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Introduetion. One of basic problems of p-adic analysis and number theory
is to construct p-adic analogs of Archimedean concepts. Here p-adic L-functions
are of special interest. The conslruction of p-adic analogs of L-funetions uses
basically two methods, which are actually closely related : the method of p-adic
interpolation and the p-adic Mellin-Mazur transform. There is a conjecture of
Mazur and Swinnerton-Dyer concerning the Mellin-Mazur transform correspon-
ding te a Weil elliptic curve, which says thal the p-adic L-function is not idenii-
cally zero.

This paper studies the analytic properties of certain large elasses of p-adic
analytic functions, in particular, their inlerpolation properties and their integral
representations, and then applies these results to give a partial confirmation of
the conjecture of Mazur and Swinnnerton-Dyer,

Essential differences belween p-adic analyticand complex analytic functions
arise, of course, from having a non-Archimedean ground field. One such diffe-
rence is that the modulus of a p-adic analytic function only depends on the
modulus of the argument, except of a discrele set of values of the modulus of tite
argument. Hence, the graph of lhe modulus of a p-adic analvlic function is a
polygonal liné, known as the Newton polygon of the function.

The Newton polygon determines other inleresling properties of a p-adic
analytic function, facilitates the interpolation process, and highlights the depen-
dence of the function on ils zeros. These properties allow us, in a rather simple
way, to exlend a function defined on a sequence of points to a p-adic analytic
function. It was in this way that many interesting p-adic analogs of arithmetic

functions were obtained ([2], [3],02)-

In the present paper the concept of a Newton polygon is generalized and
then applied to study the interpolation and- continuation properties of p-adic
analytic functions. We obtain some well-known rvesults, of p-adic analytic func-
tions, We obtain some well-known results, as well as new results, about inlerpo-
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lation. In §1 we introduce the concept of the sequence of Newion polygons of
a p-apic analytic function f(z) defined in the unil disc-in Cp. These are the New-
ton polygons of the functions‘f'k(z) if the p-adic analytic function f(r) is written
©@ A o

in the form f(zy = > fu(z), where only leading terms (see §1.2) occur in the
k=0

expansion of ﬁ(:). Theorem .1 gives the basic properties of the Newton sequence,

In §2 we coopsider the problem of p'-adic interpolation. The results of this
seclion show Lhat a key role in interpolation is played by the relation between the
rate of growlh of a function and the «number» of poinls between which the
funection is being interpolated. Namely, if u is a discrete sequence of points in
the unit disc in C,, and ¢, is an analytic function in this disc for which the
number of zeros (counting mulliplicity) in every subregion is equal to the
number of points of u in the same subregion (such & function is constructed in the
proof of Theorem 1.1), then u is an interpolation sequence for f(z), it and only
If f(z) belongs to the class o(gu). This theorem is used to obtain some well-known
results on interpolation of the Mellin-Mazur transform corresponding to modular
forms. The interpolation theorem also gives conditions for a function given on a
discrete sequence of points to be extendible to p-adic analytic funclion in the unit
disc in Cp. Another consequence of the theorem is a uniqueness theorem (Theorem
4.1) for p-adic analytic functions, which concerns the question of the extent to
which a p-adic analytic function is determined by its zeros.

In §3 we give a partial confirmation of the conjecture of Mazur and
Swinnerton-Dyer on the non-vanishing of the p-adic L-function associated to an
elliptic curve ([9]). The following theorem is proved : Let N = I, where I is a
prime number and n is any positive integer, let p be a primitive root mod N. Then
for every finile abelian extension A of @ of conductor m == p' and every Weil
elliptic curve F of conductor N, the p-adie L-functjon L, (E/A, s)is not identically
Zero,

1
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'§1. p"ADIC ANALYTIC FUNCTIONS
. ]

1. The Newton polygon, For completeness we shall recall the concept of the
Newton polygon. '

In shat follows p will always denole a fixed prime numbér. Q, is the field

of p-adic number, and C, is the p-adic completion of the algebraic closure of Q,.
We let T denote the disc in Cp:T' = [2€C,, jz1<<1}. The absolute value is

normalized as follows : [pl = -—!— We also usc the notation v(z) for the additive
valuation on C,, which extends ord,.
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Now let f(z) be a p-adic analytic funection on T, represented by the power
series: .

%

f(:) = Z ‘an:n-
n=0

For each n we draw the graph T', which depicts p(a,z") as-a function of v(z). This
Tis a straight line with slope n. Since lim{v,(au)—f«nt} = oo for all # >0, there
n—>Co

-exists an n for which v(a,) 4 n# reaches its minimum. Let o(/, {) be Lhe boundary
of the intersection of the half - planes under all the I',,. Then in every segment
ter s], 0 <Cr <l s<Cee, only finilely many of the I'y appear in the graph of
" o(f, 1). Henee, v(f, f) is a continuous polygonal line, called the Newlon polygon
of the function f(z). The poinls { > 0 corresponding to the vertices of the graph
of v(f, &) are called the critical points of f(z). There are finitely many of them
in any finile segment [r, s]. Obviously. if ¢ is a critical point, then the number
fo(asg) + nl | reaches a minimum at at least two values of n. For other values of
t we have: - W ~ I
p(f(z)) = v(ay) + nl = ming | v(a.) + mi}],
for all z, v(z) = {. Thus, for nen - critical ¢,

if@) = p~ VY rpz) = ¢
The Newton polygon gives complete information about the number of zeros
of the function. Namely, f(z) has zeros for v(z) = #;, where {, > #; > £, > ... are
the critical points of the function, and the number of zeros of f(z) on vz) =t
(counting multiplicity) is equal lo the difference m,; — n; between the slopes of
v(f;f)at t; — 0 and & -+ 0. It is easy to see thal n; and nyyy are the least n and the
greatest nat which {u(an) - ni] reaches its minitnum. These terms a,z" for which
the graph of v(a,z") takes-part in forming v(f, f) are called the leading terms in
the expansion of f(z). .

Example. Consider the function
. ) B ] n
log(l+2) = 5 (— 11X
n=1 n
For every { > 0 we have:
L e
b((—1)"Yn) + nf ? = nf — logn/logp, if n _fo
_ >nt — logn/logp, otherwise. _ )
Hence, only the graphs Tk (k= 0, 1, 2,...) take part in- forming o(f, #), and the
leading terms are:
P kzpk ’ & =‘0,m_}., 2, | )
It hence follows that the®function log.(l + z) has th_e following critical points:

1 1 T—1,0

fe =

Pr=p=t T eph ]
At each #, log(l 4 z) has o(p*) zeros, and
; U(f, ik)z——k'—f‘—p—-

p—1
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2. The Newion sequence of an analytic f unction.

Let 96 denote the space of functions analytic in T with the topology of
uniform convergence on the sets [z € C,: u(,.) 2t>0}. Suppose we have a func-
tion f(z) € 76, represented by a convergénl series

. T
f = 3 aen g
n=o .
Let fa,, 2"k, k= 1,2, j be the set of leading terms of the séries (). We set
J@ = Z an, Z°k.
k=1
We define the seguence
| @ [1(ees e @D
inductively, by setling
m—i e

Jo@=F@) fa@=f@.— F Fie. e
i=o
It is clear thatﬁ

’ oo
o= 2 > ‘ L (2)
(Where we use the fact that convergence of series in C, is always absolute
convergence).
WQ note that the expansion of each ﬁ:(:) (k=0,1,...) has only leading terms
(uniess f‘; (2) = 0 for k sufficiently large). . ' (
For each f(z) € @6 with expansion (2) we set’

f. ~
) ( pk(t) =D (fkv t):
where £ >0, k=0, 1, 2,... If the function f(z)1is fi,\\',ed, we shall omit the‘f in the

notation p; (). We take i

oL () = oo, if fi(t) =0.

Definition 1.1. The sequence TP ,
I f . ,_,{:}
pr(t) = ( Po s Py (t),..!.) /s

T

is called the Newton sequence of the function / (z).

The basic properties of the Ne\\ton sequence are given in the following
theorem.
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rfli;orem 1.1. Let P=1(p, (), o1 (t),n..) be the Newton sequence of an anaiyiic
[unction f () € F6. Then ¢ has the following properties: ‘

L. pres () > px (&) for all & = 0,1,2,...and £ >0

2. The functions gy (#) are continuous and left differentiable, and their

derivatives are monotonic decreasing, piecewise linear funetions which take non-
negalive integer values.

3. Lel d;; denote the left derivalive of ex (1) at £ Then for each k: cither

b .
there exists M, > — oo'such that oy (&) > M, for ¢ > 0, or else, for any 7, > 0,

TR ,

4. For any pair { = k, dpi/dt and dp,/dt have disjoint sets of values, except
for the case py (1) = p; () = oo : .

, dgy,
lim c(f [ — ¢
t—>p P () + & ) di

Conversely, for any sequence p (¢ satislying 1) — 4), there exists an analylic
funetion f(z) such that of (7) = e ().

Proof. By ihg definition of the operation [ — [ and the properlies of the
Newton polygon, we have: o (f, 1) = u(f: fy for all f(z) € ¥ and t ~ 0. This
implies that: ' .

) =0 —fo— o= [L ) > min (o Fom o — o 1w T )] =
= min{v . ), v (f, )} = v (5, 0. '
This proves 1). :

Preperties 2) and 4) are direct consequences of the definitions of Newlon
polygons and séquen ‘es,

We now prove ‘3). Suppose that for k we have: lim pk(f) = — oo, Note that
t—0 .
pr() -F d(;: (to ~ ) is the ordinate of the point of intersection of the line SUppor-

ting the graph p(f) and the line ¢ = fo. Since dpi/d{ is non-increasing, this ordinate
does not decrease as £ — 0. Suppose there exists M such (hat '

o) + f%“(fo -D< M.

Consider the poinls A = (1, ex(f4)) and B = (ty» M), where & <t,. Then for <<k
“ Lhe entire line py(#) lies above the line 4B, and 1his contradicts the assumption
that lim py({f) = — ce. ‘

t—0 - . "

We now prove the second pz{rt of the theorem. Suppose that the sequence

(D) = (pol®), pu(t),...) salisfies 1) — 4). Sl - o' (1) = ‘z’t“ cLet (>0 > > 10
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be the sequence &f points of discontinuity of the function Py, (1), wod let 3“1:; | bed

sequence of numbers such that
k N k., .,k
via )=pc({ )—1 ¢ ({ )
Recalling that p} (#) takes integer values, we set

kpi(;

Pw(z) = Z a (3

f(z) = Z Py (=) i W
k=0 ‘ '

We prove that (3) and (4) converge in the topology of 7, and that f(z) is an
analytie function in T satlsfvmg the relatlons .
fu(z) = Pu(z ), (P 1) = Pl(i)

for ¢ >0, in other words, pff) is the Newlon sequence for fiz).
We note Lhat if pi(f) = o=, then we tlake Pi(z) = 0 and if p'x(f) only has
[initely many points of discontinuily, then the series (3) is a finile sum.

It suffices to consider the casc when p, ({) has infinilely many points of dis-

conlinuity. In this case it is easy to see that lim fﬁ:(), Hence, by property 3), we
. n—r oo
have
. y ok I k
lim [} (6) (¢ — 1) + pu () | = ==,
n—>oo
This shows that (3) converges .
We show that only leading terms oecur in the expansion of each Py(z), and
that Py, 1) = p(?). We sel:
, Lk lk K
Cgp =l () —1) + o (L)
It is easy lo verily the equality:
n+1 - k
Py n+1) O Up ) = oty 4 -

Since cpE+1(i') and (pk(i') are linear and 28 (IE_H)) Py (t]:]), we have

1 -
(p;:+ () > cpE (i) (for £ > ti;_l'_l).
Similarly,

n+r ntr—

1) > ¢y

L ror 115> @B dor 1> 5,
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lx N 1+l
bmcct_i_l/inw> >t]+ Wthl\(_rp

(1‘) > \pfl (H lor t > ;-!—1 ihub

L
oy (t)_ inf ¢ (t) for 1‘>
k m_2n k -+
“A similar proof gives us
o ) = int (pk ) for t/r‘
m<n
Consequently,’

op(t)'= inf ¢7'(1) for ¢ & [£° ey 5.
m
: This inipiies that Py (zj =P « (2) and o(Py, 1) = pi ().

We now prove that the series (4) converges in 7. Since U(Py, 1) = pi (1), it
} sufflces to prove lhat lim p(l) = = for any fixed > 0. Suppose the contrary, j.e.,

[\'_”‘3'0

that there exists {,>0, ¥ >0, and 2 sequence kn, such tha! lim Xk, = o and

=00

Pkn (I} <C M forall n = 1, 2,... By properties. 1) and 2) we have :

= o}, (t)

o (1) < Py (/2 < 0, (1) (/2 — £+ P, (8) < - M.

We obfain a conlradiection as n — o, because  lim o, (o) = e by properly 4).
& oo

© Since Py (z)'= Py (z) forall &£ >» 0 and U(PL, ) > v(Pes, O for all § >0, it is

easy to see lhal fk( ) = P, (z). Thus, p = (2, (£}, p1 (f)....) is the Newton sequence
for f(z). The theorem is proved. '

3. Analytic funclions on the character group.
'lhls sect:on devotes to a very 1mportant class of p-adic anal\ tic functions:

funcuons on the analync group of characters of ZA
Let A, be an mteger (A, p) =1, We set:

4 lf p -9 |
q = 2 FE A== AO q and Z“A — l]m (Z!A pn Z)%.
" ('p otherwise '~ - e

The p-adic character group is the group of continuous homomorphisms

0[7" to C : S
5uf B T I N S LT SIRE U e a

* i
XLy Homg (2, €



Every Dirichlet character % of conductor A pt is an element of the giour
- P »
{lom (Z;A p™ Z)*, Cp) for each m > n, and so gives a unique element of X(Zp),
which is also denoted ¥%.

Weset: U=14+¢9Z,=}z&€Zy: v(z—1) >>v(¢g) |. Then for any g € U with
v(g—1) == v(q), the map z —» g” is an isomorphism of Z, onlo U. We call such a ga

topological generator of U.
! L *
For any generator g of U, the map Hom . (U, Cp) =1\l ) -+_Cp which
takes a continuous character X of U to the point X ¢g) — 1 is an isomorphism of
L3 *
X(U) onto T. Since Zp ~ (Z/A, Zy* X Z, and Zl‘) ~ (Z{gZ)* X U, it follows that
L] i : :
X(Zp) is the product of a finile group and X(I/), where the latter gtoup. is isomor-
. ' * ]
phic to T. Since T is an open disc in Cy, this isomorphism makes X(Zp) into ar{‘
analytic manifold, in fact, a disjoini union of open discs. This ana!ytié siructure
*
makes X(Zp) into an analytic group.
Analytic funciions on X(Z*A) are funclions whose restriction to each com-
ponent isomorphic to T is an analytic function on this component.
A function f(z} on ZZ; is called locally analytic if, fdr every point » € Z'/_\ ,
there exists a disc D, 3 = such that f(2) is analylic on I),. We let Locan Z:; denote

the space of locally analytic functions on Z;, together with its natural topo-
logy (i1]). ‘ -

Definition 1. 2. A continuous linear functional on Loean Z*A is called a

distribution on Z'A .

The restrietion to X(Z*A) of a continuous linear funectional on Locan Zg

is an analytie function. Lelting such a functional correspond to its restriction gives
an isomorphism of the space of distributions with the space of analytic functions

on X (Z%) (121

Distlocan Z* ~ An X(Z‘).

We shall laier prove some subtler facls about this correspondence, which
relate to certain important constructions in p-adic analysis.
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Let be. a distribution on Z"A, written symboli¢ally as follows:
w(p) = Imdu-
A

i

for ¢ an analytic function on ZL. Then restricting to’ X(Z‘&) gives a function
[ = J Xdy,
R
Zn
vhich is analytic on X(ZZ) and is called the p-adic Mellin — Mazur transform.

Fhis is the p-adic analog of L-series. -

Definition 1. 3. A distribution on Z* which extends to the space of con-

P

inuous functions on Z;’_\' is called a bounded measure on Z:’\.' If a distribution

xtends to the space of functions which are h— 1 times differentiable and whose ,

h —1)-st derivative satisfies the Lipschitz condition, then this distribution is
alled an h-admissible measure.

Definition 1. 4, Let f(2) and g(z) be two analytic lunctions in %6. We say
1at f(z) belongs to the class o(g) if

~sup {f(z)| = o (sup igtz)l)asr—sl—o.
lz] <r

lzl<Cr

It has beeﬂ provgd that for a bounded measure the function (%) = ‘[ Xdp

. | 4

bbunded, and for an h-admissible measure this function bel(;ngs to the class
Jog™(14-2)) ([3]). Here we shall prove thal every bounded analytic function
X} on XtZ‘A ) (resp. any analylic function of class o(log")) is the Mellin— Mazur
ansform of-a bounded '(resp.'h -admissible) .measure p.-Since X(Zz )is isémor—

tic to the produet of a finite group and X(U), we shall cai‘rj';-'-()ut the proof for
(U) and shall identily X(U) and.T by means of-the isomorphism between them.

Theorem 1. 2. For any‘funcﬁon f(z) G.%'wit_h (z) € oflog"), there cxists
t h-admissible measure on U such that

Oy = j‘xdp.
U
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Praof. In [3] it was proved that, il p is a linear funclional on the space of
functions which are locally a polynomial of degree less than A, then p extends
to an h-admissible measure if and only if the following relation holds:

sup | J(: — @ ™ ()dp | = o (pPh=i)y 4 5
ﬂe(] a -
U

where j = 0,1,...h — 1 :w;m) (z) is the characteristic function of the set a -1 {7, .

Un= |z € Z,: 2= 1 mod gp™]. Moreover, in this case the p-adic Mellin — Mazur
transform is an analytic function in % and belongs to the class o (logh). Thus, in
order to prove that the Mellin— Mazur transform of 1 is equal to [ (X), il suffices
to show that (5) holds for the characlers z* %, where 0 <<k <Ch—1 and 7 is a Di-
richlet character modulo p™. This follows [rom resulls on p-adic interpolaticn in
[2}. [3], or else from the remark after Corollary 2. 1 in Lhe present paper

The proof that (5) holds for z¥ % uses several lemmas -/

Lemma 1. 1, The lormula

o ) — 5% (@ f (2 1) ()

P (p™) 5
where 0 <k < 2 —1and % runs through the Dirichlet characters modulo ", de-
fines a linear functional on the space of functions which are locally a polynomi-
al in z of degree less than h. | ' '

, ‘ —1
a : P . 5 . {m) _ k ..(m1) L.
Proof, It suffices to verify : u (z v (z.)) = 7 p(z wa'i'rpm ). This is

Tx=D .
proved by compuling the right side by formula (6) and noting that, if ¥ is a pri-
mitive eharacter of conductor p=ty, then . '
p—1 ' .

> %M (a+rp™) = 0.
r=o ' : ) .

- . Lemma 1. 2. The linear functional u defined in Lemma 1. 1. satisfies the
conditions: |

~sup | J (z—ay o™ 5y d piZ o (pm(h"'j)_);rj-z 0,1, 0h — 1,
a&l J. a2 : 7 ' .

7 .
Proof: For every g () &€ 6 aiid every £, > 0, we set: B
S gl = s 1@ |
: V(z"’:jo - -t O L S

From ihe example in § 1 we obtain: _
Hiog" (1+42) |, = p™", where tn = T/p (p*), m= L, 2,,.. this implies that:
U e =0 ™ n— o),
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Now let Sm (2) be the sequence of interpolating polyromial for f (z) between the
points {¢g'" — 1], i =0, L., h — 1,7 & Mym, m =1, 2.,., where M is the set of
pT=- th rools of unity. Sy, (z) is defined by the conditions:

deg S () << hp " —1.8n (g  — i =0 h—1.7 &€ Myn By Lazard’s lemma ([5]).
we have:-

f(z) = ¢ (£izorens T I — m—mlm 4 O (2) where deg, On (z) s h pP—1,
Y& Mom g1
U (Qus ) 2 0 (f, {m). This implics that Sm (2) = Qu (2) and [} Sm iy, = 0 (p™).
hp"— (m)
Wrile the polynomial Sy (z) in the form Sy, (z) = Z b ™/ -1 Then [Smlly,, =
=0
i ( b(m) 1 o b(m) 1, —bp p-1 ] (m)
= max  {[b 7, =max [ 1B pTReM) > pT Mt max [ L]
OIS hp™ —1 i I
Thus. | b(m) = o (p"" for all I. We note that, if we write
hpra—1 (m)A
- .l - .
N Sh —1) = 12(:) a,’ z, t}hen we also obtain :
| a(ml) =0 (p™" lor all I, By the definition of the functional g, We have:

j‘ c—ay o™ @ du = S (— ayi=H(I) (g (") T K@ [ )
a L k m

[ k—a
= 3 » » f g% (@ —1)
= » » » Sm(g"%X(g)—1)
’ = » » » Ea(m) g“ % (g)
- hpm"']_ ( )
i—kf j k1
= 2 (—a{]) T dWyg
k=10 ¢ =amodgp
& = 5" (' - 2.
Thus, -
sup j(“—— ayp ( )d;ﬁ.’* sup ’Ea(m) —a)l| = o(pm(h J) = [) h 1
acU
because I (m)| = o p’“h)and |g ~-al < p“"‘

ol the proof Theorem 1.2 wﬂl be proved i the equahh f(X) ——‘J‘.fldp‘-ls verified

PR, [P A - - -

PN

for all 'nhara;cters :;“.\ﬂ-'\ifiﬂi % a D'iri'(:hl‘e{éhar?rﬁtér. '



‘Lemma 1.3. If X is a Dirichlet character modulo prand 0 < k< h—1, then

flz"y) = f 28y dp.
U -
Proof. By the definilion of the measure we have
j:" tdp = J. ( 2. %a) zklp;m) (z)dp . i

amodp™
U

I

T Ko Y TN (@f ) = .
amodp™ % ?(P%) ‘

This proves Lemma 1.3, and hence the theorem.
! ' !

§2. p- ADIC INTERPOLATION

i

»

The construction of Lhe p-adic zeta - function by interpolating from a set

of integers ([4]) caused many people lo become interested in the problem of
p-adic inferpolation. Amice and other specialists invesligated inlerpolation of
functions on a locally compu.t field. Using p-adic interpolation of an anslytic

function T 4+ 1 from the sequence [gk'r} (see §1), Amice and Vélu obtained a
p-adic Mellin - Mazur transforth associated to modular forms which generalized

results of Ju. I. Manin. ; -

In this paper we investigale interpolation of analytic functions on T from
an arbifrary discrete sequence of points.

Let u = !ul,' ty..{ be a sequence of distinet points in 7. Let N.(#) denote
the number of points u; in the sequence u such that v(u;) > # > 0.-In what follows
- we sha:l only consider sequence u for which Nu(f) <C oo for every fixed #> 0. We
'shall always assume that o(u;) > vus) (i = 0, 1, 2,...) With these assumptions, we

may wrile. the sequence u in the formu = fu,, ty e iy, 0~ Ung .-} where:

o) = txfor my + 1 i m(n, = — 1), lim # = 0.
. k~>cs

We consider the function:
t

oolt) = J' Nu(h .

oo

Tt iz clear that dpo(f)jdt = my for f & [t fy+1), and that p(¥) = {po(t)f salisfies ¢

the conditions of Theorem 1.1. Lel Dy(z) be a function for which g(f) = {pn(t)} is

- the Newton sequcnce. we have: dpq)“/dt = Ny(?), and, by the property of the New-
ton polygon, ®u(z) has i, zeros of ordinal #.. We shall only consider sequence u

for which @, is unbounded, or, equivalently, for which lim o) = — o=.
: ) ‘ t—=0
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;0 is called an interpolation sequence for f(z} il

Definition 2.1, u o= { ui}
the sequénce of inlerpelation polynomials for £ on u converges to f(2) in the
topology of 6.

Theorem 2.1. The sequence u is an'inter polaiionsequence for [(2) if [(z) = o(®)-

Proof Suppose the sequence u and the function f{z) satisfy the condilion
f(z) € o(@u) j '
We define a function r: Z = Z by the relation
tT(i) = ) (= 0,1,2,...).
From the assumptions concerning u it is clear that r is a nondecreasing funclion
and lim (i) = oo*
j=>oo :
Using Lazard’s resull and a prool similar to that of Lemma 1.2, we obtain :
WPw E1)) = U(fs Tr)
We consider the expression,
. v( Sy, t‘tfk)) - U(f! i‘t(k))’
and examine separately the following possible cases:
iy ©(k) = 1t (k41). In this case it follows Lazard' s lemma that
o 0(Pugs Eyy) 2 0(f L)
and, using (26), we obtain : ‘ ‘
28w tzqy) — v{fitgqy) > 0 (15)
. - dpf
i) z(k) < w(k+1) and N"“r(k)') > 73 t=tegy
We show that in this case inequality (15) also holds, Supposc that, on the con-
trary, u(Sx,tz¢y) < v(f, tr(,)-) Then the properties of the Newton polygon imply
Sk, tr (i) = VS0 tr)—Nulfz() (ri—Lr(en)

< u(f, fr(;;))‘“Nu(tr(u)) (tf(k)_'tf(k-’.-l))

f
K of, tr) — “'(‘f%" =tz () — trgg)
=0(f, tr) : (16)
But (14) implies that S
' o(Pyt1» b +1) > V([ b+ ) aon
Using (16) and (17), we obtain
(P, b+ 1)) = Y8k T4 )- (18)
On the other hand, it follows from (14) and our assumption that
o(Pi, trgo) = Sk, by(etn)) (19)
Using (18) and (19), we obtain then ‘
-———-—«-dppk > dpSk S
di i;'=li17(k) de I=ly(r)
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But this is impossible, since the degree of Py is no greater than k and the functlon
Si(z) has no ie\\ er Ihan E zeros in [ 2(z) 3 t) . This contradiclion proves (135)

in case ii)
r

dt |t=tr)
From the construction of Py (zy and the properties of the Nowton polygfm
it follows that in this case we have :

m} k) <T Tk A 1y and Nully) <

dpPL [ - %5 d’OSI\ =< u(i’l'.'(k)) S I s < dp I . (20}
a '1’:!1:(1;) ‘ U izt lfwfr(m
Frorn (14) and (20) it follows that | .
v(Protrg 1) = (k1)) , (21)
Inequaht]eb (Ir) and (21) give
U(Sie Lo +1)) = 0 bagi1)- : . (22)

Note that (k) < w(h+1) if and only if Ny (b)) = k+1.
On the other hand, 8 (z) has k+1 zeros of ordinal no less than ey hence (19)
holds in case iii) not only for f > Te(e)» but for £ > f7 as well.
Now let, N be an arbltrary positive integer, and let k be large enough so
that ty(;y < #n. By (18), we have the inequality:
| (@ Sk Er (i) ) — 0 Py E7(3) )) — (2 St £) — v (P, 1)) | < 11
in case i) and i), and the inequality :
[0 Sk ty— 1)) — V(Puws Fpqre 1)) — (0 (S, ) — v (D, i) | < f (23)
in ease iii). - . ’
Thus, m cases i) and 11) we haVe

[ (Slu ) 2= v ((Dun tN) - f + v (‘Siﬂ t‘[(k)) —_ !) ((Duv t':(k))
It follows from 15) that: B _, .
0 (S ty) 2 0 (Pu, In) — L, 4 V([ trgi)) — 2 (Pus Ly )-
Similarly, using inequaliiies (22) and (23), in case iii) we obtain:
v (Si, ) > v(Pu, t) — t, + v{f. tre+1)) — 2 (Qus bggi - )-
Smce/ € 0 (®y) and lim (k) = = in all cases we have:

k—> oo

¢

lim v (Sk, ty) = oo
L ko= S
This means that the sequence {Py] converges-to some p-4d1c analytic function P(z).
It remains to prove that P(z) = f(z). Since u is an interpolation- sequence.
for P(z), v(P, f) = limu (P, 1) > v (f, f) we have P (z) € o (®,). Set g(z) = P(z)—f (z).
It follows from the assumption and from ‘what was Just said that g (z) € o ((I) ). On
the other hand, g(u) =0.i =0, 1, 2,.. - we hence’ obtam

SN, m**“" > for ¢ >0 @)



But then g(z) == 0, since otherwise (24) would contradict the fact that g(z) € o (D).
Sufficiency is proved.

As an obvious corollary, we oblain the following theorem.

Theorem 2.2. Lel f(z) be any function in 96, and let u= |u; |7 be a se-
fluence ol points in T satisfying the conditions: N, () <o for every ¢ > 0, and_
. v (i) Z» v (). Then @ is an interpolation sequence for all functions in o(f) the
function

dp'

Nt =Nu(l) — -

is bounded from below for > 0. :
In fact, under the conditioqs in the theorem, it is casy to see that the elass
o(f) is contained in the class o (@,). +

Cereliary 2.1. (animportant special case). The sequence {‘(_I V&€ Mpn n>1]
is an inlerpolation sequence for all functions in o (log).

In fact, take for fi(z) the funciion log (1 4 z), and let u be the sequence in
the corollary. Then N (¢) = 0, by the descriplion of the Newton polygon of the log
function, {t isknown that the p-adic Mellin-Mazur transform of a slowly increasing
measure ([3,6]) is a function of class o (log). Hence, such a transform is comple-
lely determined by ils values on the set of Dirichlel characters.

An analogous resuit holds for the p-adic Mellin-Mazur transform of an
h-admissible measure ([3]).1t is known that all measure corresponding to parabolic
-modular forms are h-admissible for suitable h. It then follows that the Mellin-
Mazur transform is a function of class o (log"), and so is completely determined
by its values on the set of characters of the form %z k =10, 1, 2,..., A—1, where %,
is a Dirichlet characler (see §1). Note that is .this case, let!,mg f(z) denote the
Melhn-Mazur transform, we have:

N() = N, (t) — dp'jdt = 0

where u is ihe sequence of points fgsv — 1}

§3. p - ADIC CONTINUATION OF ANALYTIC FUNCTIONS

As mentioned above, results of Amice and Mahler give conditions under
which a function given on a set of integers (in the case of Mahler), on a «very
well distributed » sequence or on certain other sequences of poinis, can be exten-

ded toa continuous, analytic or locally analytic function on ZA In this sectlon"

we use results of the- precedmg sections-to studv extensions of a funclion given
on an arbitrary sequence of points to an analytic functionon T'. We shali consider-
se{quences satlsfymg the basic condltlons of the precedmg section and written in
the same form as in §2.
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Theorem. 3. 1. Let u = fu;} 2 be a sequence of points in T, and let & =
‘i) 2, be a sequence of values in Cy. Further, let [ Py(2)] be the sequence of
»olynomials satisfying the conditions : )
‘ deg Po(z) < 1, Pa(ui) = &y, i=0,....n.
Then :
1) If the condition

i Py i = sup | Pn(:) | = o(| P, tr(n)
2ET. .

s fulfilled as n—oe, where Lhe netation is, as in §2, then there exists an analytic
unction f(z) € % such that :

Cf) =, i= 0,12,

nd f(z) = lim P, (z). In other words, under these conditions fu;} is an interpo-
ation sequence for the function f(z).

2) Conversely, if there cxists an analytic function g (z) in-the class b(tb,,)
vhich satisfies the conditions

g(ug) = a;, i=0,1,2,.....,
hen the sequence of polynomials P, (z) salisfies the following condilion :
LPy = o (p"'z@) Il Pullipqyy)-
Proof. Let the polynomial P, (z) bave the expansion

I
P.(x) = D> ax(n) Z~.
k=o
'y assumption, we have :

v(a™) = v((Du . tr(n)) + d(n), k=0,1,2,...
here d () ~> 0o as N — oo, It hence {oliows that:
WP L) 2> m}i{n fv @, tz‘_(n)) +d{n) + k t‘r(n)]

'

= (D, tem)) + d{n).
rguments similar to those used to prove (23) above give :
” cither o(§ tr(n)) = v(®,, t‘l.'(n')) -+ d(n),
or clse U(Sn , t!.'(n-i'l)) = v(tl)u Al nan) +-d(n-+ .
‘ence, for any fixed N we have :

DES, s by ) =0 (D 1) > 0(S, s )0 (D

B tt(n)) = d(n)

onsequently,

im v (8t = oo
=~ oo

v



Thus, the séquence of polynomials {IPx(z)} converges in the {opology of % to 4
p-adic analylic funection f(z), where: fW)=a;, i =0,1, 2,... The first part of
theorem is proved. ) :

Now let g(z) € o(®,} be an analytic function on 7 for whiech
' glu) =w, i=201,2..
Using Lazard’_s lemma,‘we see thal the polynomial P,(z) satisfies:
| APy, 1)) 200G, b))
Consequently, for all &k with 0 {k<Cn — 1

v(aLn))‘-l— kfz(n) = (g by (n)) = v(Dy, ty(y)) + d(n),

where d(n) — co a5 N — o -

U(ﬂ;’{n) ) > U((Du , fr(n)) + d(n) - ki'c(n) :’3' U(q)us t”t(n)) + d(n) - nf’l:(n) .
Thus, '
| LIPS 0l -
{n) .o
that is,
1P = o(p™'vmjd, g, ).
: _ T(n)
The theorem is proved.
Corollary 3.1. If the sequence u = [u;};o salisfies (the condition

nt?-'(n) < o

then there exisls an anlytic function f (z) taking the values «; at the points u; if and
only if the sequence of polynomials [P, ] satisfics the condition

1P = o(f@ul, ).
7{n}
Remark When u = {gkv — 1}, we have:

ntzn) < P fo By — pitp —1); || @, I, . = ilog"),
T(n) T(n)

and 1(n) = k for p*1<<n< p¥, t, = 1/p(p").

Consequently, a function on the corresponding sequence of interpolation polyno-
mials | P,{ satisfies: || P,}j = o(p"). This is a result of Amice ([2]).

§4. DETERMINATION OF FUNCTION BY ITS ZEROS

The question of the extent to which a p-adic analytic function is deter-
mined by its zeros has often been discussed in the literature. In sofe sense, results
of Lazard’s ([51) and Van der Put ( [11]) can be considered answers to this ques-
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ton. Here we dousider the problem from another point of view : what points must
e ¢added » to the set of zeros of a function in order for the resulting set to com-
letely determined the p-adic analytic function? e )

Theorem 4.1. (uniqueness of p-adic analytic function) Two p -adic analytic
unclions coincide in |[z]<C 1} if and only if they have the same zoros (counting
aultiplicity) and coincide on some othef infinite set of points u satisfying the
ondition assumed at the beginning of §2.

Proof. Let f(z) and g(z) be p - adic analytic functions satisfying the assump-
lons of the theorem. Then ¢(z) = f(2)/g(z) is a p-adic analytic function which is
onzero everywhere in T, and so is bounded in T. Hence, ¢(z) belongs to o(®,),
rhere u is the sequence where f(z) and g(z) coincide, By Theorem 2.1. u;} is an
iterpolation sequence for 9(z). On the other hand, by the definition of ¢(z), all
f the interpolation polynomials for o(2) are identically equal to 1, hence ¢(z)=1.
'he theorem is proved. :

§5. THE p~- ADIC L - FUNCTION ASSOCIATED TQ AN ELLIPTIC CURVE ‘
Let E be a Weil elliptic curve of conductor N, let p be a prime, (p, N) = 1

nd suppose that E has good reduction at p. In [9] Mazur and Swinnerton — Dyer

ssociated to each such curve E a p- adic L - funection Ly(E/A, 5), where A is a
nite abelian extension of Q. They stated the following conjecture: for all E, 4,
le p-adic L-function Ly(E/4, s) is not identically zero. Here we give a parlial
[firmation of this conjecture. _

We first recall the definition of Mazur and Swinnerton—Dyer ([9]). Letl E
¢ a Weil curve of conductor N, (p, N) == 1, and let A, be a fixed integer prime
» po Set Ay = A p" and Z, = 1‘i_r_n ZiAZ, We set H = H(E, 7Z) and let

i 9:Q/Z - H

c the modular symbol associated to E ( [9]). Since @ is an H g Z, - valued eigen -
mction for the operator Ty, we can construct the measure p = u2?. Now if 4 is
finite abelian extension of Q of conductor m, we write m in the form m — Apt
nd construct the measure p*'% for this A,. The p - adic Mellin—Mazur transform
rrresponding to the measure w*'? is called the p - adie L - function associated fo E:

Lo(E/A,8) = T] Ly (E, %, 8) € Z, [[s})
X “

here the product is laken over all characters belonging (o the extension 4/Q, and

L(E, % 8) = .[ a= i Ay dur¥.
. ‘ U '
Theorem 5.1. Let N = [, where [ is a prime and n is any posilive integer,
id let the prime p be a primitive root modulo N. Then for every finile abelian
tension A of Q'of conductor m = p* and evéry ellipti¢ &irve E of conductor N,
Dt Ly(E/A, sy =0, . . _ Lo
""" Note that here A, = 1. By the definition of L(EJA, s)?Théb'r;'e'rﬁ’,ﬁli_ ‘;‘"bl"!lﬂmvs
oin the following theorent. ' I
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Theorem 5.2, Let O(z) be a cusp form of weight 2 for I' (V) and let (z) be
an eigen - function for all of the Hecke. operators Ty, (m, N) = 1, If A, == 1 and

N, p salisfy the conditions in Theorem 3.1, then the p - adic Mellin — Mazur traps-
form Ly (®, X, s) == 0 for every character of the group ZZ.

The proof is based Qn'_sev:cral lemmas. ,

Lemma 5.1, I L,(®, %, s) = 0 for some character ¥ of ZZ, then pg =0,
where g is the measure corresponding to ®(z) ([3, 6]). '

Proof. By definition, we have:

Ly (@, %, s) =f AW deg@. (25)
: U
For u € U we have the expansion
'l = exp ((s . 1)logu) = z (lo_g.‘u)u_(s__ hH, (26)
‘ T on=0 n:

where Lhe series converges for s such lhat ord, (s — 1) 2» i(p—1) - ord (logu).
We hence obtain; .

'{u“' 1Y(lz)duq, = > [ J ﬁ;ti % () d#q')].(s— Hm. @
hez0 : .
U U - Co '
Thus, Ly(®, %, s) = 0 if and only if for all'n > 0 wc have:
.[ (logu)® % (u) dug = . (2_8)
] '

For every wild characler % & X(U/) there exists z €T such that .
| X'(H') == (x 4- 1)‘10guflog1’ .

Consequently, we have:

I h"\ ’ ey P Je
=1 log (1—x) \"
) =. —_ | i ", 29
A(u}- nézo-n! ( logT- ) ( qu') =)
F_rom (28) and (29) we thus obtain
j%(ll)&ﬁ(ﬂ) dy = 0. S (30)

. iy .
Equation (30) holds for all ch_aractefs yx= I{'(U)I' Since X is fixed, we have

JX(u) dug (W) =0 for all L € X(U). 31)
U . . B .

Thus, kg =0 on Z, by the Amice isofnorphism (see §1); The lemma is proved.
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) 7 ‘ b,;pm
Lemma 8. 2. [fA, =1 and g = 0, then J‘ @ (z)dz"= 0 for all m > 0 and

o

all b mod p®. ,
Proof. We have the following formula lor pq, (13, 6]) up (e + (A p™) =
Cjes - i
— M. j@ () dz + Mu_, f ® (z)dz, where My, M, are nonzero consiants. Hence,

a/Qp" a/Ap™!
the lemma follows easily by induction if we prove the following equalities :

jee ' b/p
~i‘fll‘(:z)ea’z:()andJ. P)z=0(=1,...,p—1) (32)
) ' o

Thus, it remains to prove (32). Since pg = 0, we have L, (E/A. s) = 0. Then, by a

lGO

result of Mazur ([9], Corollary 1,§9. 6), we have L (E, 1):::{) and so J. ®(()dz=0
0

Now let ¥ be a2 Dirichlet character modulo p. If @ () has the form & (z) =

13

z A, e¥™ %2, then we sct

n=1

@x( )= Z l o (n) C.’?nnz
=1

Further, let G(%) be the Gauss sum
' -1
G('}(,) Z ye (L) e-."rlk/p
k=1 '
We then have the following equation [10}

G .
oxm = ELB5 1o o(z+2),

Pop= r/
where %* (b) = %~' (— b). From the functional equatlon for the Mellin — Mazur
transform [3, 6], we have :

o0

J~ QX(Z) dz — 0,

Tm$ ZXWMI z =0, | | (33)

"6

. .
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Equation (33) holds for all primitive éharac,ter 4 mod p, % =1, 80 that we obtain u
. .

. .
system of p—2 equations in the p—1 unknowns [‘1’ (A + _I_’_) dz, (b = 1,..., p—1),

. Q
' p-i
Note that for all characters xmod p, ¥==1, we have : Z %*(0)=0. This equation,
: ‘ b=1

together with the independence of characters, gives a system of solutions to the
-equations (33) of the form
.[ (z + i) dz = ¢, (34)
- p .

where ¢ is an arbitrary constant, b = 1,.., p—1.
On the other hand, from the formula for the operator T}, we obtain:

T joo joe

0= A[,J.d)(z) dr = J-(dJ!TP) (2) dz =
Q 0 !
i oo, oo » . 5 b1 i oo .
_ J 5 q)(d Pz—l—b)d(w)%zz I.Q)(;-_;_I_’ dz.
fet d d p=1 ' P
by dfp o | ’ o
b=0, ..., d—1" , ' '
It follows from this and (34) that ' '
ico
b ’ :
J(p (z+_)dz;o, b=1,.,p—1.
] P
0 . .

The lemma is proved. .
~ Before procedingto the next lemma, we recail the Manin homomorphism([SJ).

Let H denole the upper half-plane, and let X(C) denote the Riemann sur-
lace which is the standard compaclification of F(N)N\H. For every pair
@B EHUQu fio], et {o, B].€ H; (Xy, R) denote the homology class on B EY(H]
of the image of the geodesic from « to B inH. Consider the mapping :

b b
B TyN) - H(Xn, 2), a -~ )0, = ‘ :
‘E o( ) l(:‘f\ ) (c )f } 0 f (35)

Manin proved that £ is a surjective group homomorphism,
‘ Now let ¢ be the differential form on XN(C) induced by the form ®(2) d-.
Then, by Lemma 5.2, we have : :

{o. b/p™ |
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for all m >0, b mod p". For each homology class Va, B}' € Hi(Xy, R) we set

{es Bl = I 9.

- { o, ﬁf )
We now prove that, under the assumptions of Theorem 5.2, we have }0, = f =0

‘or all 20,}?—{ € H,(Xy, 7). We note that for all b mod P there exists a matrix

a b .
r.(N),
(chm)e ()

nce (p, Ny =1, Consequentily, ?[U' % f € Hi(Xx, 7). -
)2

Lemma 5.3, Under the conditions ol Theorem 9.2, if %.0, —brg— % ¢ =0for all

s .

I ;( < Hi(Xy, Z) and m > 0, then g(), _fr" é p=0forall d € Z, (d, N) = 1.
(i .
Proof. Since (d, N) = 1, it is clear that JO, —; { € Hi(Xy, Z). Choose an ele-

nt (;c; ;) € I',(N) in the preimage of 3 0, %gunder the mapping E. Since pis

imitive root modulo N, there exists m >0 and ¥ € Z such that p™ = d + yN.

hence have:
a 1y 1 O)( T a 1)
(CN d) - (—-yN A/ \(c—ay) N pm

1 the hontomorphismn (33) we obtain

0 L a 0 oto oo
emma ig proved. \

Since {0, — bid} = {0, b/(—d) }, we may assume that b - ‘0. We shall prove
0, ?Z;_f ® = 0 for all }0, 11;__ ‘8 € Hy(Xy, Z) by induction on b. _
3).and lemma 5.3, it now suffices to prove the following lemma:

Lemma 5.4, f/'? 0, %fcp =0 for all go, % f'e H(Xy, %y and b < b, . then
be =0 for ail [0, byd] € HyXy, %) |

’roof. Let [0, bo/d} be an element of H, (Xx, Z). Choose a malrix
;0) < Fy(N) in the preimage of {0, b,/d } under t. Represent « in the form:

t xb,, where 0 < a, << b,. By assu nmplion, N = {", where /is a prime and °
sitive integer. We considerthe two possible cases: (z,N)=land (x+1,N) = 1.

.



1) (2, N) = 1, Then there exists o, ¥ € Z, such that sz + YA = 1. We have
the following equation of matrices in I' (N):

(a .bo)=(—-a:c-—bQTN a, )(—x ——1)
cN d —(ca +dT)N ¢N —dx/ \TN —a
Then from the homomorphism (35) we have:

[0, b/d}o = |0, a/(cN —zd)|p + [0,1/a}g.
Hence, {0, b/d} ¢ = 0 by our assumplion, since.0 << 1, a, < b,

] il (x+1, N) = 1. There exist a, ¥ such that a(x 1) + TN = 1. It is easy
to verify the following equation of matriees in I' (N):

a b, _(a'oe—[—boTN b, —a, )(x+1 1)
(cN d ) (ca+dV)N —cN+do +df \—TN o/’
From the group homomorphism (35) we obtain:

[0, byjd |} o= 10, (b, — a){(— eN +-dz - Dl + {0.1/a | ¢.
+ Since 0<7 b, — a, < b,, by our assumption we have {0, by/d} ¢ =0. The lemma
is proved. :
Thus, it follows from Lemmas 5.1 — 5.4. (hat, under the conditions of Theo-

‘rem.5.2, if L,(®, %X, $)=0 for any character ¥, then 3 —€ = O for all

;0 —f € Hy(Xx, Z). But this means that ¢ has zero period. Conscquently,
p(z) = 0. This completes the proof of Theorems 5.1 and 5.2.
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