ACTA MATHEMATICA VIETNAMICA

TOM 5, Nº1 (1980)

THE BANACH — STEINHAUS THEOREM FOR MULTIVALUED M - CONVEX MAPPINGS

NGUYỄN XUÂN TẦN and ĐINH THẾ LỰC

Institute of Mathematics, Hanoi

The well-known Banach-Steinhaus Theorem asserts that a family of linear continuous and point bounded mappings from a barrel space into a Hausdorff locally convex space is equicontinuous [1]. More precisely, let X be a barrel space, Y a Hausdorff locally convex space and let $\mathcal{F} = \{f_v, v \in I\}$ be a family of linear continuous mappings from X into Y such that for every $x \in X$ the set $\{f_v(x), v \in I\}$ is bounded in Y. Then for every neighbourhood Y of the origin of Y there is a neighbourhood U of the origin of X such that

$$f_{\nu}(U) \subset V$$
 for each $\nu \in I$.

Our purpose in the present paper is to extend the above mentioned result to multivalued M-convex mappings.

First, let us introduce some notations and definitions. Throughout this paper we shall denote by X a barrel space, by Y a Hausdorff locally convex space and by M a closed convex cone in Y.

Definition 1. A multivalued mappings $F: X \to Y$ is said to be *M-convex* if for all points x and y of X and for all $\alpha \in [0,1]$

$$F(\alpha x + (1 - \alpha)y) \in \alpha F(x) + (1 - \alpha)F(y) + M,$$

Definition 2. Given $\alpha_o \in X$, we say that a family of multivalued mappings $\mathcal{F} = \{F_{\bar{v}}, v \in I\}$ from X into Y is (M, x_o) -bounded if for every neighbourhood V of the origin of Y and for every $x \in X$ there exist a positive number ρ and an index $v_o \in I$ such that

$$F_{v}(x) \subset \rho V + F_{V_{o}}(x_{o}) + M,$$

for each $v \in I$.

Definition 3. We say that a set $A \subset Y$ is M-bounded if for every neighbourhood V of the origin of Y there exists a positive number ρ such that

$$A \subset \rho V + M$$

Definition 4. A family of multivalued mappings $\mathcal{F} = \{F_v, v \in I\}$ from X into Y is said to be M-bounded at $x_o \in X$, if the set $\bigcup_{v \in I} F_v(x_o)$ is M-bounded.

Proposition 1. Let $\mathcal{F} = \{F_v, v \in I\}$ be a family of multivalued mappings from X into Y.

- a) It \mathcal{F} is (M, x_o) -bounded and if for every $v \in I$ the set $F_v(x_o)$ is M-bounded then \mathcal{F} is M-bounded at every point of X.
- b) If \mathcal{F} is M-bounded at every point of X then \mathcal{F} is (M, x)-bounded for every point $x \in X$, for which there exists $v_o \in I$ such that $-F_{v_o}(x)$ in M-bounded.

Proof. a) Suppose that $\mathcal{F} = \{F_v, v \in I\}$ is (M, x_o) -bounded. By definition, for every neighbourhood V of the origin of Y and for every $x \in X$ there exists a positive number ρ and an index $v_o \in I$ such that

$$F_{\nu}(x) \in \rho V + F_{\nu_0}(x_0) + M \quad (\text{all } \nu \in I)$$

If $F_{v_0}(x_0)$ is M-bounded there is a positive number p such that

$$F_{\mathbf{v_0}}(x_0) \in \mathbf{pV} + \mathbf{M} \tag{2}$$

From (1) and (2) it follows that for every V and for every $x \in X$,

$$F_{\nu}(x) \in \rho^*V + M$$
 (all $\nu \in I$)

where $\rho^* = \rho + p$. This means that for every $x \in X$, $\bigcup_{v \in I} F_v(x)$ is M-bounded in Y.

b) Suppose now that \mathcal{F} in M-bounded at every point of X and consider an arbitrary point x_0 of X for which there exists $v \in I$ such that $-F_{v_0}(x_0)$ is M-bounded in Y. For every neighbourhood V in Y and for every $x \in X$ there is a positive number ρ satisfying

$$F_{\mathbf{v}}(x) \subset \rho V + M \quad (\text{all } \mathbf{v} \in I)$$
 (3)

Since $-F_{v_0}(x_0)$ is M-bounded there is a positive number γ such that

$$-F_{v_0}(x) \in \Upsilon V + M. \tag{4}$$

Setting $\rho^* = \rho + \gamma$ we obtain from (3) and (4) that for any $x \in X$, there are $\rho^* > 0$ and $v_0 \in I$ such that:

$$F_{\nu}(x) \in \rho V + M \in \rho V + F_{\nu_0}(x_0) + M - F_{\nu_0}(x_0)$$

$$\in (\rho + \gamma)V + F_{\nu_0}(x_0) + M = \rho^* V + F_{\nu_0}(x_0) + M$$

(all $v \in I$). Therefore \mathcal{F} is (M, x_0) -bounded. The proof is complete.

Definition 5. A family $\mathcal{F} = \{F_v, v \in I\}$ of multivalued mappings from X into Y is said to be M-equicontinuous at $x_o \in X$ if for every neighbourhood V of the origin of Y there exists a neighbourhood U of the origin of X such that $F_v(x_o + U) \subset V + F_v(x_o) + M$ for all $v \in I$.

Definition 6. A family $\mathcal{F} = \{F_v, v \in I\}$ of multivalued mappings from X into Y is said to be (M, x_o) -equicontinuous if for every neighbourhood V of the origin of Y, there exists a neighbourhood U of the origin of X such that

$$F_{\nu}(x_0 + U) \subset V + conv \left(\bigcup_{\mu \in I} F_{\mu}(x_0) \right) + M,$$

for all $v \in I$.

Clearly, if \hat{x} is M-equicontinuous at x_0 then it is also (M, x_0) -equicontinuous. Conversely, we have the following

Proposition 2. Let $\mathcal{F} = \{F_{\nu}, \nu \in I\}$ be a family of M-convex, multivalued mappings which are (M, x_0) -equicontinuous, and satisfy the following conditions:

- i) $F_{\nu}(x_{\bullet})$ is a convex set for every $\nu \in I$,
- ii) \mathcal{F} and $-\mathcal{F}$ are M-bounded at x_0

Then \mathcal{F} is M-equicontinuous at the point x_o .

(Here $-\mathcal{F}$ denote: the family $\{-F \mid F \in F\}$)

Proof. Without loss of generality it can be assumed that $x_0 = 0$ (otherwise one could use the family of mappings

$$\mathcal{F} = \{\overline{F}_{\nu}, \nu \in I\}$$
 where $\overline{F}_{\nu}(x) = F_{\nu}(x_0 + x)$.

Since \mathcal{F} is (M, O)-equicontinuous, for every neighbourhood V (which we can assume to be convex) of the origin of Y, there exists a neighbourhood U in X such that

$$F_{\nu}(U) \subset V + conv \left(\bigcup_{\mu \in I} F_{\mu}(O) \right) + M, \tag{5}$$

(all $v \in I$).

By Condition (ii), one can find a positive number ρ_o such that

$$F_{\nu}(O) \cup -F_{\nu}(O) \subset \rho_{0}V + M \tag{6}$$

(all $v \in I$).

Therefore

$$conv (\bigcup F\mu (O)) \subset conv (\rho_o V + M) = \rho_o V + M. \tag{7}$$

 $\mu \in I$

From (5) and (7) we deduce

$$F_{\nu}(U) \subset (1+\rho_0) V + M \quad \text{(all } \nu \in I).$$
 (8)

This together with (6) yields

$$F_{\nu}(U) \subset (1 + \rho_0) V + M \subset (1 + \rho_0) V + M - F_{\nu}(O) + F_{\nu}(O)$$

 $\subset (1 + 2\rho_0) V + F_{\nu}(O) + M \quad \text{(all } \nu \in I).$

Setting $U' = \frac{1}{1+2\rho_0} U$ we have for each $x' \in U'$ $x = (1+2\rho_0) x' \in U$, hence:

$$F_{\nu}(x') = F_{\nu} \left(\frac{1 + 2\rho_{o}}{1 + 2\rho_{o}} x' \right) = F_{\nu} \left(\frac{1}{1 + 2\rho_{o}} x + \left(1 - \frac{1}{1 + 2\rho_{o}} \right) 0 \right)$$

$$\left(\frac{1}{1+2\rho_{o}} F_{v}(x) + \left(1 - \frac{1}{1+2\rho_{o}}\right) F_{v}(0) + M \right)$$

$$\left(\frac{1}{1+2\rho_{o}} \left((1+2\rho_{o}) V + F_{v}(0) + M \right) + \left(1 - \frac{1}{1+2\rho_{o}}\right) F_{v}(0) + M \right)$$

$$\left(V + F_{v}(0) + M \right) \quad (\text{all } v \in I)$$

This shows that \mathcal{F} is M-equicontonuous at O and so concludes the proof.

Definition 7. A multivalued mapping F from X into Y is said to be M-closed if for every closed set A in Y, the set

$$F^{-}(A) = \{ \boldsymbol{x} \in X, F(\boldsymbol{x}) \in A + M \}$$

is closed in X.

Theorem I. Let $\mathcal{F} = \{F_v, v \in I\}$ be a family of M-convex, M-closed multivalued mappings from X into Y Let $x_o \in X$. If \mathcal{F} is (M, x_o) -bounded then it is also (M, x_o) -equicontinuous

Proof. We shall assume $x_0 = 0$. Let V be a convex balanced and closed neighbourhood of the origin of Y.

Set:

$$A = \bigcap_{v \in I} F_{v}^{-} \left(\frac{1}{2} V + \operatorname{conv} \left(\bigcup F_{\mu} (0) \right) + M \right)$$

$$= \bigcap_{v \in I} \left\{ x \in X, \ F_{v} (x) \in \left(\frac{1}{2} V + \operatorname{conv} \left(\bigcup F_{\mu} (0) \right) + M \right) \right\}$$

where the bar denotes the topological closure.

Obviously $A \neq \phi$ (at least $O \in A$). For any two elements x_1, x_2 of A and for any $\alpha \in [0,1]$ we have

$$F_{\nu}(\alpha x_{1} + (1-\alpha) x_{2}) < \alpha F_{\nu}(x_{1}) + (1-\alpha) F_{\nu}(x_{2}) + M$$

$$< \alpha \left(\frac{1}{2}V + conv \left(\bigcup F_{\mu}(0)\right) + M\right) + (1-\alpha) \left(\frac{1}{2}V + conv \left(\bigcup F_{\mu}(0)\right) + M\right) + M$$

$$= \left(\frac{1}{2}V + conv \left(\bigcup F_{\mu}(0)\right) + M\right) + M$$

$$= \left(\frac{1}{2} V + \operatorname{conv} \left(\bigcup_{I \in I} F_{\mu}(0) \right) + M \right) \quad (all \ v \in I).$$

Consequently $\alpha x_1 + (1-\alpha) x_2 \in A$ which shows the convexity of A. Since F_v is M-closed, A is closed in X.

Let x be an arbitrary point of X. As \mathcal{F} is M-bounded relatively to \mathcal{O} , for $\frac{1}{2}V$ there exists positive numbers ρ_1, ρ_2 and indices $v_1 \in I$, $v_2 \in I$ such that:

$$F_{\nu}(x) < \frac{1}{2} \rho_1 V + F_{\nu 1}(0) + M \text{ (all } \nu \in I).$$

$$F_{\nu}(-x) < \frac{1}{2} \rho_2 V + F_{\nu 2}(0) + M$$

Without loss of generality we may suppose $\rho_1 \geqslant 1$, $\rho_2 \geqslant 1$. Then we have:

$$F_{\nu}\left(\frac{1}{\rho_{1}} x\right) = F_{\nu}\left(\frac{1}{\rho_{1}} x + \left(1 - \frac{1}{\rho_{1}}\right) O\right) \subset \frac{1}{\rho_{1}} F_{\nu}\left(x\right) + \left(1 - \frac{1}{\rho_{1}}\right) F_{\nu}\left(O\right) + M$$

$$\subset \frac{1}{\rho_{1}} \left(\frac{1}{2} \rho_{1} V + F_{\nu}\left(O\right) + M\right) + \left(1 - \frac{1}{\rho_{1}}\right) F_{\nu}\left(O\right) + M$$

$$\subset \left(\frac{1}{2} V + \operatorname{conv}\left(\bigcup_{\mu \in I} F_{\mu}\left(O\right)\right) + M\right)$$

(all $v \in I$). Consequently $\frac{1}{\rho_1} x \in A$. Similarly $-\frac{x}{\rho_1} \in A$. Put $\rho_0 = \max \{\rho_1, \rho_2\}$ we

have $\frac{x}{\rho_0} \in A \cap (-A)$ i. e. $A \cap -A$ is an absorbing set in X. Then $U = A \cap (-A)$

is a non-empty convex balanced and absorbing set. Remembering that X is a barrel space, we conclude that U is a neighbourhood of the origin of X. We have:

$$F_{\nu}(U) \in \left(\frac{1}{2}V + \operatorname{conv}\left(\bigcup_{\mu \in I} F_{\mu}(O)\right) + M\right) + M$$

$$\in \frac{1}{2}V + \operatorname{conv}\left(\bigcup_{\mu \in I} F_{\mu}(O)\right) + M + M + \frac{1}{2}V$$

$$= V + \operatorname{conv}\left(\bigcup_{\mu \in I} F_{\mu}(O)\right) + M, \quad (all \ \nu \in I).$$

$$\mu \in I$$

Thus \mathcal{F} is (M, O)-equicontinuous, which concludes the proof.

Corollary 1. Let $\mathcal{F} = \{F_v, v \in I\}$ be family of M-convex, M-closed multivalued mappings from X into Y. Assume that for some $x_o \in X$:

- (i) $F_{\nu}(x_0)$ is convex for each $\nu \in I$,
- (ii) \mathcal{F} and $= \mathcal{F}$ are M-bounded at every point of X. Then \mathcal{F} is M-equicontinuous at x_0 .

Proof. This follows at once from Proposition 2, since in view of part b) of Proposition 1, the family \mathcal{F} is (M, x_d) -bounded.

Corollary 2. Let $\mathcal{F} = \{f_v, v \in I\}$ be a family of *M*-convex, *M*-closed sinfle-valued mappings. Assume that \mathcal{F} and $-\mathcal{F}$ are *M*-bounded at x_o . Then \mathcal{F} is *M*-equicontinuous at x_o . Proof. Obvious.

Definition 8. A multivalued mapping F from X into Y is said to be M-upper semicontinuous at $x_o \in X$ if for any neighbourhood V of the origin of Y there exists a neighbourhood U of the origin of X such that

$$F(x_0 + U) \subset V + F(x_0) + M$$

Definition 9. A family $\mathcal{F} = \{F_v, v \in I\}$ of multivalued mappings from X into Y is said to be M-converging to the multivalued mapping F at $x_o \in X$ if for any neighbourhood V of the origin in Y there exists $v_o \in I$ such that

$$F_{v}(x_{o}) \subset F(x_{o}) + V + M$$

and $F(x_0) \subset F_v(x_0) + V + M$ whenever $v \geqslant v_0$

Theorem 2. Let $\{F_n\}_{n=1}^{\infty}$ be a sequence of *M*-convex, *M*-closed, multivalued mappings from *X* into *Y* which are (M, x_o) -bounded.

Assume:

- i) $F_n(x_0)$ is M-bounded in Y for every n,
- ii) $\{F_n\}$ is M-converging to F at every point of X,
- iii) F(x) is compact for all $x \in X$ and $F(x_0)$ is convex.

Then F is M-convex, M-upper semi-continuous at x_0 .

Proof. It is clear that F is a M-convex mapping. So we have only to prove the M-upper semicontinuity of F at x_o . Without loss of generality we may assume $x_o = 0$. By Theorem 1, for any neighbourhood V (which we may assume to be convex) of the origin of Y there exists a neighbourhood U in X such that

$$F_{\rm n}$$
 (U) $\subset V + conv \left(\bigcup_{\rm m=1}^{\infty} F_{\rm m}$ (O)) + M, for every n. (9)

Since $\{F_m\}$ is M-converging to F at 0 there exists m_o with

 $F_{\rm m}$ (O) $\subset F$ (O) + V + M for all $m \geqslant m_{\rm o}$. (10) But by hypothesis $F_{\rm m}$ (O) is M-bounded in Y, therefore one can find a number $\rho_{\rm o} > 0$ such that

$$\bigcup_{m=1}^{m_0} F_m(O) \subset \rho_0 V + M. \tag{11}$$

From (10) and (11) we have:

$$conv\left(\bigcup_{m=1}^{\infty}F_{m}(O)\right)=conv\left(\left(\bigcup_{m=1}^{m_{0}}F_{m}\left(O\right)\right)\cup\left(\bigcup_{m=m_{0}}F_{m}\left(O\right)\right)\right)$$
(12)

$$< (1 + \rho_0) V + E(0) + M.$$

Relations (9) and (12) imply:

$$F_{\rm p}(U) \in (2 + \rho_{\rm o}) V + F(O) + M$$

Let x be an arbitrary point in U. Since $\{F_n\}$ is M-convergent to F at x, there exists a number $n_0 \ge m_0$ such that:

$$F(x) c F_n(x) + V + M < (3 + \rho_0) V + F(0) + M$$

for all $n \gg n_o$.

Therefore

$$F(U) \in (3 + \rho_0) V + F(O) + M.$$

Taking $U' = \frac{1}{3+\rho_0}U$, we have for every $x' \in U'$ an $x \in U$ such that x' =

$$\frac{1}{3+a}$$
 x. Hence

$$F(x') = F\left(\frac{1}{3 + \rho_o} x\right) = F\left(\frac{1}{3 + \rho_o} x + \left(1 - \frac{1}{3 + \rho_o}\right) O\right)$$

$$\subset \frac{1}{3 + \rho_o} F(x) + \left(1 - \frac{1}{3 + \rho_o}\right) F(O) + M$$

$$\subset \frac{1}{3 + \rho_o} (3 + \rho_o) V + F(O) + M) + \left(1 - \frac{1}{3 + \rho_o}\right) F(O) + M$$

$$= V + F(O) + M$$

Consequently

$$F(U') \subset V + F(O) + M,$$

so that F is M-upper semicontinuous at O, as was to be proved.

Proposition 3. Let $\{F_n\}_{n=1}^{\infty}$ be a sequence of multivalued mappings from X into Y. Suppose that $\{F_n\}$ is M-converging to F at x_0 and F_n (x_0) is M-bounded for every n. Then the sequence $\{F_n\}_{n=1}^{\infty}$ is M-bounded at x_0 .

Proof. Let V be an arbitrary neighbourhood of the origin of Y. By the **M**-convergence of $\{F_n\}$ to F, there is a number n_0 such that

$$F_n(x_o) \subset F(x_o) + V + M \text{ (all } n \geqslant n_o) \text{ and}$$
 (13)

$$F(x_0) \subset F_n(x_0) + V + M.$$
 (14)

From the M-boundedness of F_n (x_0) and from (14) it follows that $F(x_0)$ is M-bounded i.e. there exists a number $\rho_1 >$ with

$$F(x_0) \in \rho_1 V + M. \tag{15}$$

Furthermore, $F_n(x_0)$ is M-bounded for every n. Thus we have:

$$\bigcup_{n=1}^{\infty} F_n(x_0) \subset \rho_2 V + M \tag{16}$$

for some $\rho_2 > 0$. Relations (13) and (15) give

$$F_n(x_0) \subset \rho_0 V + M$$
 (all n)

(all n).

with $\rho_0 = max (1 + \rho_1, \rho_2)$. This proves the Proposition.

Theorem 5. Let $[F_n]_{n=1}^{\infty}$ be a sequence of *M*-convex, *M*-closed multivalued mappings from X into Y.

Suppose:

- i) $[F_n]$ is M-converging to F at every point of X.
- ii) for some $x_0 \in X$ $F_n(x_0)$ is M-bounded and convex in Y for every n.
- iii) F(x) is compact for every $x \in X$. Then F is M-upper semicontinuous at x_0 .

Proof. Proposition 2 and Proposition 3 imply the M-equicontinuity of the family $\{F_M\}_{n=1}^{\infty}$ at x_o (assuming $x_o = 0$) Thus, for any neighbourhood of the origin V of Y there is a neighbourhood U of the origin of X such that

$$F_n(U) \subset V + F_n(O) + M \text{ (all } n)$$
(17)

By Theorem 2, F is M-convex. For every $x \in U$, from the M-convergence of $\{F_n\}$ to F at x and at O, there exists n_o such that

$$F_n(0) \subset F(0) + V + M \text{ and}$$
 (18)

$$F(x) \in F_n(x) + V + M \text{ for every } n \geqslant n_o.$$
 (19)

Relations (17) and (19) imply:

$$F(x) \subset V + V + F_n(0) + M$$
 (all $n \ge n_0$)

and hence, by taking (18) into account:

$$F(x) \in 3V + F(0) + M$$

for very $x \in U$

Taking $U = \frac{1}{3} \cdot U$ we conclude

$$F(U') \in V + F(0) + W$$

i.e. F is M-upper semicontinuous at O.

Received July 30, 1978

REFERENCE >

[1] N. Bourbaki. Éléments de Mathématique, Livre V. Espaces vectoriels topologiques Germann, Paris 1955.