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The well-known Banach--Sieinlous Theorem asserls that a family of linesr
condinuous and point bounded mappings from a barrel space inlo a Hausdorff
locally convex space is equicontinuous [1}. Hore preciscly, lel X be a harrel space,
Y a Hausdorfh locally convex space and lei F={/,, v &I] be a lamily of lincar
continuous mappings from X into ¥ such that for every o & X the se! e,y &1}
is bounded in Y. Then for every neighbourhoed V of the origin of ¥ there is a
neighbourhood U of the origin o X Such that
@) CV for cach v &L

Qur purpose in Lhe present paper is Lo extend Lhe above mentioned result to

multivalued M-convex mappings.
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First, let us introduce some notalions and definitions. Throughout this paper
we shall denote by X a barrel space, by ¥ o Hausdorff loeally convex space and
by A/ a closed convex cone in Y.

Definition 1. A mullivalued mappings F: ¥ — Y is said (o he Y-convex
if for all points x and y of X and for all o < [0,1] .

s Flaz + (1 =a)y) C aF(x) + (1 —a) Fy) + W,

Definition 2. Given o, € X, we say that a family of multivalued mappings
F={F,,vel}] from X inio YV is (3, x,)-bounded if for every neighbourhood
V. of the origin ol ¥ and for every & € X there exist a positive number p and an
index v, €I such that . ‘
Ffa) C oV 4+ Fy ()M,
for each v < 1.

Definition §. We say thal a sel ACY is W-bounded il for cvery neighbour-
hood ¥V of the origin of Y there cxisls a positive number p such that

’ AC oV + W ’

Definition ¢. A lamily of mullivalued mappings F = [ v & 1} from X,

inlo ¥ is said 1o he -bounded @i x. & X, i the set U F(r.) is M-hounded.
vl ‘ ]
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Proposition 1. Lel F == [I*V. v & I} be a Iamlly of multivalued mappmgs
from X into Y.

a) It g is (M, xv,)-bounded and if forevery \56] the set F_(x,) is M-bounded
then F is M-bounded at every point of X.

b) If F is M-bounded at every point of X then 3-‘ is (M, x)-bounded for
every point x&X, for “hlch there exists voel such thal — F,_(x) in /-bounded.

Proof. a) Supposc that F = |y, v €I} is (M, x,)-bounded. By definition,
for every neighbourhood V of the origin ol Y and for cvery x& X there exists a

_positive number p and an index v, € I such that %
Fuz)CeV+ I, (x)+ M (alv el (H
If F,, (x,) is M-bounded there is a positive number p sach that '
Fyy (@) C pV 4 M ' | (2)

From (1) and (2) it follows that for every V and lor every z & X,
CF,@) oV 4 M “@llvel _

swhere Pﬁ&l_..__._; ¢ 4+ p. This means that for every z€ X, L€J F(x) is M-bounded in ¥.

vel

b) Suppose now that F in W/-bounded at every point of X and consider an
arbitrary point x, of X for which there cxists v&7 such that — J? ‘v, (X0) is M -boun-

ded in Y. For every neighbourhood Vin ¥ and for every xe€ X there is a positive
number p satislying

Fyx) C oV + M (all v&l) (3)
Since — F, (x,) is M-bounded there is a positive number 7 such that
= F, (x) TV -+ M. (4)

Setting p* = p + T we oi)lain from (3) and (4) that {or any'.xEX. there are
o* >0 and ¥, € I such that:
F (@) CoV+M oV + F, (z) + M —F, L ()
Cl+ NV + Iy (@) + M=p*V + F, (x)+ M
(all r&l). Therel‘ore F is (M, z,)-bounded. The proof is complete.

Definition 5. A family F = [F,, v €I of multivalued mappings {rom X
into Y is said to be M- equicontinuous at x, € X il for every neighbourhood V of
the origin of Y there exists a meighbourhood U of the origin of X sueh that

F(xe+U)C V4 Fyz,)+Mlorallvel

Definition 6. A family F = IF,., v < I] ol multivalued mappings [rom X into_._
Y is said to be (M, x,)-equicentinuous if for every neighbourhood V of the origin
of ¥, there exists a neighbourhood U ol the origin of X such that

I (zo + Uy TV 4+ conv ( U Fp-(xo)) + M,
BEL .

forallv & 1.
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Clearly, if F is M-equicontinuous at x, then it is also (M x,)- LqulCOH-
tinuous. Conversely, we have the following .

Proposition 2. Let F = | F,, v I} be a family of M-comvex, multivalued
mappings which arce (M, z,)-equicontinuous, and satisfy the following conditions:

i) F,(x,)is a convex set for every v € I,
ii) ¥F and — F are M-bounded at z,
Then F is M-cquicontinuous at the point-x,.
(Here — F denote: the family | — F|F € I {)
Preof. Without loss of generality it can be assumed that z, = 0 (otherwise
one could use the family of mappings
F={F,vel]l where F,(x)=F,(z, + ).

Since F is (M. O)-equicontinuous, for every neighbourhood V (which we
“can assume to be convex) of the origin of Y, there exists a neighbourhood U in l ‘
such that

Fy0) <V com () Fi O + I, G
nel
(all v € I).
By Condition (ii), one can find a positive number p, such thal
I O) v~ F (0) CpV + M (6)
(all v & I).
Therefore
conv (|} Fp (O0)) < conv (p,V + M) = p,V + M. . (7)
= BGI '
From (5) and (7) we deduce . _
Ful) c(l+p)V + M (all veD) ®)

This logelher with (6) yields
FAO) < L 4p) VA M1 +p)V+ M —F (0)+ FLO0)
CLl+20)V+FO) M (al vl

Sciting U = U we have for each 5’ € U’z = (1 + 20,) @’ € U, hence :

1420,

F‘,(m’)ﬂﬁv(%—m’):ﬂ,( 1 :c—[—(l— 1 )O)
, 14-2p, 1+2, .\ 14+2p,
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.k _ 1

f Foxy + {1 — FL0) + M
“ 142p, (}+( l—l—2po) (‘H“
S , : 1 .
(1 i20) V- Py 0y + ) 4 [1 = o) 10+ M.
< g W2V PO+ )+ 1+290) (0) +

CV 4 F,0)+M (alvel

This shows that F is M-equicontonuoﬁs at 0 and so concludes the proof.

Definition 7. A multivalued mapping & from X iato Y is'said to be M-closed
if for every elosed sef ..l in Y. the set

F () = ja; e X, F{xyC A+ ;U}
is elosed in X.° -

Theorem I. Let F = | F,, v&l} be a family of M-convex, M-closed multi-
valued mappings [tom X into ¥ Let x, & X. It F 1s (M, x,)-bounded then it is also
(M, x,)-equicontinuous - ‘ -

Proof. We shall assume a‘olz—_ 0. Let V" bea convex balanced and closed
neighbourhood ol the origin of ¥..
Sefb:

A= ~n I,/ (% 7 4 conv: (v Fy (()))-]rjl) -
vl BEl .

= N asce_\', I,z C (—l 7 4+ conv (v Fu (O)) + M)é
vEI 2 pel
where the bar denoles the topological closure. |

Obviously A = ¢ (atleast O€.1). For any two elements x4, Tz of A and lorany
o & [0,1] we have

1“'\, (o + (1—a)xa) C o F._, (x) + (l--—a) f'\. {(x2) -+ M

C oL (—}—‘F + COHU (U 1;'[-'- (0)) + Al) + (Im—a) (i_" "}'COH?T (U InF (0)) + Aj)_i_ JI
? ‘ bl 2 CRET ‘

= (1— V 4 conv (v [0 4 J[) (all v&lI}.
2 - pel .

Consequently ax+ (1—o) x5 €1 which shows the convexity of .. Since I,
is M-closed, - is closed in X.

Lel ¢ be anarbitrary point of N, As F is M-bounded relatively to @, I'or% 1
there exists positive numbers g pz and indices v, € 1. vy € [ such that:
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Fy(@) ¢ % prV P (0) + I @l veD.

, i .
Fy{—=w) C 5—.021 i F o0y + M

Without loss. of genuahtv We may suppose py > 7. g2 > 1. Then we have:

‘ F\,'(f— x) —F, (_ T+ (1 __) o) c Lp, @) n (1 - pi) L (OY 4 M

P1 13! Pi 1

<L (ip, VLR, () +u) n (1 _i) F,(0)y4+ M
pr\2 : 1

C (i I" 4 conv (U Fy (O))-]—M)
2 BeEl

{all vel), Consequenily——— rCA. Similarly — — &€ A, put p, = max }p, p] we
71 B1

have = € A Nn(—=A)ie.An--4is an absorbing set in X, Then U == An (— A)

is a non-empty convex balanced and absorbing set. Remembering that Xis a barrel
space, we conclude that U is a neighbourhood of the origin of X, We have:

F U (% V 4 conv (U 1«‘9(0))+;u)»+ M

HEIL
1. . a1
C =V +conv (v Fo(O) 4 M + M + 2V
. 2 = 2
= U 4 comv (U Fu(0)) + M. (all vel),
reEi \

Thus F is (M, O)-equicontinuous, which concludes the prool.

Corollary 1. Let F = [[",, v €1} be family of M-convex, M-closed mul-
livalued mappings from X inlo ¥, Assume that for some gz, € X : -
()£, (x,) is-convex for each v € I,

{ii) 31‘ and = F are M-bounded-ut every point of X. Then F is M- eqmcon-
Lbnuous at x

Proof This follows at once from Proposition 2, since in view of part b)
of Proposmon 1, the family F is (M, = )-bounded.

Corollary 2. Let F = {/ww vE€I{bea family of M-convex, M-closed sin-

fle-valued mappings. Assume that F lnd — F ure M-bounded at x, Then Fis
¥-equicontinuous at’ x,. '
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Proof. Obvious.

Definition 8. A multivalued mapping F from X intoY is said to be M-upper
semicontinuous at x,&€X if for any neighhourhood V of the origin of ¥ there
exists a neighbourhood U of the origin of X such that :

. F@,+U) cV+F(z)+ M
Definition 9.°A family F = [ F,, v € I} of mullivalued mappings [rom hY
into ¥ is said to be “M-converging to the multivalued mapping F at x, € X il for
any neighibourhood V' of the origin in ¥ therc exists v, € J such thal
Fv (mo) C F (mo) - v + M
and F (x,) < F, (x,) 4+ V + M whenever v 3> v,

Theorem 2. Let [FF;}] * be a sequence of M-convex, M-closed, multi-’
valued mappings from X into ¥ which are (3, x,)-bounded,

Assume .
1) 'y (z,) is' M-bounded in Y for cvery n,
ii) {F,} is M-converging to F at every point of X,
i) F (x) is compact i‘or all x € X apd F (x,) is convex.
Then F is M-convex, M-upper semi-continuous at x,.

Proof. It is clear that F is a M -cenvex mapping. So we have only to pro-
ve the M-upper semicontinuity of F al x,. Withoul loss of génerality we may
assume ¥, = 0. By Theorem 1, for any neighbourhood 1" (shich we may assume
lo be convex) of the origin of Y there exists a neighbourhood U in X such that

o=

F,U). <V + conv (U qu (0)) + M, for cvery n. (M

m=1

Since [Fy} is M-converging {0 F at O there cxists m, with

Fu (0) C F (O)+V + Mforall m>m, : (10)
But by hypothedis ¥y, (O) is M-bounded in ¥, thercfore onc can [ind a2 number
£, > 0 such that

U Fa (0) € gV 4 . (11

m=1

From (10) and (11) we have:

o m, o -
conv ({J Fn(0) = conv (({J Fr O)v (J Fu () - (12
M e 1 Ml ‘111=ri1,i :

C (+p)V +EO) + M
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Relations (9) and {12) imply : ,
o Fo (D)< @+ 0 V + F(O) + M (all n),
Let x be an arbilrary point in U. Since | F, ] is M-convergent to F at w,
there exists a number n, 2> m, such that:
Flye Fo@) + V4 M <3 4 p) V + FOY+ A,
for all n >» n,.

Therefore .
FUy C@+p,) V + FO) + M.
Taking U = T U. we have for every € U’ an x € U such thalx =
- pﬂ .
x, Henee
3+po '
1- 1 1 -
Fx’:F( m)zF( _ x—{—(i—— )O)
) 3+ e, 3+0, 34,
1 1
C F (%) (1 — FO)+ M
3 p, @+ 3‘|‘Po) (')
¢ =L B4V + FO) + M) + (1 ! )F(O)—I—M
3+, 3+ 0
=V 4+ FO)+ M
Consequently FU) <V 4+ F(O) + M,

$o that F is M-upper semicontinuous at 0, as was to be proved.‘

Proposition 3. Lét | F, ]:_I be a sequence of multivalued mappings from
X into Y. Suppose that | F, | is M-converging to F at x, and F, (x,) is M-bounded
for every n. Then the sequence {Fn ]:;1 is M-bounded at T,

Preof. Let V' be an arbitrary neighbourhood of the erigin of Y. By the
M-convergence of {F, | to F, there is a number n, such that
Fo{x,) CF@)+V + M(all > n) and - (13)
Fx,) CF, (x,)) -V + M, (14)
Yrom the M-boundedness of F, (x,) and from-(14) it l'oliows that F(z,) is
M-bBounded i.e. there exists a number p; > with

F(xy CpV 4 M. - : (15)
Furthermore; Fyp(x,) is M-bounded for every n. Thus we have :

g !

UFa@)<pa VM 5 (16)
n=1

for some p; > 0. Relations (13) and (15) give

. . Fn(mo)CPDY’FM : (alln)
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with p, = max {1 -+ py. o). This proves the Proposilien.

Theerem 5. Let |Fn]n , be a sequence of M-convex, M-rlosed maul-

v
ki

tivalued mappings from X inte

Supposc :

i) |} is M-converging to {7 2l cvery poini of V.

i) for some x, € N Fuz) is M-bounded and convex wm ) for every m

iiiy F'(x) is compact for cvery o € N. Then 7 is M-upper semicontitious
at @, / ’

A

Proof. Proposition 2 and Proposilign § imply tie M-equicontinuity ol the
lamily [FM]::1 at x, (assuming z, = ) Thus, lor any neighbourhood of the
origin ¥ ol Y there is a neighourhood U ol the origin of X such that

oy ¢ V4+IF(0) + M &lln (17)

By Theorem 2, I' is d{-conven. Forevery o & U, Itam the 3-convergence

of {!’n} fo I at x and at O, there exisis n, such that’
* FaO)y IOy + V4 M and . 1%
oy € Fa(x) + I - M lor every » 2 n,. (‘19)

Relations (17) and (19) imply :
FioyCV 4+ VL Faoy4+ M (all # > ny)
and hence, by taking (18) info account :
oy o« 3V 4 {0y + M
lor very z € U
Taking (' = —;;— {7 we conclude
- | F) ¢V 4 1) 4 &
i.e. £ is M-upper semicontinuous at O,
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