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1. Introduetion: In recent years there has emerged a great deal of inlerest
in the study of infinile matrix transformations from sequence spaces to sequence
spaces. Various infiniie matrices have been constructed to transform one sequence
space into another, for instance one may refer to [6] and [7] and numerous
references cited therein. We consider here several classes of these transforma-
tions and initiale the attempt of exploring the basic inner structure of these
collections after equipping them with suitable natural locally convex topologies.
One of the important outcome of our investigations is the representation theorem
of these infinile matrix transformaltions, carried on with the help of weak topo-
logy. The last section is concerned with the precise form of tensorial transforma-
tions aeting on a given collection of infinite matrices into another; for such
classical ideas connected with the summability, one may refer to Cooke [1].

2. Notations and Terminology: An infinite matfric shall be denoted by
a = (tmn)* ‘-

/41/1 - a"lﬂ osom
aAz1
a= : .,
Line %“mt1 " Amn * - -

where a) s belong to the field K of scalars. Denote by N the set of all non-
negative integers and by e®* (m, n € N)'an infinite matrix whose element af the
cross of m-th row and n-th column is one and other elements are zeros. Let
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be the family of all infinite matrices endowed with usual operations of pointwise
addition and scalar multiplication. Thus Q is a vector space over K. By a mairix
space A\ we mean any subspace of Q. The matrix space generaled by [e™ :m,n & N}

shall be denoted by @. IFNG N and a € Q, we define i
=2 2, Gme™

and call it as the N-th plane section of the matrix a.
For a matrix space A, we define A:H: by

AT (b= (bon): b € Q With 3 3 |ty buua| < 0 Va € A ]
where .

ZZ b =lm 3% tum ban,
N—os) <m+n<N

and term it as the K-dual of A. Clearly A:Ft is a vector sﬁace over K and con-
tains ®@. In the rest of this paper we assume that each matrix space A contains ®.

Under this- assumplion, A and Aji‘l'orm a dual system which we express as ,J\
(A, Aj‘:]:). Hence, we may talk aboul the weak topology o (A, A:ﬁ:), the Mackey |
topology 1 (A, Aﬂ:), the strong topology B (4, A:ﬂ:) etc. Observe that o (A, Aﬁ:) is

generated by the family { p,: b € A:li] of semi-norms on A, where
Py (@) = |2 2 dun o | - ’
We also have a natural locally convex topology on A called the K-th normal

fopology. This is denoted by 7 (A, A#) and is generated by the family [ gy : beA:ﬁ:]

of semi-norms on A, where
gy (@) = 2 Z | @wn Dun | -

Let us note that all the topologies on A discussed above are Hausdorff. Similarly, \\)\
we may talk about such topologies on A# by interchanging the rolesof A and A:Fi:.

3. The Role of e™: We begin from
Proposition 3.1 : For any a € 4,
o (A, Ail:)-lim a=a
’ N— oo

moreover, the transformations e™*: A — X, given by e‘““(a) = G Are continuous
on (A, o (A, A:I:t)) for all m, n € N. '

Proof: For any b & A:H:
o (@—a%) = py (e : mta> N)
where (aug: m+n > N)is an infinite matrix whose all coefflc:ents Omy aTe Zeros
provided 0 = m-+n =< N. Thus

Pb(a——ah‘) = I Z Z i bmnl —+0as N — oo,
m+n >N

-
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Thus we get the first part: For the second part, let us observe that for a € A,
’ ﬂmn(a) l = ! Amn i - Pe mn ({I).

Corollary 3.2: The pair |e™; ™ | is a Schauder base for A, o (A, A#)).

Remark: In Proposition 3.1 (and hence also in Corollary 3.2) the topology

o (&, A can be repiaced by n(a, AT,

K-normal and K-perfect malrixz spaces: A malrix space is called K-normal
provided a=(amn) € A whenever | mg |'< | by | for m+tn = 0, for some b= (bu,)
€ A. Clearly A:ﬁ: is K-normal for any matrix space A. A malrix space A is said

to be K-perfect, il A = A;t‘:ﬁ = (A:Ft)#; observe that A ¢ A'ﬂz# is always true.
Letl us introduce the following matrix spaces:
C=fa:a€Q lim au,exisls s
m--n—>r

=[{a:a€Q, u—>0asm+n—>oo}

C,. .
lppr-{d:ﬂeg,;zzfamn]p<°°f$0<P.<°°:

laeo = | a: aéQ, SUD | mn) <C o=},
- m, n_=0
For 1  p < e, equip {,, with the norm

lalpp = {2 Z [ama [P }'/P

and for p=oe, equip /__ with the norm |al__, where
laloe = sup [awmnl-
m, n=>0 ‘ .

The spaces C and C,, are equipped with the norms inherited from |J.|__. Unle:s
otherwise stated, the matrix spaces discussed above, are endowed with these
norms with respeet to which they are complete. It is not difficult to verify that

oot o H
00 11 11

1’

oo oot

H_ o a1
=1, (1<p< ,p+,qﬁ1).

lop(1 & p < o0} is K-perfect.
In the sequel we also need the following lwo spaces

Thus

1
b = {a:aeQ,lamnl’f“‘““-—a»O as m -+ n— oo} ;
N 1 : re
d=fa:a € Q lim sup |tm|™ ™ < o l,
* m-4-n->oo

and endow these spaces with thé total paranorm topology given by |al = sap
l B

[ol3 | @ma [PF2, m+ o> 0} where a<s or d. The space 8 ¢an be then regarded
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as lhe space of enlire functions of two complex variables [2] equipped with the
topology of uniferm convetgence on compact sels in € X C, where C is the com-
plex plane (cf. [3]). These spaces are known to be Fréchet spaces.

Propositiorn 3.3: We have Bfﬂtmd and dzﬁ:z 8. Thus 6 and d are k-perfect,
P)::oof: We prove only éﬂjzd; the proof of dﬁ—_—ais similar, Now obser-
ve that dCb:ﬁf is obvious. For bﬁc d, we follow (2] Lemina 2.1) with minor

modifications. Indeed, let aea# and a&d. For each integer i>>1there exist sequen-
ces {m;} and |n;| (at least one of which tends to infinity with i) such that

,ammi | > jAmi+ni)

Deline the matrix b by
‘ b =;i“l’ﬂi~1‘li; m=m;, n=n;,
0 ;5 olherwise.

Then b € 3. However ‘ .
2 2 f amnbmn f = oo,

and so a& é#, a contradiction. This proves the result.

The malriz ¢™* and associated operafors: The imporiance of Lhe mairices
e™"" s does not lie only in representing the elements of a matrix space A in which
they are present; but is also exhibited in obtaining the information concerning

the structures of A and A:'tt.' Let us recall that a sequence ‘f,} of elements in a
locally convex space (X, F) is called regular (resp. bounded) if for some confinuous
semi-norm p (resp. for every continuous semi-norm p) we have a constant
M = M(p) > 0 with p(z,) > M(resP. p(xa) << M) for all n. We prove

Proposition 3. 4: (i) A em“} is a(4, Aﬁ)-bounded if and only if A:l'—"c l...:
(DACL., if and only if Jen ] is o(A™, A)-bounded ; and (i) femn ] s
c(A,Ai:IZ)—regular.if and only if IWMCL\#.

Proof: (i) and (ii) are straightforward and their proofs are, therefore,
omitted. To prove (iii) assume that {e”“‘} is regular. Let y €1, and x € A be

arbitrary. Now there exisl z = {zij]eA# and a >0 with PAe™") > a. Therefore
M
ZEIY x| <—ZZ @y 2] < oo
[»4
and so yef_\#. The other part is obvious.

Now consider the dual system ( A, !.!;ﬂE ». For any integer N > 0, define
Sx:A— A by

Sx(m) = = = Xy ™ = xN,
0ssm+n<N :
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Clearly each Sy is an n(A, A#) — (A, Aqi) or a o(A, A% - o{A, A-'t‘t)
continuous linear operator, Indeed,

pr(Sx(x)) = p,N®);  ¢ASx{x)) = ¢, N(x),

where y & A% and « € A. It is natural to mveshgate the equicontinuity of
fSx:N>0} In this direction we have

Theorem 3.5: The Sequence {SN ‘N >0] is o (4, A:ﬁ?)-equicontinuous on Aif
and only if AR — o

Proof. If A% — @, the set fSx:N > 0]‘ is obviously o (A, A#)-equicon-
tinuous on A, For converse, consider y € A%

Then the sequence [y o Sx:N » 07 of functionalson Ais¢ (A,A%)_equicon-
tinuous. Therefore [y o Sx: N 2> 0] is finite dimensional (¢f, Proposition 7.9, p. 24
. [4] or [3], p. 161). Hence there exist integers ky koo sl with 0 <l < oo < e S ey
such that {50 Sk, 0 Sk, »ee, Y0 Si, | is linearly mdependent and {yoSx: N> 0]

==sp[yoSk1, +» §0 8 ). Thus for x 6 A,

(g o Sy) (w) = 2 °‘N (yoS8g; ) (v}
i=1

b ‘.
ar, y(x(N)) — 2 “?Ty(xk;)‘.

i=1 \ .
Hence, on replaculg x by e™™ sfor m+n>k,, we flnd Ymn =0, for m+4n> k.
Thus y € © and the result follows ‘

4. Tensorial Transformations: In this section we consider Lransformations
resulting from a tensor of order four, which relate various matrix spaces. Indeed,
il g= bpq is a tensor of order four having values in the field of scalars for fixed

pair of integers p,gand m, n, we assume thal its multiplication with any preassigned
matrix b = (b,y), is defined for all indices m, n > 0, namely

g.b:ZJr: ;)bﬁlqbq—amn,say . BNCRS!
pTq ~# ‘

is well defined for all m, n > 0. In the following result we impose conditions on
the tensor g so that it becomes a tensorial iransformalion from the matrix space &
to the matrix space €.

Theorem 4.2: Suppose (4.1) is true for each b € 6. Then a= (@my) 6 C if and
only if there exists a constant M >0 such thai

i
l.b?:n[\, iéﬁlqn;p_‘_q < M for all m,n; pq €N, (4 3)

Pl
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and
lim 8P = dyq exists for every p,q>0 . 4. 4)
m—+n—>o2
Proof : The proof of the sufficiency part is straightforward and is the-
refore omitied.

For converse, let a € € where a = (amn) is given by (4.1). For b € é, define

the maltrix [ = (fun) of functionals by

fmn(b) = Omp, = 2 2 6pq bpq
phq =0

1

Since the set Hboo pq ip-'_q p+q > 1] is bounded for fixed pair of integers
m, n; it follows that the functlonals [’mas are continuous (cf. [2], p. 15). Moreover,
these functionals are poinwise bounded. Therefore by uniform boundedness
principle. there exists a ball Bgfz) such that for all b € Bg(z)

| fmn(®) << M, for all myn > 0,
where M is a constant > 1 e [fun(b)| << M for all myn > 0 and all b with
b] < e. Choosing b to be the matrices b*? for p+q >0 respeclively where
bFi= (e, |
et i=p, j=g¢;
(0, otherwisc,
when p+q ~ 0 and b°° = (i) €oo = & & =0, i+4] > 1, we obtain

|6 |a<Mforallmn>(},and

Eij =

|8P9 gr+9 < M, for all m,n >0 and p+¢ > 1. Thus

1

1 —_—

420 pq q MP+(I
mn<_ 16 lp+< , form+n>0'and p+q>0‘
1

Since MPT9 < M for all p+g >0 it follows that

R .
oP3p+d <MT' for all m+n >0 and p+q> 0.

Imnt

This proves (4.3) The condition (4.4) obviously follows.

Theorem 4. 5: Let (4. 1) be true for b &€ Cqo. Then a = (an,) € 6 if and only if

1
(2 1P ™ 5 0as myn-s co. (4.6)
p+q >0

. Proof: The proof follows on the' lines of the preceding result and is

therefore omilled.

For proving the next result, we need
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Proposition 4.7 Il A:ly = 1y is a linear transformauon from Iy into itself
defined by the relation (4.1), i.e. A(b) = a = (amn) Where b 6 I and a € [;, then
sup | 2 2. oPd |z ptg > 0f < (4.8)
m+n >0
where M = |lA| (operator norm of A). - ' ;

Proof : 'rom the convergence of the series Z Z $P9 b,q for each b =

p+q >0 mn
= (b,) € ly, one can easily derive its absolute convergence which in turn, implies

that {89 | < kay for all p, g > 0 where kn, is a constant depending on mand n.
mn p g

Now A, being the pointwise limit of a poinlwise bounded sequence | A, :r > 1} of
continuous linear operators A,” s from Iy to ilself such that

A (b)) = a = (Amp), Where am, = > 2 spu by

p+q =0 M
for all m, n with m-}-n <{ r and 0 otherwise, is continuous. Therefore 4 is bounded.
Let |A| = M. Then for all p, g, the following inequality
EYCOTD IR AN FIE |
pt+q >0

gives the required result.

Theorem 4. 9: Let (4.1) be true for b € lyy. Then a = (am,) € 4, it and only if
1

| ég‘;lm_l'n-% 0 as m4-n — oo, , (4.10)

uniformly in p and q.

Proof : Sufficiency follows by straightforward calculalions. For necessity,
assume lhat (4.10) is not true. Then for € >0, and any.N € N, there ex:st integers

m, n aad p, g such that m+n> N and
1

| 6P " > (4.11)
Since A maps Iy into 8, it follows A transforms Iy into itself and therefore
sup | 2. Z |6pql p+¢ >0} < M, by the preceding result. Thus we wrile

m+n =0
wmn = sup | &P% |, we can find a constant K > 0 such that
‘prq=>0 M0
omn | < % for all m,n > 0. (4.12)
We also have :
| sggl 1'“_"1'“-» 0 as m41—> oo fof each fixed pand q. 4.13)

By (4.11) we can find my, m and p;, q, such that
1

v Iéplql Iﬁlnl > T : (4.14)

mint
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Now from the relations (4.11) {o (4.13), choose my, n, sufficiently large with
My +na > my + 0y and p,, g, with py 4¢3 > pi -+ ¢ such thai

m1+ni

K € _
,2‘112'[‘]3’ < (_é—) ' (4-10)
. : .
) | §P22 [matnzs, 2 (-18)
mzn2 2
and

L a ma+ ng B .

‘. 6‘52 112 < 16 (417

Procecding in this way, we get sequences {my} fn, [pi} and fq] with
LMy A My > Mg+ Mt Pro @ S>> Paet + Qi k> 2 such that '

K . Mot +1k—1
; 1.18
oMkt Nk < (S(k—l)) _ ’ 19

1
p PRUk | mktak B . 4.
My nx > 2 (1-19)
and
1 -

lar:i gi mk+nk <—8§1-C-, where 1l < j < k—1. (4.20)

Let us now introduce the matrix b = (b,q) € Iy; as follows
1
[ = [ = = 1: 2, el
byp = { g’ IONP = P 4= g k .

0 , otherwise,

It is easily verified that @ = (am,) & 8 where
U = 2% Z 8P4 by, for all m,n > 0.

ptq >0 ™7
Indeed, .
. . 1 1
I . lmk+q_1< >_Jl__ s Prdk mk+m_a —]' T §MU mk+nk
millic | = 92| mrnk Mk Ok pid;
i<k
1
—| =4 Pj Qi b mk+nk
Mk Dk Pj g -
i>k
.>i_(k—-1)e_ g =i,
4 8k 8k 8

for all k¥ > 1. Hence we arrive at a contradiction and the result follows,
On similar lines, we can prove the following result:
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Theorem 4.21: Let (4.1)be frue for b& Iy, Then a = (am) € dif and only if
_ . ,

sPAmTE ' | (4.22)

mn

uniformly in p, q and m, n; where M is a posifive constant,
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