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§ 1. PRELIMINARIES

Let (T, Z1, ¢) and (S, Z,, A) be two spaces with completely additive o - fini-
te mon- negative measures, For a real number'p (1 < p < =), by L? (T, 24, 1))
(or L? (T)) we shall denote the B-space of £;- measurable real valued functi-
ons [ defined on T for which {f| p<C o, Where || f{l , is the norm of the element
[f&€ LP (T, Z1, u) and defined as -
Tliroiry (dnr”’ i 1< p<on ‘

. T ‘

|ffllp = ”f"LP(T): Vraisup[]f(z‘)]}if:p—;oa

- uieT

L3 (S, Z,, 3) (or LY (S)) will denote a similar space for the space with measure

(S, Z,. A). Let XP (T) be a certain dense in the space L*(T) linear manifold and let

Y7(S) be any normed linear space imbedded in the space LA(S), i.e. Y4 (8) C LI(S)
and there exists a positive constant M, such that

I la <My 1S yagsy (V€ YI(S) 3, : (1.1)

Suppose that F is a defined on XP (T) linear operator lransforming XP (I'y inio
Y9 (S) for which there is a constant Mg such that :

| Ef i yasy < Moo I (Vf € XP (@), (1.2)
The class of such operators is denoted by [XP (T)B’ ¥? (8)] In the speecial case:
"XP(T)=LP (T), denote the class [X5 (I)F Y9 ()] by [XP (T VI ($)).
Let K* (T') be the positive cone in the partial ordered linear space LP (7', Sr, u)ie.
KP(T)=|f €LP (T, Zr. p): f > 0} .

(o) 1f v9(8) = LT (S), then inequality (1.1) becomes an equalily with l{.{q =1.
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where the ordered relation: «f > 0» means that [ {(f) > 0(V /& T (mod p)). By
KP(T) we shall denote the positive cone inthe linear manifold X (T'): EX(T) =

Kr(IynXP (T). And K9 (S), Kz (S) will denote the similar posi{iv.e cones in LIS, 2, A)
and Yo (5), respeclively. An operator I* iransforming XP (T) into Y7 (8) is called
positive (and writlen F 2> 6) if F [KP (1)1 C KI(S).

In this paper we shall investigate the kernel representation of a positive ope-
rator I~ belonging to Lhe class [XP (I)“> YT (5] (1< p. q<oc) namely investigate

the existence of a real valued functlon k (s, 1) defined on S w T such that -

Fro= k6D (@) VseSmodn), VEX @), A3)

It is well known that if p=1, X! (T) = L (T, Sr w) and Y (8) = L3 (S, 5, A) then
this problem has been studied under some assumptions for the linear operator F,
For example, F is compact from L' (T. Z7, w) o L (S, Z,, A) (see [4; p. 379]) or
is separable bounded from L! (T, Z, ) to L (S, Z,, M) (1 <Tq) (see [5; p. 259]) and
for ¢ =1, F is weakly compact from L' (', =1, p) to a separable subspac? of
LY(8, Z,, M)y (see [5: p. 547]). In the case when T=S=(0, 1), pand A are the Lebes-
gue measures on lhe number line, X? (Ty= LP (0, 1), one considered the kernel
representation of the form (1. 3) for an operator FF € [L? (0, 1) — Y19 (0, 1)], where
Y30, 1)=C (0, 1)(*) (see [3;p. 557 or ¥ (0, 1) = C* (0, 1) (¥) (see) [7; p. 277]).
The kernel representation of F belonging to some other classes of linear opera-
tors has been also considered in Refs {9], {10} {11 12 [173.

§2. THE KERNEL REPRESENTATION OF A POSITIVE CONTINUOUS
LINEAR OPERATOR FROM L° (T) 10 YI (5)

By VI(S, =, 1) (or V9(S)) we shall denote the B -space of all completely addilive
set functions on Z; of bounded g-variation. The norm of an element uc VI (§, Z,, A)
is defined as
t
H () 8 |u(e)1 g
ull jay = q~ varuesu—bup —
I (S) es e o ""1 A(e(l))q 1

where.the supremum is taken with 1espect to all finite families o = ;egi)] of disjoint

-Zs - measurable sets of finite nonzero measure. It is known (see [8]) that if
F [IP(T, Z¢, p) = L3 (S, Zs, M)] (1 << p. g <C o), then there exists a real-valued
function K {e,, f) defined on X; X T such that

(*) If Q is a domain of an Euclidean space R", €° () == € () is the space of bounded
continuous functions on {2 and €™ (Q) (r = 1,2,...) is the space of functions possessing all
bounded continuous partial dirivatives on £ until r-th order.
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Ff = % R(.8) [(Hu (dl) (V[ € L2 (T\ B0, w)) () (2.1)
. h T )
[EC. 0)n (dt) € V3 (S, 2o 1) Tor cach ep & Zo: b (1) < oo, (2.2)
Sy ) )
K(e,,.) € L (T, T, ) lor eacfl e. & X, and 1 -+ 1, =1 (2.3)
p P

Hence we have

Theorem 2.1 Supposc that (T, 3, ®) (S, Zs, Ay and YT (S) satisfv the condi-
tions quoted in the preliminaries and that
F2o FellP(Tsnp) > YIS (1< pg< o)
Then there exists a A X u - essentially unique, A X w - measurable real - valued
funetion & (s,7) on § X T, which fulfils the following condition:

[EF1@ = [k 0 7@ p (dh) (¥ € S (modh), v & L? (T) 2.4)
o ‘
Besides we have ' .
k(s, ) >0 (ys €S (mod A), Vi & T (modp)), (2.5)
k(s,) € L (T, Z¢, w) (Vs € S (mod ), (2.6)

{ f fe(s:2) A (ds)] LP‘m | (2.7)

5

I ey e -q < ¢ - var
{LP (-~ 1.9(8)] 0 E3

Proof. FHE [LP(T) - Y1(5)] and the space ¥4 (5) is imbedded in L9 (S), the- -

refore (see (1.1): Fe[lP (T ->Y1(S)] and
e {LP(T)— LY(S)] < Mt{'. 1y [LP (T — Y9 ()] . (2.8)

Hence, there exist a real - valued lunction K (e, #) defined on I, % T and
fulfiling conditions (2.1) — (2.3). Let

[U/[] (&) = J' Keot) f(hp(df) (Vf & LP (T).. Ye. € 5., (2.9)
’ |

From (2.1} we have
(Uf1(es) -:f[Ff] (s) 2 (ds) (V[ € LP (T), Ves: A (&) < oo) (2.10)

€s . :
~ For a Zy~measurable set ey of finite measure %ep () € K (T') and because
F = 8then [F7%.q] () € KI(S)i.e. )
' [Z7X.1] (s) >0 (Vs &€ S(mod ), ve,: u (er) < oo) - (2.11)
By (2.9) — (2.11), it iS clear that
f Kles, ) p (df) = f [Fher] ()} (ds) > 0 (Ver, es pen, ples) <oo)  (212)
er eg

LY

(*) The symbol ?c;— applied to a completely addi_tiv/e and absolulely continuous set

. !
function denotes the integrable point function associat.. with it by the Radon ~ Nikodym
theorém. ’ -
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It is known that (T, Zr, ) is a space with o-finite measure, hence f
it is easy to see (hat

Kes, t) >0 (Yt € T (mod p), Yes: A (es) < o) (2.13)
Now we prove thal for all 2 € T (mod p), K(, ) is a completely additive
set funection on Zg, i.e.

20 oo ®
Ke|J ¢, t=3 K (&, 0 (vt €T (mod ), (2.10)

rom (2.12)

n=—1 ne==1

where, [e(g)} (n=1,2,.})isa family of disjoint Z5- measurable se!s. Since (S, Tg,A)

. . s . )
Is a space with o-finite measure, so proving (2.14) we can suppose that the sets e(rs1

have finite measures. By (2.2), (2.13) we have
[ra)

J'K (Uedinpan=3 [Ke@ ppwn= [ 3 &
er

s+ D) p(dh

. Y o=l

a=1 n=1 *
cT : eT.

(Ver: w(er) < o).
Therefore (2.14) is proved.
Let es be a Z3 measurable sei of zero measure, by (2.9) (2.10) we conclude:
f K (es, 1) p(df) — f[erT] () A (ds) = 0 (Ver:p (er) < o).

er ’

€s
Then it is clear that - .
K(es, =0 (¥t &€ T (mod p), Ves: Afes) = 0) (2.15)
From (2.3) il is easy to deduce that the completely additive set function
K, b (\:ft € T' (mod p)) is linite on g, lherefore by (2.15) K (., £} is absolulely
continuous with respecl to the measure A (see [5: p. 147]).

Hence by the Radon ~— Nikodym theorem, il is clear that for each ¢ =
(mod p) there exists a function k (., ) € L' (S) such Lhat

K(es, 1) = f k (s, ) M(ds) (Ves € B, VI € T (mod p)). (2.16)
€s
By (2.13), (2.16) we have -,
J.kr_(s, B A(s) >0 (Vi€ T (mod p), Ves: A(es) << o) (2.%7)

s

Because (S, 25, A) in a space with o-finite measure, then from (2.17) we
easily obtain (2.5). K

Forall f € LP (T and e5 & :Zs, by (2.5) (2.16), (2.3) we have
i _[ gfk(s, B F () Ads)] w (di) =J'f(:)K(es, ) 1 (df) < oo
’ T
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Therefore (see [12; p. 299]) the funclion k(s {)f(#) is A X u-integrable on
s XT. Hence by (2.16),(2.9), (2.10) and the Fubini theorem, il is easy to deduce that,

[Hfreorondirds = [ Kes o f o @ =

% ¢g T T
- fj}ff} (5) A (ds), Ves: Aes) < oo, ¥ f & LP (T)).
Csg

Then (2.4) is ev1dent
Since F & [IP (r)y— L1 (5], s
| [Ff] (s)] <C oo (Vs € § (mod ), Vf &€ Lr (1) (2.18)
. By (2.4), (2.18) it deduces that for all f € LP(T) and s & S (mod ?'.)
((3,.) f(y € LI(T'). Therelore {see [5; p. 380]) we haVL (2.6). It is known (sce ;
). 1871) that

” -[ ”[LP (T) — L q (5)] é ZS { fl B- (85,.) }’ LP'(T) }

Henuo by (2.16) we obtain (2.7). iy
In order (o prove the rest of the theorem, first we regard that the funetion
T(s ) f(1) is A X p -integrable on es XT (Ves €.Zs. Vf € LP(T). Therefore
T8 D (D is kX g - measurable on S X ' (Vf € LP (T). Hence k(s, t) is also
+ X u - measurable on § X 7. Now we consider the uniqueness of the kernel *
(s #). Suppose that there exists an other A X p - measurable function % (s, ) on
"% T such that it fulfils the condition of the form (2. 4)

(Ff1(5) = .[A (OF w (d) (EINT), Vs€S (modh)).  (2.19)
T C
t is known that Xer (.) € L(T) for all 1 - measurable sets ey of finite measure. %

hen by (2. 4), (2.19) we have:
J.k (s,H)p(dh = J‘E(s,ﬁ w(dt) (Vs€S (modA). Ver: p (éT) < =o)

er er
Therefore k (s,f) = k (s,8) (Ys €S) (modA), Vi &€ T (mody)). Q.E.D.

!

§ 3. THE KERNEL REPRESENTATION OF SOME POSITIV'E
LINEAR OPERATORS FROM XP(T) 10O Yi(5).

Now we consider the kernel representation of a positive linear operator ‘
efined on a certatin dense in LP(T) linear manifold X*(T). ‘;

Theorem 3.1. Suppose thal (T, 21, u) (S, Zs, &) and XP(T), Y9(S) satisfy the
onditions quoted in the preliminaries and that " >0, F € [X’P(’I‘)“"YQ(S)] where

<P q <o is a B-space. Let the positive cone Kp(T) of X*(T) be demnsc in the
ositive cone K*(T) of LF(T).
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Then there exists a A % p-essentially unique, A Xy - measurable real - valued
function k (s,f) on SXT', which [ulfils the following conditions .

(FF1(s) = J' k(s [ w(dh (Vs€S (modh). V€ XP(I)). 3.1)
T r
F € [LUT)—YU(S)], where Ff = j' k(. Of @) u(dh). 3:2)
T

7

Besides, we have {2.5), (2.6) and

Fy <L g- var [{[ k() Ad i

[LPT) — LUS)) es € Es LP(T) | (3.9

b ﬁ[*@*(’r)“’ L = e
5

Proof. Because F < [XP(T )—’Y“(S)} Y9(8) is a B - space and XF(T) is dense
in LP(Ty, then (see [11 p- 124D the;e is uniquely a defined on LP(T) extension
F of F such that F < [LP(T)—>Y‘1(S) and

Ff=Ff (v € X¢(I)), (34)

| F .(3.5)

” [LP(T) — YU ﬂ F“{X"(T);’ Yis) - ‘
Let /+ be a function belonging to K*(T). Since KP(T) is dense in LP (T), so
. there exists a sequence [f:} C KP(T) sﬁch that
=T e 20 (o). (36)

We knew that T € (LP(T) — YI(S)] and | f+; cKP(T) ¢ XP(T), hence by
34) — (3.6). it follows
W Frr—Ff

< M, WEpt— Fyt < M F

LS I yas) [XMT) 2 YHS)]

W f:" i gy = 0 (A>oe). 3.7

Because F > 9 (i. e. F f+ < Kq (9 < KYS and the positive cone K“(S) of the
B-space LI(S) is closed in LYS), then by (3.7) it is easy to see that F [+ & K‘I(S)
_ SinceF f+ € YUs), soP - Ki(S) n YS) = Kq (S) 4 € KEXT)), i, e. P

Therefore, applying Theorem (2.1) for F & [LP(T) — YT(5)] we deduce that there
is a AX u-measurable real-valued [unction k (s. {) on $SXT7T, which fulfils (2.5),
(2.6) and the following conditions

IFf1(s) =f k(s )f({) w(d) (% S'.G S(mod A), 2 f & LP .(T)),. (3.8)
T

I
fLP(T)—>LUS)] LPY(T)

€s

< q- var llfk (s yr(d) . |k (3.9
Z. _

By (3.8), (3.4) it follows (3.1). And by (3.8) we have (3.2).
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it is knE)wn that 7" < [X?(T) 7 Y18, F [L> (1)~ Y9(8)} and the space Ys),
is imbedded in L(S) then - € [XMT) 2 LI (5)), T e [LP(T) — LYS)), It is clear
(see (3.4)) that the operator F [LP (T)—L3 (S)] is a continuous linear extension
of I' g[X? (T)?LQ(S)], hence (see [11; p. 124)).

i F I [LP(T )~ LI(S)] = 1| {XP(T)?LCI(S}]. Therefore by (3.9) we obtain (3.3).
In order to prove the unicit}f'ot' the kernel k& (s, 1) fulfiling (3.1), (3.2), suppose

that there exists another AX p-measurable function % (s, f) on SXT such that
(Fr1© = [T, 070 udn (VseSmod by, /e xeT)) (3.10)
T
F & [LYT) - YUS) |, where Ff — f}?(., OF (D p(db) 3.11)
T
By J(3.10), (3.11) it is evident that F [ = If”mf_( Ve X)T)), i e. Fis also a defined

on L¥T) continuous linear extension of 7. Since the such extension is unique, so \

—_— ~

F = F, Therefore (see (3.8), 3.11)):

4

J .07 @p@d = [ Fe 7@ (Vs € Smod 1, VieL) 6.1
4 | .

T = .
Let er be any 2t - measurable set of finite measure, by (3.12) it follows

‘ f ks, Hu(dty = f E(s, Du(d) (Vs €S(mod 2), Y er: pler) < oo).
eT eT

Hence k(s, ) = k(s, H( Vs & S(mod A), (Vi € T'(moedy)). Q.E.D.
Now we consider the case that u is the Lebesgue measure on R" and that 7’ — Qr,

where Qr is a bounded domain of R". Let

—1 V : Il!——C{? i — g
w, (¢ ©) =;CE 'eXPJ [t—Ct—e E Hi=ti<e

0 ) 9if]t—"§l>>5,

(3.13)

n !
where = (t;,., &) € R%, & = (g, L) E R 1£— L) = > (i~ )R, -

i=1
Ce=cn I exp% -ig—i:"l?—l % dt and e is a posilive conéiant. Let fe () be the average
i —_
t§1<1 L1 . -
funetion for f & L?(Qr) on the sphere of radius ¢ with center t, i. e.
~ . ~ f@), if: t.€ Qy,
() = \ df, where f(#) = 3.14
£ jwsa DF @ where Ty = /OISR Gy
ARn - )
It is known (see [16; p. 19]) that e ‘

fife— 1 L@y 0 (=0 (VfeL@n), (3.15)
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| [ €07 Q) (Y[ e Lr@y), (3.16)
where C*(Qry) is the space of all infinitely differentiable funclions on Q'}
Supposc that XP(€Qr) is a linear manifold in LP(Q1) such that XP(Qq) 5 C=(21). By

(3.15), (3.16) it is clear thal XP(Q27) is dense in L™Qy). Besides, for each (f € K*(Qr)
by (3.13), (3.14), (3.16) we have f. € {(]’(QT) N XP(Qp) = Tz (2r) Henee by (3.13) it-

lollows that K: (Qr) is also densein K*(Qqp). Therefore, from Theorem (3.1) it is

easy to deduce the following corollary.

Corollary 8.2: Under the assumptions of Theorem (3.1) for (S, Z,, &) and
Y9(5), let 1 be the Lebesguce measure on R*, Q1 he a limiled domain of R® . Sup-
pose that F € [XP(Qq) 3 Y48, F >0 where 1< p, ¢ <7 e, XP(Qr) is a linear ma-
nifold in LP{Qy) such that XP(Qr) > C>(Qp) '

Then there exists a & x p-essenlially unique, AXp-measurable real-valued
function X(s, 7) on § X Qv, which fulfils the following conditions

[FF](s) = J'k(s, DfO(Yse Smodd), VieX (@, @317
. Qr
F € [L"Q1) — Y(S)], where Ff = [k ofmd. @318
Qr
Besides, we have ,
k(s ) > 0(y s €8 (mod A), V& € Qr (mod u)), (3.19)
E(s.) € L (Q1) (v s € S (mod 1)), ' (3.20)
I£] [& Q) T LP (s~ ”I'}*'f[Lp (Qp) = L*’(S)}{ 7- var {I f & (s.) 2 (ds) HLP’ (QT)f
P ) w es Zs es

: 5 (3.21)
Remark 3.3. It is known that the space C(Qr) (r=0, 1,2,..), the Sobolev

space W;(QT'), the Besov space B;(QT) (1< p<Te,0 <1< o0) afe linear mani

folds in LP (Qr) and contain C™ (1) (see {13; pp 79—811) Besides, if Qs is a bouns
ded domain of R™ with the boundary Ty of the class C= (*), then the space CP (f2)

(p=0,1,2.), the Sobolev space W Qg), the Besov space B (Q2s) and the space of
p P ; P

Bessel potentials Hl;,(_gr?s-) (1 <<g <eo, 0 h <Too) are B-spaces imbedded in LP(Qs).

Therefore, as examples of applying Corollary 3.2, we can show the exislenge
of the kerncl k, for which a positive operator F belonging to [X" (Q7) 7 Y7 (Q9)].

is represented in the form (3.17), where X? (Qr) 1‘; €= (Qr) (or C" {Qy), WIP(QT),

B; (Qr)) and Y (Qg) is C° (Qs) (or Wg (Qs), .Bg (€2s), Hg. (©s)). These spéces play

(® ie. U'sis a certain (m—1) - dimensional infinitely differentiable orientable mani-
fold, with respeet to which $2s is locally in ome side. '
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an important role in the theory of partial differential cquations. Besides, with
the aid of an overaging operator (sec e.g. [3; pp. 39—41]). we can approximately
determine ahove kernel k. '

Then it may approximate some linear positive dperalors'by integral opera-
tors and some linear equalions with positive operators by integral equalions.

As is well known (see [6], [14], [15]) various pfobabilil_v models have been
constructed for estimatling the values of an inlegral operator and for solving some
integral equations of second type. Hence, with use of the results inlhis paper, we
may estimate the values of some linear positive operalors and solve some classes
of linear equations with positive operators by the Monte—Carlo method. '

The author wishes to express his gratitude to Prof. dr B. Bojarski and Doc.
dr L., Kubik for many valuable discussions and remarks. ‘

~

Recewed January 15", 1978.
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