \alpha^{-1} = 1$) into X. If T^a is p-summing for some $0 then <math>T \in \mathcal{C}_{\alpha}(X^a, L^a)$.

Proof. Let $m^{(\alpha)}$ be a cylindrical measure on L^p with the ch. i. $\exp\{-\|x^*\|^{\alpha}\}$ $(x^* \in L^{\alpha})$. $m^{(\alpha)}$ is the cylindrical measure of type p for each $p < \alpha$. Indeed, by Lemma 2. 4. 3 we have

$$\left(\int\limits_{R} \mid \boldsymbol{u} \mid^{P} m_{x^{\circledast}}^{(\alpha)} (du)\right)^{1/P} = C_{P} \parallel x^{\circledast} \parallel .$$

$$\sup_{\boldsymbol{x}^{\circledast} \parallel \leqslant 1} \left(\int\limits_{R} \mid \boldsymbol{u} \mid^{P} m_{x^{\circledast}}^{(\alpha)} (du)\right)^{1/P} = C_{P} < \infty$$

Thus

Consequently, from the above assumption and from Schwartz's theorem it follows that $T^*(m^{(\alpha)})$ is a Radon measure on X. Evidently, $T^*(m^{(\alpha)})$ is the Radon extension of the cylindrical measure \bigwedge^T .

- 3.3. Theorem. i) Suppose that X can be immersed in some $L^p(1 <math>(X \hookrightarrow L^p)$ in short). Then, the class $\mathcal{C}_{\omega}(X^{\omega}, L^{\omega})$ coincides with the class $\pi_{\omega}(X^{\omega}, L^{\omega})$ of all completely summing operators from X^{ω} into L^{ω} .
- ii) In the case $X=L^p(p>2)$, however, the class $\mathcal{C}_{\alpha}(X^{\phi}, L^{\alpha})$ is strictly included in the class $\pi_{\phi}(X^{\phi}, L^{\alpha})$.

Proof. i) In view of Theorem 3-1 it remains for us to prove the inclusion $\pi_o(X^*, L^{\alpha}) \subset \mathcal{C}_{\alpha}(X^*, L^{\alpha})$. The assumption that $X \hookrightarrow L^p(1 implies that the function <math>\exp\{-\|x\|_X^P\}$ $(x \in X)$ is positive definite. Let $m^{(P)}$ denote a cylindrical

measure on X^* with the ch. f. $\exp\{-\|x\|_X^P\}$ $(x \in X)$. Suppose that $T \in \pi_o(X^*, L^a)$.

Since $m^{(P)}$ is of type q for each q < p then by Schwartz's theorem $T(m^{(P)})$ is a Radon measure on L^{∞} . $T(m^{(P)})$ has the ch. f. $\exp\{-\|T^*x\|^P\}(x \in L^q)$. According to theorem 3.1 T^* is completely summing (i.e T^* is p-summing for each p > 0). From this, by Theorem 3.2 it follows that $T \in \mathcal{C}_{\alpha}(X^*, L^{\alpha})$.

ii) We shall show that there exists an operator T such that $T \in \pi_0(X^*, L^*)$ but $T \notin \mathcal{C}_{\alpha}(X^*, L^{\alpha})$. Indeed, because $L^p(p > 2)$ cannot be immersed in any L^{α} , by Lindenstraus—Pelczynski's theorem [6] there exist two sequences $\{x_n\} \subset X$ and $\{y_n\} \subset X$ satisfying

$$\sum_{n=1}^{\infty} | \langle y_n, x^* \rangle |^{\alpha} \leqslant \sum_{n=1}^{\infty} | \langle x_n, x^* \rangle |^{\alpha}$$
 (3-2)

for all $x^* \in X^*$ and such that $\Sigma ||x_n||^{\alpha} < \infty$ $\Sigma ||y_n||^{\alpha} = \infty$.

Consider the operator $T: X^* \to l^{\alpha}$ defined by

$$Tx^* = (\langle y_n, x^* \rangle)_{n=1}^{\infty}$$

T can be considered as an operator from X^* into L^{α} because $l^{\alpha} \subseteq L^{\alpha}$. We shall show that $T \in \pi_0(X^*, L^{\alpha})$ but $T \notin \mathcal{C}_{\alpha}(X^*, L^{\alpha})$.

a) $T \in \pi_o(X^*, L^*)$: Since X is of stable-type 2, by Maurey—Pisier's Theorem it is sufficient to show that $T \in \pi_o(X^*, L^*)$. Consider an arbitrary sequence $(x_n^*) \in X$ such that $\Sigma | < x, x_n^* > |^{\alpha} < \infty$ for each $x \in X$. Then, by the principle of uniform boundedness $\Sigma | < x, x_n^* > |^{\alpha} \le C \|x\|^{\alpha}$ for some C > 0 and all x. Thus, we have

$$\sum_{n=1}^{\infty} ||T x_{n}^{*}||^{\alpha} = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} |\langle y_{k}, x_{n}^{*} \rangle|^{\alpha} = \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} |\langle y_{k}, x_{n}^{*} \rangle|^{\alpha} \leqslant$$

$$\leqslant \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} |\langle x_{k}, x_{n}^{*} \rangle|^{\alpha} \leqslant C \sum_{k=1}^{\infty} ||x_{k}||^{\alpha} < \infty$$

$$T \in \pi_{-}(X^{*}, L^{\alpha})$$

That is

b) $T \notin \mathcal{C}_{\alpha}(X^*, L^{\alpha})$: Consider the series $\sum_{n=1}^{\infty} y_n \theta_n^{(\alpha)}$ where $(\theta_n^{(\alpha)})$ are i. i. d.

real valued random variables with the ch. f. exp $\{-|t|^{\alpha}\}$. Let $\varphi_n(x^*)$ be the ch.f.

of the partial sum $\sum_{k=1}^{n} y_k \theta_k^{(\alpha)}$. We have

$$\lim_{n\to\infty} \phi_n(x^*) = \lim_{n\to\infty} \exp\left\{-\sum_{k=1}^n |< y_k, x^* > |^{\alpha}\right\} = \exp\left\{-\sum_{k=1}^\infty |< y_k, x^* > |^{\alpha}\right\} = \exp\left\{-\|Tx^*\|^{\alpha}\right\}$$

Assume $T \in \mathcal{C}_{\alpha}(X^*, L^{\alpha})$. This means that $\exp \{-\|Tx^*\|^{\alpha}\}$ is a ch. f. of some

Radon measure. Therefore, by Ito — Nisio's theorem $\sum_{n=1}^{\infty} y_n \theta_n^{(\alpha)}$ converges a. s.

Since X is of stable-cotype α (Every Banach space being of stable-cotype α with

$$0 < \alpha < 2$$
) the convergence of $\sum y_n \theta_n^{(\alpha)}$ implies $\sum_{n=1}^{\infty} \|y_n\|^{\alpha} < \infty$. This contradicts (3-2).

Theorem 3.3 allows us to obtain the general form of characteristic functionals of symmetric stable measures of index α in space which can be immersed in some L^p with 1 .

3.4. Corollary. Let X be immersed in some L^p (1 .

A functional $\lambda \colon X^* \to R$ is a ch. f. of a symmetric stable measure of index α (1 $< \alpha \le 2$) if and only if it may be represented in the form

$$\lambda(x^*) = \exp \left\{ - \|Tx^*\|^{\alpha} \|_{L^{\alpha}} \right\},\,$$

where $T: X^* \to L^*$ is a completely summing operator.

It is known that [3], in the case $\alpha=2$ the equality $\mathcal{C}_2(X^*,L^2)\equiv\pi_2(X^*,L^2)$ holds if and only if X is of type 2. The following theorem characterizes those spaces for which the equality $\mathcal{C}_{\alpha}(X^*,L^{\alpha})\equiv\pi_{\alpha}(X^*,L^{\alpha})$ holds.

- ${f 3.5.}$ Theorem. Let X be a Banach space. Then the following assertions are equivalent:
 - i) X can be immersed in some L^{α} and is of stable-type α .

$$\mathcal{C}_{\alpha}(X^*, L^{\alpha}) \cong \pi_{\alpha}(X^*, L^{\alpha}).$$

Proof. i) \rightarrow ii) Since $X \hookrightarrow L^{\alpha}$, by theorem 3.3 we have $\mathcal{C}_{\alpha}(X^*, L^{\alpha}) \equiv \pi_{\alpha}(X^*, L^{\alpha})$. On the other hand, since X is of stable-type α it-follows from Maurey-Pisier's theorem that $\pi_{\alpha}(X^*, L^{\alpha}) \equiv \pi_{\alpha}(X^*, L^{\alpha})$.

ii) \to i) As we have shown in the proof of the part ii) of theorem 3.3 if X cannot be immersed in any L^{α} then there exists an operator T such that $T \in \pi_{\alpha}(X^*, L^{\alpha})$ but $T \notin \mathcal{C}_{\alpha}(X^*, L^{\alpha})$. Consequently, X can be immersed in some L^{α} .

Next, we show that X is of stable-type α . Let $(x_n) \subset X$, $\Sigma \|x_n\|^{\alpha} < \infty$.

We have to prove that the series $\sum_{n=1}^{\infty} x_n \theta_n^{(\alpha)}$ converges a.s. Consider the operator

 $T: X^* \to l^*$ defined by $Tx^* = \{\langle x_n, x^* \rangle\}_{n=1}^{\infty}$. T can be considered as an opera-

or from X^a into L^a because $l^a \Leftrightarrow L^a$, From Ito-Nisio's theorem it easily follows that the series $\sum x_n \theta_n^{(\alpha)}$ will converge a.s. if we show that $T \in \mathcal{C}_{\alpha}(X^{\alpha}, L^{\alpha})$ i.e $\ell \in \pi_{\alpha}(X^{\circ}, L^{\alpha})$ by our assumption. Consider an arbitrary sequence $(x_{n}^{\alpha}) \in X^{\circ}$ such that $\Sigma \mid \langle x, x_n^o \rangle \mid c < \infty$ for each $x \in X$. By the uniform boundedness principle $\Sigma \mid \langle x, x_{\mathbf{n}}^{\circ} \rangle \mid \alpha \leqslant C \parallel x \parallel \alpha$ for some C > 0 and all $x \in X$. Thus we have $\sum_{\mathbf{k}} \| \mathbf{T} x_{\mathbf{k}}^{\mathbf{a}} \| = \sum_{\mathbf{k}} \sum_{\mathbf{n}} \| \langle x_{\mathbf{n}}, x_{\mathbf{k}}^{\mathbf{a}} \rangle \|^{\alpha} = \sum_{\mathbf{n}} \sum_{\mathbf{k}} \| \langle x_{\mathbf{n}}, x_{\mathbf{k}}^{\mathbf{a}} \rangle \|^{\alpha} \leqslant C \sum_{\mathbf{n}} \| x_{\mathbf{n}} \|^{\alpha} \leqslant \infty.$ That is $T \in \pi_{\omega}(X^{\omega}, L^{\omega})$,

Remark. Taking into account theorems 3.4 and 3.5 the following problem arises quite naturally: Characterize those Banach spaces in which the class ${\mathfrak C}_{{f z}}(X^{f e},$ L^{ω}) coincides with the class $\pi_{\phi}(X^{\phi}, L^{\omega})$ of all completely summing operators from X° into L^{α} .

Let $\Gamma_{\alpha}(X)$ denote the class of all spectral measures corresponding to symmetric stable measures on X with index a. It is known that if X is of stable-type α then $\Gamma_{\alpha}(X)$ consists of all finite measures on the unit sphere S (see [8]). In particular, we get the description of $\Gamma_{\alpha}(X)$ for the case $X = l^{p}(p > \alpha)$, here, as an application of above-obtained results, we shall prove the following theorem which gives a description of the class $\Gamma_a(X)$ for the case $X = I^p(1 (Note$ that for arbitrary X the problem of determining $\Gamma_{\mathbf{x}}$ (X) still remains open).

3.7. Theorem. Let $X = l^p(1 . Then the class <math>\Gamma_{\alpha}(X)$ consists of finite measures Y on S satisfying the condition

$$\sum_{n=1}^{\infty} \left[\int_{\mathbb{R}} |\langle x, c_n \rangle|^{\alpha} \gamma(\mathrm{d}x) \right]^{P/\alpha} < \infty,$$

where (e_n) is the sequence of unit vectors in $X^* = I^q$.

Proof. We let $L^a = L^a(S, \Upsilon)$. Consider the operator $T: X^a \to L^a$ defined by $Tx^{\circ} = \langle ., x^{\circ} \rangle$. Then the fact that $\gamma \in \Gamma_{\alpha}(X)$ is equivalent to the fact that $T \in \mathcal{C}_{\mathfrak{a}}(X^{\mathfrak{a}}, L^{\mathfrak{a}})$. Therefore the theorem will be proved as soon as we show that $T \in \mathcal{C}_{\alpha}(X^{\alpha}, L^{\alpha})$ if and only if $\Sigma \| Te_{\alpha} \|^{p} < \infty$. Suppose that $T \in \mathcal{C}_{\alpha}(X^{\alpha}, L^{\alpha})$. By theorem 3.1 $T \in \pi_P(X^e, L^e)$. From this it follows that $\Sigma \parallel Te_n \parallel^P < \infty$ since (e_n) is a weakly p-absolutely summable sequence in $X^{\alpha} = l^{q}$. Conversely, suppose that $\Sigma \parallel Te_n \parallel^P < \infty$. Consider the series $\sum_{n} T(e_n)\theta_n^{(P)}$ where $(\theta_n^{(P)})$ are i.i.d. realvalued random variables with the ch. f. $\exp\{-+t\}^p$. Because L^a is of stabletype p $(p < \alpha)$, $\Sigma \parallel Te_n \parallel^P < \infty$ implies that the series $\Sigma T(e_n)\theta_n^{(P)}$ converges a.s in L^x . This fact implies that $\exp \{-\|T^ax^a\|_{X}^P\}$ is the ch. f. of a Radon measure on L^a . According to theorem 3.1, $T^a \in C_a(L^a, X)$ and, consequently, $T \in C_a(X^a, X)$ L^{α}) by theorem 3.2.

REFERENCES

- [1] A. De Acosta, Stable measures and seminorms, Ann. Probab, 5, 3 (1975), 865-875.
- [2] A. De Acosta, Asymptotic behavior of stable measures, Ann. Probab. 5, 3 (1977), 494 499.
- [3] S. A. Chobanjan, V. I. Tarieladze, Gaussian characterizations of certain Banach spaces, J. Multivar. anal. 7, 1 (1977), 183 205.
- [4] Dang Hung Thang, Nguyen Duy Tien, On symmetric stable measures on spaces l^p , $1 \le p < \infty$, Acta Math, Vietnam, T. 4 N. 1 (1979), 39 52.
- [5] K. Ito, M. Nisio, On the convergence of sums of independent Banach space valued random variables, Osaka. J. Math. 1, 5 (1968), 35 48.
- [6] J. Lindenstraus, A. Pelczynski. Absolutely summing operators in L_p spaces and their applications Studia Math. 29, 275 326.
- [7] B. Maurey, G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58. 1 (1976), 45 90.
 - [8] V. Paulaukes, On stable distributions on separable Banach spaces, Proc. IInd Conf. ono Prob. Theory and Math. Stat. in Vinus, 1977, 166 167.
 - [9] A. Pietsch, Absolute P summterende Abbildungen in normterten Raumen. Studia Math. 28 (1967), 333 353.
 - [10] L. Schwartz, Mesures de Radon, Hanoi, 1977.
 - [11] L. Schwartz, Seminatre. Applications radonifiantes Paris, 1969/1970.
 - [12] A. Tortrat, Sur les lots $e(\lambda)$ dans les espaces vectortelles, Applications aux lots stables, Wshr. Verw, Geb. 07 (1976), 175-182.