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COMMON FIXED POINTS OF TWO MAPPINGS OF CONTRACTIVE TYPE
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The aim of this paper is to establish some new results on common lixed -
points of Wvo mappings of contractive type and to show incorrectness in some
thcorems of other authors on common fixed poiiélls.

We shall use the foliowing notalions ;

(X,d) is a metric space.

ST are two (single-valued or multi-valued) mappings in X,
N is the set of all natural numbers, .
d(z,4) = inf jd@p:ged],(@€X, ACX),

IXA,B) = max-|sup d(x,4), sup d(y,B)},(4,B C X),
x€B yea ' : 8

s (A, B)=sup jdmyp:x €A y& B}, (4 B CX),
CB (X) is the family of all nonempty closed bounded subsets of X,

r(8,T; % y) = maz {d(x, y), d(z, Sz), d(y, Ty, -?2- [d(x, Ty) +d (g, Sx)1 1.

r; =, 9y =r(T, T.; x, ).

Theor.em 1. Let (X, d) be a complete metric space, S, T be two multi-valued
mappings of X into CB(X). Suppose there exists an upper semicontinuous from

the righi function a: [ 0,00) ~» [0,1) such that: - 4
D (Sz, Ty) < ald (@, )y 1 (5, T'; @, 1) 1)
‘for every x,g-ex,:c#ay. ' . s o

~

Then either § or T has a fixed point.
If (1) holds for every x,y € X then S and T have a common fized point.

+
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Proof, Let z,.€ X. If , € S%, take I such that d(x,, 5%,) <C 1. Then there
exists @; € Sx, such that d(x,, ) << 1. Obviously x; # %,. From (1) we have:

d(mr, Txy) < D (5%, Ty) S & (d(Zoy )} 1 (S, T 7 Fo )
\<\ o (d (xo! fC[)) max : d(xo! ml)s d(.’):o, qu)!

ey, T2, = (4w, ) + d Gy To] |

It is easy to scc that this implies :
d(zy, Txy) < min [d(x,, T3, 2 (d(z, 21) ri.
If ©, & Tx there exists x; € Tz such that
d(x;, ©,) < min {d(z,, x,), @ (d (T, 21) T}
Similarly, selcct x5 € Sxy so that: . ,
d(xa, x5) << min {d (T3, Tp), (d{xy, T3)) @ (d(Xo T T .
Repeating the above argument with ¢, = d(X, Ta,y) We oblain a sequence {2}
satis[ying n .
(i) :cn'ﬂ € Sx, if nis even,
Tug € T, if nis odd,
Ty =T (REN)

(ii) ¢; << min lea_g, & (Cuy) o (o) T B
From this ¢, \y b > 0.

Denote M = im o (¢,). Since M  a(b) <1 there exists n, € N such that
a(cy) SL=M+4 e<lloranyn > n,. From this it is easy to see that [x.] is a
‘Cauchy sequence and hence converges to some xo* < X.

Il x* = x, for all n large enough then X, = Ty.y contradicting (i). Thus
there exists a subsequence of [&,}, denoted by fZm}, With ©m & &% (Y m) and either
all of m are even or they are odd.

When all of m are even'we have :

d(:r,*", Tﬂ:‘) Q d(x*, fr'm+1) + d(xm.d! Tx*s) ‘~<\ d(.’l:*., wm-{-]) + D(Sxm: ’rm*) <
< Ax¥, Tmyr) + @ (d(Ta, TS, T3 Zo, )
< d(@*, i) + @ (AT, 2*)), max [d(@n, ), d(z*, Tx*),

B d(xm. Em, i ‘%"‘ [d(xm.. r'z*y + d(m,ﬂ! xrn+1)”-

Noting that lim a (d(zn, %) < o, (0 < 1, we derive from this d(x*, Ta%) = 0,

m—reo
and since Tx® is closed, x* € Tx*.
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Similarly, for the case when all of m are odd, we obtain x* &€ .Sa*. The first
palt of Theorem 1 is thus proved.

If (1) h01ds for any x, y € X then every lixed pomt of ‘one mapping is
also a lixed point of the other. Indeed, supposing x € Sx we have

d{z, Tx) < DSz, Tx) Lo (0) dix, Tx).
hence « € T, Similarly for the case & Tx, The proof is complete.

Rcmark 1. if S and T are single-valued the common [ixed point mentioned

in Theorem 1 is unique. Indecd, if 2, gy are two common fixed points of S and T
then from (1) it follows:

d(z, y) < o (d(z, p) d(x. y).
Henee = y. |
Lemma. Let A € CB(X) and ¢ € [0,1). Then for any = € X there exists
“a € A such that: )
' g6 (z. )  d(z, a).

Proof. Assuming the contrary, there is z, € X sueh that:

q6(~3(',- Ai) .> d(xcn a)’ (Va G A)
Then gé(x, A) > sup d(x, ), é,orx.tradicting g <<l
e € A
Theorem 2. Let (X, d) be a complete melric space, S, T two multivalued
mappings of X into CB(X). Suppose that there exists q € [0,1) such that

8 (Sz, Ty) < ¢ max [d(a: ), 8(x, Sx), 6(7, Iy). 2 [d(x, Ty) + d(y. Sx)]}
for any T, U E X. ‘
Then S and T have a unique common [ixed point z* and Sx* =Ta% = [a:“]

Proef. Select p satisfying ¢ << p <<1. We consiruct tv\o smglenralued
mappings s, satisfying the following condilions

$(x) € Sx, pd(x, Sx) < d(x, s(x)) _
1(x) € Tx, ps(z, Tr) < dx: {m), (Vx € X).
These mappings exist by the above lemma. ‘
" Then for any x, y € X we have
d(s(x), 1(y)) < 8(Sx, Ty) < quax [d(z, ), 8(, Sx), 8(y, Ty,

-

';f (d{z, Ty) + d(y, Sx)']l Sr.ris,t; x, u)

-



By Remark 1, ¢ and ¢ have a umque common fixed pmnt Obviously, it
i also a common fixed point of S and T. .

Let x be some common [ixed point of $ and T. Then
s(x, Sx) < 8 (Sw, Ty < qmax | 8(F, Sx), & (z, Tm)}.
Similarly, -
8z, Sx) < gmuax Jo(x, Sm), 8(x, Tx)}.
Hence s, Sy = o(z, Ta) = 0,ie Sx=Tx = fxl
- From this and the unigucncss of the common [ixed point of s and it
follows that the common [lixed point of S and .7 is also unique. The proof of
Theorem 2 is complete.
: Cerollary 1. (Rus [81). Let (X, d) be a compiele metric space, 5, T be two
mappings of X into CB(Y). Suppose there exist o, B > 0 such that « + 23 < land
8(Sw. Ty) < ad (%, y) + B [6(z, Sx) + 8(y, TY)]
for any x, y € X. ) _
Then the conclusion of Theorem 2 still holds.

Corollary 2. Let (Y, d) be a completc metric space, S, T two mappmﬂq ol
X mlo CB(X). Suppose therc exists ¢ &€ {0, 1) such that

8(Sx, Ty) < qmax {d(.n v), 8(x. S, 8¢y, Ty), = (8(z, Ty) + 6 (g, Sw] (2

for any r, g € X
Then the conclusion ol Theorem 2 still holds,

Proof. Since ‘
6 (x, T'y) < d(x, i)+ 8 (y L'y,

s So < d @ x)+ 8 (@, S),
it follows [rom (2) that ‘
: &(Szx, T'yy < ¢ max [ d {x, i), 8 (x, Sx), 8 (Y, Ty ]
for any =,y € X.
It remains to apply Theorem 2.

L

Corollary 3. (Avram [2]). Let (X, d) be a complete metric space, 5, T be
two mappings of X into CB(X). Suppose there exist «, D, ¢ >0 such that:
@+ 2b 4+ 4c <1 and

b (52, Ty) < ad (@ §) + b [6 (x, 52) + 6 @ T9] + ¢ [6 (2. T) + 6 (¢ SD)]
for any =,y € X. ' :
Then the conclusion of Theorem 2 still holds.

Remark 2. In [6] Nguyén Auh Minh cstablished an example showing that
\in Theorems 1 and 2 we can not replace % [d(z, Ty) + d(y, Sx)] by max | d(z, T'y),
d(y, Sx) } . Namely there exist tv'¢ single-valued mapping Sand T satisfying

d (Sz, Ty) < —15 max {d(x, gy, dx, So), dy, Ty), d(x, Ty), d(g, Sx) }
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for every x, .y and such that neither has a fixed'point

Theorem 3. Let (X, d) be a complete metric space, S, T be Lwo multi- valued
mappings of X into CB(X). Suppose there exist sy @520 such that a4 .. 4az<71,
@ = dz Or az = «; and

S, Ty <<y b (x, S2) + s 8 (y. T z]) 4 ag d(x, Ty + u, d(y, Sr) + (15 d("L, 17)
for any z,y € X.
Then the conclusion of Theorem 2 still-holds,
Proof. Put e=1—a —ay — g — a; — as,
bi=ai+"§"| c.i=%i's (i=1v2j'

Using the above lemma we construct two single-valued mappmgs sand {

such that

sy € Sz, ¢ b (x, Sx) < d(x, s(x)). -
() € Tz, ¢4 6 (v, Tx) < d(z, £(x)).
For every z, 4 € X .wwe have - '
- d(s(@), (Y)Y < b diw, s(x)) + by d(y, 1)) + -
+ agd(z, () + ay d(y, s(®)) + a5 d(z, P).
" In view of a theorem due to Wong [11], s and { have a unique common
fixed point.

The rest of the proof is similar to the proof of Theorem 2 and can be
omitted. .

—

Remark 3. When S and 7" are single-valued Theorem 3 coincides with the
above mentioned theorem of Wong. Another generalization of Wong’ s theorem-
can be found in [10].

Theorem 1 contains a rather strong assumption, namely a(0) << 1. In the
~ following theorem, this assumption will be relaxed.

Theorem 4. Let (X,d) be a complete metric space, S, T be two single-valued
mappings of X inlo itself, at least one of which is continuous. Suppose there
exists a upper -semicontinuous Tunction a: (0, o) — (0, 1) satisfying

d(Sz, Ty) < a(d@. y) S, Tz 1) .
for any z, y € X, x-£y.

-

]

Then S or ¥’ has a fixed point, ) ) 5
Proof. Let x, € X and put B4

Tagr1 = Sap, Tajfp = 1$2n+t, (n > 0).

VVe may assume that T, == Tu.q for each m. ‘We shall prove that | :cm] is a Cauchy
sequence. Putting bn = d(@wm, Tmyy) it is easy to verily that by < & (bn) bu for
ecach m-€ N and hence b, \y b > 0. ,
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. If 5>~ 0 then by the upper semic'ontinuity'of 2 we obtain a contradiction
b (b)b<_b. Thus b = 0. )

Now, using the method of Wong {12}, we assume the contrary that b is
not a Cauchy sequence. Then there exists ¢ > O such that lor each m & N there
are pwm > gm > m satisfying ‘

d(ml)m’ x‘im) >,»_8’ d(xl)m_]’ xqm) < g

Denoting

. Cm = d(ml’m’ xclm)’ Am == d(xl’m_l’ :r"lm)
we have

S< C'-n = d(xﬂm" xf[m) g d(xl’m’ ml)‘m‘—l) + d(‘i‘[’m—"]’ x‘[m) < bl’m—'l. + €.
Henee ¢, "y &. On the other hand, ‘

&> tn = d(xpm—l’ mpm) > d(xpm’ x(!m) - d(x[‘m’ ml’ln—]) > € — me—'['
Hence a,, / . Thus a, > 0 for all m large enougﬁ. ' .
Consider the sequence {em]. We can distinguish two cases :
(i) There is a subsequence of {en}, denoted again by fem }, with one of p,,

¢m being odd and the other even. First, consider the case when py is even, ¢, is
odd. Then we have

d(xpm‘i']’ a:'3]111"'1) = d(le’m‘ qum) <

’

1 , _ . .
< o (cm) max IC"" me’ b‘lm’ _é-u [d(mpm’ m‘lm'l'l) + d(x‘hn’ -Tpm‘*‘l)] ‘

< m(cm) [Cm +‘ me + qu}‘ (3)
" Noting that '
‘ Cm — bl’m - qu < d(me‘f‘l’ .me"H) <o+ bpm + bqln'

and letting m tend to the infinity in (3) we obtain a contradiction : s L o (e) <.
Similarly for the gase when p, is odd, gn, is even.

(ii) There exists a subsequence fem}, wilh pn ¢m being both even or both
odd, Consider the case when both Pms (m are cven. Then we have

d(xl’m'f'l’ chm+1) < d(me‘H’ mi’m) + d(xpm’ .’qu+1) <~. )
‘\<\’bl’m + d(Tme—'l’ S.’qu),

. For m so large that ay, > 0 we can write
1 ) o 31 .
d@@, |y Tq o+ S by A o(an) max } s bpnﬁl'bqn]. T ldx, _i, Tq. +1) T Cal f

I

\<_‘ bpm'vf- !X(am) max {am, Cm. + bl)m“"l + qul = bpn + Oﬁ(am)[Cm +*bpm_..1 4 qu].

Letting m tend to the infinity we obtain a contradiction & << afe)e < &




Similarly for the case when both pu, ¢, are odd. Thus [a:m} is a2 Cauchy
sequence and hence xp - z* < X. .

Now assume-that S is continuous. Then. I‘rom the fact x,, =+ x* il follows
that Sxa, -» Sx*. On the other hand, Sx;, = Xgu4r — T® Since X in separated, we
obtain x* = Sy*.

Similarly for the ease when T is continuous. The prool is complete.

Remark 4. The casc when S = T and a-is'upper semicontinuous [rom the
right has heen considered in [9].

Remark 5. The following example shows that in Theorem 4 —;— [d(z, Ty)+

-+ d(y, 5x)] can not be replaced by max {d(x, Ty), d(y, Sa)f.
Let X be the set of all integers, .
_ Se=Trx =a11, (Va:e\’)
Then it is casy to sec that
d(Tx, Ty)<a(d(z, y)) max {d(z, y), d(z, Tz), diy, Ty), d(z, Ty), d(y, i’a,)l
forany @, y € X, £ Ly, ¥ vher(,
' 1
H=1———

a(l) 1

but T has no lixed poinl.

Remark .6. The following cxamplc shows that the assumption about the
continuity of S or 7 can not be omitted.
1

(.1
Let X = gl, 5 o 0 S T with

T(;ﬂ )'= EJITI M >0); T(0) =

Ii is casy to verily that

| d(Tz, Ty) < a(d(z, y) 1(T'; @, §)
for any x ==y, where
afl) = m’ax?l ——il—, —1-%
2 2%
" bul T has no fixed point. . 3
In both examples § can be choosen different from T. For instance, in the
first example take Sx =z + 2 and o) = 1 — 1‘_1—5 , while in the second exam-
. -+
ple take

. S(1) = _i, Sx =Tz (Yo 1).
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In [1] Achari proved the lollowing theoreit

- ¢ Theorem of Achari. Let /¥ be a noncmpty family of continuous mappings
of a compact metric space (X, d) into itself. Suppose for each pair Ty, Ty in F
there exist m=m (Iy, T3) n = n (Ty, T2) € N such that C

d(I7=T,y) <r(TT.Ty; z.4)

for any x, g € X, x, S y. . A
Then each mapping T, € F has a unique lixed point which is also the unis
qué common fixed point of the whole family 7. . )

The following simple example due to Wong [11] shows that this Theorem
is lalse.

Let Y =1}01}, F= § Ty, Ty ), where 7y (0) = T, (1) = 0, Ty(1) = T2 (0) = 1,
m = n = 1. Then I’ satislies all conditions in the above Theorem but it has no
" common fixed point. '

Using an idea of Jaggi [5] we can prove the following theorem.

Theorem 5. Let (X, d) be a complete metric space, ‘S.AT be two continuous
mappings of X into itself. Assume that S and T satis(y the following conditions:

() o aSE Ty < S, Ti 2y
forany z,y € X, x < 1. -

(iiy There exists x, € X such that the sequence x| with

Sx,_; it n is odd,
Ty = . .

Txy if n is even, -

contains a convergent subsequence.
(i) ST =TS8 ’
(iv) 8 and T have each at most onc fixe point.' 7 g

Then § and T have each a unique fixed point which is also their unique

common fixed point.
. - L

Proof. First, note that we may assume =z, == , for each n € N. In fact,
suppose there is m € N such that x, = 2,.,. Without loss of generality we mdy
assume that m is odd. Then xm = xq,y = Tz, and by (iii), Sxn = STz, = T'Sxy.
From (iv) it Tollows thag Tm = ST, 1., Ty 15,0 common [lixed point commeon of S
and T. The uniqueness follows immedialely from (i).

Now denoting b, = d(xs, %.q), if R is even, we have
b, = d(Txn—]n SiUn) < max { bnulg b é“ d(ﬂ:nqls Tny1) } = bn—]'

Similarly lor the case when n is odd, Hence, the sequence { by | converges to b >0,
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By assumplion, | @, | contains a subsequence | x| converging to 2% € A
nsider two possible cases. ’ ' '

1) There exists a subsequence { ¥m ol ot

with all m’s even. Then, by
» continuity of § and T, ' ,

ST = Tmasg —> ST,

TS:Um e -xm+‘2 - TS:I":E:‘ : -
. . S '
x* £ Sx* then from (i) it follows

d(Sa*, TSx#) < r(S, T 1 a¥, Sx¥).=d(x®, ST
a the other hand,

d(S’l’,'} 'TSZE,) = lim d(ﬂ:m.pl, ffrm.(.g) = [im bm+1 = lim bn) = b =
m m .~ 11 )

= lim bm = lim d(ﬂ;m ﬂ:m+1) = d(m"’, Sﬂ:&)o ’
m m )
his contradiction shows thal o* = Sx#. Hence, as above, we get by (iii} and (iv).
* = Tx" '
2) The case when all m arc odd is treated in a
he proof.
Remark 7. The -above Lheorem immediately generalizes a theorem ol
aggi [5]. The above mentioned Wong’s example shows that the condition (iv) can

10t be omitted.

Moreover, {rom the unigquenecss of {ixed
1ill holds for a family of mappings satisfying
heorem, together with conditions (iii), (iv}). ,

Remark 8, Wong’s example also shows that the following theorem is false.

similar way. This compleles

point it (ollows that Theorem 5
the conditions stated in Achari’s

Theorem of Istratescu. ([3], Theorem 1., p.97) '
Let (X, d) bé a complete metric space, S, T’ be two mappings ol X into itsel!l.
Suppose there are «, § > 0 such that o + B << 1 and
dSxz, Ty) < o d(z, Sx) + B d(y, Ty)

forany %,y € X, x += Y. ‘
Then $ and T have a unique comumon fixed point.

By the first part of Theorem 1, the conditions of the above theorem ensure -

only that either S or T ha a fixed point. In order to ensure that S and 7 have a
unique common fixed -point we need one of the two following assumptions:

1) Inequality (4) holds for every =, § &€ X or :

2) § and T satisly (iii) and (iv) in Theorem 5.

Indeed, in case 1) this lollows from the seeond part of Theorem 1, and in
case 2), by (iii) and (iv) we needronly consider the sequence | Ty ]"with Ty == Tnel
and show as-in [3] that it is Cauchy. ’
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Remark 9. Wong's example also shows thal the following theorem is Jalse.

Theorem of V, Istratesen and A. Istratescu. ([4], Theorem 2.1). Let (X, dy
be a complete metric space, S, 7 two mappings of X into ilsell. Suppose there
exists k € [0,1) such that '

d(Sx, Ty) < k d(z, y)
for every o, § € X, x == y. Then S and 7’ have a unique common fixed point,

By an argument similar to the previous ome we see thal here, as well as in
Theorem 2.2, [4], we need the assumptions (iii), (iv). For Theorem 3.1, 3.2 [4] simi-
lar modilications are also meeessary., '

Remark 10. In [7] Ray and Rhoades proved the fellowing theore

Theorem of Ray and Rhoades Let (X.d) be a complete metric space, S,T be
two mappings of X into itsell, Suppose there exists k£ € [0,1) with the following
property : for every x,y € X there exist n= n(x), m=m(y) € N such that '

d(S "z, Ty < kr(S"T™; @, y)

Then S and T have a umque common llxed point,

The followi ing example shows that this theorem is false.

Let X={0,1,2}, S0 =1, §H=2, §2)=0
T=2 TLH=0, T2)=1
n =2, nl)=1, n2)=3
m0)=1, m(1)=2, m(2)=3.

Then for every a,y € X the left hand side of (5)7is al\\"ays equal to 0,
hence (5) always holds, but neither of S, T has a [ixed point. .

The above theorem obviously holds il n and m are constants (by combining
Remarks | and 7 above). This theorem still holds if n is conslant on each set
fz, Sz,..., $"%,..{ and m is constant on each set fx, T'z,..,T 2.} for any x & X,

Indeed, in [7] the authors called a point x periodic if T = S”(;)E'ﬂT“G)E
and proved that such a point exists.

x and ly = T2

Moreover from () il is obvious that il =5t

y then x=y.
Now by the above additional condition, :

'  ST=s"spo s g,

TE‘-—:Tm(x)T;:. _ Tm(T:r)T:_c__

Thus, x = Sx = I'x.

Received March 15 th. 1979,
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