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%, ‘ Introduction

Let a function £(.): [0, =) = (D, o) and a number 51.‘> 0 be given: A func-
tion @{.): [0, o) = R is called X, a-generalized periodic function (&, a-g.p.f.)iff
x(h(t)) = ax(l), Vi€ [0, =) = .. (0.1)
We denote the class of all &, a-g.p.f. by &, «-GPF. In the paragraphs II
and IIT we will only LO[)S!dCI‘ the continnous functions.
Lel z(#) = I(t) — 1. Then (0. 1) may be wrilten in the form
x(t + () = ax(d), Vi€ R,.

_ r() is called a function- period of x(.). Thus, a g.p.f. (g.p.oscillation) is different
~ from the ordinary periodic function {(a = 1, 'c(z') == 7 = const) in that its « period » -

changes in lime and the difference of the values of amplitudes in Lhe correspon-
ding points is defined in the coefficient a.

Let us denote k(k(..(k(0)..)) = &0y, v = 1, 2,5 kol = 15 Vo) =1, ;

v lim(,s
[kv! kv+1) = Kvo el — k = l

For simplicity we will only consider the function &(.) having the following
property,

k= Propei’f'y

1 k() € C(R,), k(D) > 0.

2. If t is increasing from k, ; io k,, then k(f) is increasing (rom k, to k&, .4,
~for every v > 1. Hence there exisis the inverse function' h(.) of k(.).

3. There exists the derivative /’(f) > 0 for every

. t€RN{k,, v=0,1,2..] AW >0V [k, )\ [k, v =1, 2. ]).

The sindy of the class k., a-GPF has a greal importance because we have
different classes of functions which are periodic in different sense if k() and o
are chosen 1o be different. Partly, taking a = 1, k() = t-+ 7, we get the case of
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ordinary periodic oscillations; if 1,,, >, aid 0 < ¢ < 1, we have the vscillations
relarded in time and damped in amplitude. This class, as we will see laler in
§§1, III, extends our knowledge on some classic questions, for example, on the
totally contlinuity of functions of the class L, (Lemma 3.1). Besides that (see §§ 11,
IV) it turns out that this class is independent of all well-known classes of periodic
or almost periodic funclions. We note that Fk, a-g.p.f". s were studied and used in
{1](« = 1, with the viewpoint of generalization of the Floquet theory).

N
§1. THE UNIFORM CONTINUITY OF G.P.F.

It is clear that a continuous periodic [unclion (in usual sense) is continuous
in R,. This problem is not so simple for k, a-g.p.f. ’s. Note lhat the region D, of
definition of a k, a-g.p.f. () is nol always coincident with R, (D = [0, L),
L= 3 1,). That is why when speaking of uniform conlinuily of x(.), we have to

Vv
consider the uniform continuity on D,.

Theorem 1. 1. Ak a-g.p.f. is uniformly continuous if al least one of the
following conditions is satisfied :

a) 0 <Ca<l.

b) a =1 and PN ENY for every v = 1,2,... ; where ¥ = inf  (KWV]y (s).
: s € (0.k1)

¢y o > 1 and Ih[v] (&) — Ii[“”} (fa) | << 30 (8/a”) for every pair 1, t» &€ K,
h— ] <Y, 8,(h T, 270, Vv, where §_ (g) = sdbp fo>0: [fs)— f(s2)] < &,
|V 51, 52 € Ky, [s1—s|<T 6} .

d) & () € Lip (K,) and *' (Y < 4 < oo, Wy,

Proof. We prove, for example, lhe case c). Lel x (.) == const. Choose g, > 0
such that &, () < L. Then I, 2> 7 6, (¢,), Yv=1,2,.. since on the conlrary for those
v for which I, << 7 3, (e} < T, 8, (&) we should have

| o= W) — WYy < 3, (eofe”) <5, ()
- (because of the condition ¢) and the monotony of function &, (.)), that isa contra-

diction with the choosing of «,.

For ¢ > 0 let 6 (¢) = min [ 85 (2.), T 0 (€,), T b, (€) J. Now if [t; — fg} < 8 (c-;),
then only two following chses are possible: or #; and #; belong o the same interval

K, ort € Ky, £ € Kyy1. Let 1 € K, and & € K,.Since || — 1| < 7 8, () <<V, 8, (e),

Irom c¢) we have
| [R5 (1) — WY () | <3 (/).

Therefore from the definition of 3, (c) we get

|2 (6) — @ ()] = o |2 (A1) ) — z () I <o, f— =&,
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it 15 & -Kg and ts & Kv+1!'lhen Ix(tl) - x(tz}l "‘<\ lx(fl) — X (kv-rl)l +
+ T (Ry) — ® (1) | < 26.
The point ¢) is proved. The proofs of b) and d) are analogous, a) is obvious
Q.E.D.

¥

ol Theorem 1.2, A k, « ~ g. p f.z x () is not uniformly centinuous in fthe
following cases:
a) o« = 1 and inf [, = 0.
b) & > 1 and k[ ¥ < k << 4 o for some sequence ¥y, Va, sy Viy ey '
T = sup (dy ).
sk,
Proof. The point a) is clear. Let us consider b) For every 6 > 0 there exist
s; and sy € K, such that | s, — 55 | < 8/k and Ac{sy, 8] =] 2 (s1) — & (s2) | > 0.
!
¥ Choose v; so large that o A {51, 82] > 1and put f;= kil (s j=1,2. Then

though
[ ti—to ] = GV |8y = | < k86— 521 <o,
we have | x(h) — T (fy) | = a¥i Ay [s1 8] > L -
Thus x (.) cannoi be uniformly continuous. Q.E. D.
From the theorems proved above the question arises: It is possible or not to

introduce a eoncept of uniform continuily so that any k, a-g. p. [. will be uniformly

continuous ?
&

Definition 1, 1. Let a function & () have the k-property. A function f (.):
y{ [0, L] - R is called k-uniformly continuous (k-u. c. f.) iff for every & >> 0 there
exists & > 0 such that | f (f) — f(fp) | << e for every pair &, tr, 4 € Ky b € Ky

(e>V), | fo— b | <band | t; — BB~V | < s kT, (1.1
The class of all k-u.c.f. is denoted by k-UC.

Theorem 1. 3. For anij ¢ < « < 1 we have k, a-GPF C k-UC.

Proof. It is clear that the class UC of all uniformly continuous funclions
belongs to k-UC for any k(). Therefore we must only consider the case « =1
(because we have k, a-GPF ¢ UC for any 0 < a <1).

: For an arbitrary >0 we choose >0 so that [x(s;) — a:(52)|<s for every
j] pair sy, s¢ € K, |51 — $21 <7 6. Let &, £, be arbitrary points, for which 0<{t; —£;<(é
and (1.1) holds. Then Al¥1(#) € K., hl¥)t) € K, and ‘
]
AT — W | = ¥y -t — BT Ve | < ] n —-h[“‘”“”](tg)| <
" because of (1.1), where t € K,. Hence for the chosen values of § we get
| o) — a(tz) | = | s(AVNt)) — chlblt)) | < e Q.E.D.
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§ II. THE CONNECTION WITH THE CLASSES
APF AND AAPF

I is possible tn show that the class %, o-GPF intersects all well-known
classes of periodic or almost periodic functions such as the class APF of almost
periodic functions defined by Bohn (see [2]), the class AAPF of asvmpt -lic al-
most periodic [unclions defined by Frechet (see [3]), the class of gt - periodie
functions defined by Massera (see[4]}, the class of semiperiodic funclions (see[3]),...

For example, we will consider iwo cases the connection between £, a-GPF
and APF, and between %, o-GPF and AAPF.

It is possible to consider F, a~g.p.f".s of more general form, but for sim-
plicily we often take %, a-g.p.fs of ihe following form F.1 For ¢ € K,

‘ l
k(zl) m _lj:l_ (t —_ ]1'\,) ”+' ]‘-V‘:_l

. I ‘
(then HE50) = 22 (¢ k) 4k, Vv, .

Farthermore we suppose L — Lo,
7 Theorem 2- ].. a) I;‘OF 0 < o :f'_—; 1 a ]“’ o _g“ p.[" ;1:(.) (.L‘(.) $ 0) haﬂﬂot bg
almost periodic. :

b) Let o = 1. If q k. a-g.p.f. x(.) of form F. ¢ belongs to the class APF,

—

then inf I, >0 and for each v = 0, 1, 2, ... there exists a sequence i(V), i = 7, oo,
v
i) > v Vi and Li(v) > L, when i = oo,

Proof. a) Lel 0 <o < 1. Since z{.) == 0 there exists {, € K, such that
x(1,) = 0; for example, r(l,) = 2, > 0. We take & — ¥o/2 and chuose v as large
thal () <& for ¢ > k,. Then in [k, ~ 1o =) lhere exists no e-almost period
because for any ! & [k, — lyo o) we have |a(t, 4- 1) — (f) | > x(t,) — e > 2,12
This shows. x(.) cannot be almost periodic, The case o = | may be proved
analogously.

6
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by Il inf I, =0 then x(.) cannot even be uniformly continuous, consequently
v ,

z(.) € APF. ,

Suppose. the condilion (2.1) is not satisfied, Thal is there exists v, that
satisfies |1, — I,y > 8 > 0 for any v > v,

Give & > 0 and lel &, (¢) be the maximal number such that

1'75(1‘"\-04—1—?\*0) | =1 (]‘-\-.“*‘Kvu)[gs o
(Evo (e) — 0 when e — 0). Furthermore put 6(s) = min !}:\,0 + I(g) — K, | where X&)
_ o w>v,

is a sufficiently large ¢ — almost peoriod. We also have #(g) — 0 when & — 0.
Indeed, assume 8(g} = }c% — (kvo + l&)). We have [ (1{\’0 4~ 8(g)) — T (‘l"vo -+
4 &(e) + (&)} | = l:r,(lcvo 4 8(8)) — x(kun) | == [:c(k\,o + 8(e)) | < e From this it fol-
lows that 8(s) <C 3, (&) —» 0 when g — 0. :

Then, put 6, =11, — lvu ', Suppose k"a 4 I(e) = k, for some ¥ and I, > I,,D_
we have . .
| wk, +1) — xk, 41+ HEN | = | 2(kyn — 6y) | < e

Bul x(k, 1 — 8y) = :v(h[""—"o] tkysr — 6,)). The interval (kv — 8,0 Kyul of length

. l
6, goes into Lhe interval Ky +1 = Byu,, ]{voﬂ] of length 6,y = Iv" o, by the map-

- _ ! L,
ping AV —Vel (.). Therefore byy <oy, f.c. by = (h—1L) =

" L, _

However. [, > I, 4 o, hence [rom this it follows that [ (1 Ty v—; 3 ) =
0 ° vD

e

8l ;
= Iv,,::'ob < 6\._0, whiqh cannot be when g — 0 (6\,0 — 0).

This means that (.) could not be almosl periodic.

The case ky + I(g) = k, + 8(s) is proved analogously we must only note
that in this case there will be &, 4 &(s) instead of &, where #(g) — 0 when

g — 0. Q.E.D.

Theorem 2. 2. a) For 0 << o < 1 we have k, a- GPF C AAPF, Ifa > 1
then a k, a — g. p. [, () € AAPF (2() = 0) by Let « = 1 and suppose that there
ewists v such that 11, — by | <4 o= Then k, a-GPF C AAPF.

Proof. a) This point is proved analogously as Theorem 1.1a).

a) Taking into account the asymptotic condition in the definition of the
class AAPF, it is sufficient to consider the values f > k\,o. Let & > 0 be arbitrary
and choose &8(g) > 0 such that| x(f) - x(fa) | < /2 for every pair 4, b € K,,
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L=l 6 — 1y < 6. For this & there exists an mteger i(s) such that = {l-
vo1

—_ lv0| < 8/2. Then we have | x(? + al, ) — z(f) | <& for any t >k and n= 1,2,...

This follows from the following remark: - -
Suppose 'k, 4+ nly — Ky |+ 1L =1, |+ lha—=L i+ 15 -1 |+
+ M =1, <C8/2 !

(thanks to the condition b) for every n and i there a!way‘s exists such j). Then
pa(t +al ) — x(f) | < e for every t € K,

Indeed, for example, suppose

k.f - (kl + nlvo) =a > Ov Ivo- Ii =‘a2 > 0. Ij~.1"_" iv(}:—-. gy > 09 Ij - 1,0'—"- €y > O:

bt = b= 0> 0, L <Ly <l < <l  t € [k ks + @] then f + nl, € {k—
—a, kL 2t =z (Y @), 2¢ + nl,) = o@li~V= ¢ + nl, ).

We have .hil_'v"](t)e [}:v cky, o+ I‘IV., ay }‘, where
o " i .
l\;o l\!' .aﬂ B
\ T == —mﬂ a; == (l + lvo'_—a;) ap < 2a; < &

(a2 is sufficiently small). Hence
x(h[‘ Sy | =] 2y —xiky,) | < o

Ly the manner of choosing & . Analogously 'm(hb v°—1](i+nlvo)| > xly .
Consequently |z (t+nly )—= (i)| < &

The remained interval [Ai+a1-k1+[] is also considered by the manner of
‘uupping two points £ and ¢ 4 nly_ into ky_and comparing the distance between

two corresponding images. Q. E. D.

The Iollowing example shows that there exist the £, a-g. p, {*. s not belon-
ging to AAPF, Suppose x(.) has the 1orm F.1 and {v;} is a sequence tor which
Vi — Vi_i ~» oo when i —» oo, v; > 0.

Putting I, = + &, i = 1,2,.., and all the other intervals equal to I, we
geot the desired function,

Irldeed, all the s-almost periods I(s) have to tend to nl when g-»0. Then,
: v -
however, since vi—v;_j—»oe ( 2“: Iv — os), When i — oo for every arbilrary large l(z)
Y=V¥i_3 ‘
there always exists i such that

Exaf\,i + Ue) — (k) | = | = (4—¢, - min (nl — z(e))|'-»! m(z—e,)lwhen g = 0,
n

This shows that for sufficiently small € >>0 there is no e-almost (asymp-
totic) period I(g).

3 , h n
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§Iil. THE TOTAL CONTINUITY OF FUNCTIONS OF THE CLASS Lp‘\ k, % — GPF -

First we intrqduce the following concept generalizing that of total contmul-
ty of functions of the class L, (see [6]).

¥ Let us fix a subset A of the set C [0, T].

Definition 3. 1. We say that a functlon pl) € L, {0, T} is A,ﬁ-to-iall'y
conlmuous m [0, T iff '

f|f(t+a (&) — () |"dtp — 0 when [ 5() ] ¢=0, 5(J€A (f()=0 for (€ {0, T] ).

For example, if A = C[0,T] then any A,p-lotally continuous function is
lotally continuous (in usual sense), but not reversely. o -

We denole the set of all A, p-totally continuous functions in [0,T] by
A, p-C, [0,T).

fn—

In what follows we only need the following class
A=|s¢)€ C:infa(®)> 0,38 () and
. t '

I V<YM LK<T<+ = Vi
(¥ and § are general for whole class A). This A corresponds to the class of func-
tions. ¢ (1) = t + 8(1) for which mf @~ >0, J 7 () and
0<r t(f)<r.<°° L.
\{ Speaking about A, we will mean Lhe very this class.

Lemma 3. 1. The following correlation holds
L, [0, T] > A, p-G [0, T]

Proof We use the same arguments asin [6]. Wt, must show the following:

for apy €0 there exists §.>>0 such that f[f(t + 8 (t)) — f(t) |Pdt < e for every

8() € A and H()Ilc<esE

From absolute continuity of Lebesgue mtegral for arbitrary & > 0 thers
exists §; > 0 such that for every measurable subset e ¢ [0, T'], mese << 81, we have

f V() P.dt < e/M (the numher M will be fixed below).

e

We set t(f) = £ 4 §(t) and denote the inverse function of 7(.) by 7(.). Frem
e deflmhon of A is follows that

O <M<Y <+ Ve



Therefore f e+ 8(t)) Pdl = f |f.(t(i) Y IPdE -

= [irorvod <w [ iford S :
e} T{e) &

(the formula of substitution of the argument in an integral on a mieasurable sel
may be established by approximaling Lhe given set by open sets and representing
these sets by union of denumerable number of open inlervals, then applying the *
well-known formula of substitution of the argument in the inlegral on every Lhis
“interval). ,

However, mes 1(e) = r M) dt <t . mes e. Consequently, laking &, =

b

e
= min (8;/7 . 8;), we get ~ 7
J' If(0) Pt << o/M, _"lf(t S P dt < TIM .k,

e [ " ‘ ;}

where ¢ is an arbilrary m'easurable set, e C {o, T], mese < &2 and 8(.) € A.
Sincé f(.) € L, C L, by the Luzin's theorem there exists a closed st Fclo,T]
such that mes ([0, ')\ F) <C min (¢3, 62 /7) and f,r (.)€ C(F).Hence for >0 the-

: i 1
re exists 63> 0 such that |f(4) — f{t)| < (&/M)¥ for every pair f, I, € F,
fy — I} < bg.
Now we put 6. = min | 62, 83} and let 8(.) be an arbitrary function from
A () e < 8g. Applying the Cauchy — Bunhiakowski inequalily. we get
T T—8g ~ T T )5.
[irrasomr—rova = [ .4+ [ .< [+ [+ ].< :
0o

0 T=d2 FA[o,T~d2] [o, TINF T—b,
1

<[+ e (6 )T
Fi |, Fs

where

: Fi={t € Fni0, T—sl:t+s() €F},

| Fy = (F A0, T — 85])\F;.

Note that
mes Fy < mes ft:1(f) € [0, T} \ F} = mesn ([0, T]\ F) =

— [' N dt < 7 .mes ([0, T} \ F) < o,

[o. TI\ F

by the way of choosing F. Therefore
. . \

1
J[' it + 8(1)) — fFOP dt < [(e/M)'ﬁ* + (e. n'/M)“ff] .
Fg
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At last, since for f &€ Fy C F, {4 6(f) also belongs to F and | #(¢)| < 6, we have
[ira+so) —rora<em.T.

"1
. 1 S
'I’husf;f(ur SN — () Fdi < e/M T4+3 [(E,M) P (e.niM) e ]f’ =
Q

-7 (T +30 +‘n’?>f’£ <e
if M has been choscn sufflmentl} large. Q.E. D
As in [7} we inlroduce.
Definition 3.2. A function f(.): R— R, fl . T](.) & L,{—T, T} for any
{ixed finite T, is called p-iolally continuous (p-t.c.f) on R iff
: T
lim ? lim sup-;l? [f(E+ 6)-—f(f)l[’df§‘z 0.

d—») Ted>oa &
—T

- We denote the set of all p-t.ef’s on R b_‘, p-Co (). The set p-C, (R) is defined

T
in the same way (When there is an inte'gral%-J‘ instead of—--“
o]

Al last we specify the general definilion for class L.

Definitien 3.3'. A function x(.): R, — R is called Ly, &, a—generalize\d perio-
die (L;, &k, a—g.p.f.) iff :1:] ()& L, (K,) forevery v=0, 1,2,... and x(i(t)) = x(?)
Ky
for a.e. t € R,.
In the case &« = 1 we will also consider such functions ®(.): R — R.
The class of all L,, k, a-g.p.f*.s is denoted by L,, k, «-GPF.

Theorem 3.1. Assmﬁe 0<<l' (Ic[v])’(t) < < o, Vi€ Ko,.
I m—1
v=20, 1, (dea AZlv,Vm.—12 , A < os,
v=0
Then L,, £, a—GPF (B, C p-Cl(R+).
(T'his alse holds int the case R).

Proof. We first note that I, = %[k — &1¥)0) = &Vl (). 1, > £ 1, 10,
Vv =0, 1, 2. '
For & >0 let 8;(2) and 8s(s) be the posilive numbers corresponding to & in

the definitions-of A, p-t.c.f. and of absolute continuity of Lebesgue integral for
()it on K.
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Put é(g) = min [1/2 d1(e) k', 62(E)A } and let 0 << 6 << 8(e). Then (llm <T < Aml)

km,1
J(T, ) = - I;x(f-}—é)—x(t);l’d \\:%J- =
0—
[ kvs1 . m Kva—8 Ly .
Tz fﬁéo?f- NIRE
k, kv k,,1—b
kv1+6 A kyeq _1_
J. |:n(t)|1’dt Ty J'|xm|l’ dt P
' kya—o

+Fap f |2 T ) 4 0)) — @ | at
Q \, . ¥
- Note that the interval of length s in K, goes into the interval of length
< 8/k" < 8y in K, by mapping hlY]()). Therefore

k\q,‘l"i'é ]‘-v+1
lx(f) P dt < el ek, [y e dt < P ek
- ky+l . ) kv+1—6

Moreover, since
| AR217284 TP — == hal¥ ey + ) ~ A0V () =

=o. lly D <ok < s,
from the way of choosing & we have’

k1 '
.”x(hm &l sy — a:(t)l" di < e

{pay 0&11 attention on the fact that here the function h[”](ki"](.) <+ &) belongs the
class

N .

m .
Z 331‘_’0:1"’-1— gl el (1 + a)l\i

Thus I, 8 < -lf ‘

] m m
Lek . D aP e _11 I AR
T 32 = . v=o

Therefore

o
=
o

B

lim limsup J(T, 8) = 6.

d=—rpg T—woe

i2

f
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iiemark, In the case 0 < & < 1the conditions of the Theotem 3.1 are satiss
fied-immediately. For o = 1 these conditions have thé form

m-- 1 m--1,

—— A oo,
m—1 < ml <4<
21

v={

hence they also hold.

In order to prove Theorem 3.2 we have now

Lemma 3.2. a) Let f(.) € L,[0, T] and exist two intervals Uy, Us (arbitrary
small)C[0, T} such that F(t:y == (1) for a.e. h&€l; and H,Ee, €U, mes e > 6,
T

Then - . f |1+ @) — 1ty PPt + 0
| . ,

for any 8(.YEA, |[8(.) |c is sufficiently small.
b) Assume there exists an interval UC[0, T}, in which f(.) € C' and () ==
== const. Then Jg > c§p+1 for any s() €A, 0o <o) <o, b is sufficiently

small (This means that the lower bound of Jg may be taken independently of
very &(.), but only by its lower bound),

Proef. a) Suppose the statement don’t hold.
Let exist a setiqence 62(.) € A, [16,()jlc =0 when n— o and Jgn = (. Put
[N] [if ¢

n n

A1l

=T, where 1 a7

(0 =+ 8y(t). Then 0=l < (W s
max [rE].u— ';E:'Tl]

| < b
Jil

From 0T \ 1Gt) — [l dt e 15 =0
1 ‘

A1
! : n

it follows that f('rEli](t)) == f(¢) for a.e. fE[O,‘ ;S}], ie. f('r[i_ﬂ(t)) = f(f) =

=fora.e. te 1Y, rm], i>].
Choose n such that 6, << min fal;, dU,} (for example, suppose Uy < U).

Then there exist i and j such that

mes e o, G g, ol +p >0,

13



-3.2b) on K. and moreover sup L=

< Webave 6oy pin tor ace. t e o7l ALl

This is a contradiction with' the condition of the. Lemma, because if 2, & ey
then f(t,) == f(1)) for a.e. el

b) From the condilion it follo“s that there exists an inlerval V¢ 7 in which
()] > ¢ > 0. Choose § 6 sufficiently small so that v contains at least two inier-
vals [ El 1] T[i]], [T[[J. T[1+1]

. For every s¢) salisfying the: condition of the
Lemma we have : .

. il
{1rco ~ropars A F@r pswp ars et grp,
o 1:[i—l]
Theorem 3.2, Suppose a Ly, k, a-g. pf.oxl.) m/mfws the condz{mn of Lemma
o m—{
2o

0

111

21
v=10

= oo, T'hen :L()E P"Cl (R+)

Proof. For sufficiently small 50 we have
g kn:

J(T §) = T“x(ﬂ-a)—-xm LT 7155 -

(43 8]
™ _ 1 m—j I(V_F'I 1 m—1 ]{-\q_f_‘l-(‘!
-7 Z | 5> | w0z >
] Ve 1 V=)

kyp \ ky :
n— h[v](l{v+1_6)

> K —11-— 2o’ 5 [z (AlY] (k{"](t)-{-é))—-—:r(mp dt
Y=0 ' -

a3

Note that alv] (f{v_*_l——é) tends to Ay uniformly in v when 6 -»0 (since
— Alv] ey —8) = 11["1(1cv+ )~ Al Gypg— o=@y @ .5 < 8k, V).,

Consuier the functions ht"](t) = Ay o 8, teK,.

‘We have h["J &Vl koo =80 = h[‘*](flwl) =k (hg“ly(r) >0, Yy, £

WYk ”(r)) + 8~ = AT (Il gy 2 plv] (1:5"1(0) =@lVly @ .
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Conseqhently 8/ % < flg"jl (r—t< é/{c_;.
Therefore by Lemma 3.2b) we get
o, —6 -
S‘ Ix(hgﬂ(f)) — x(z‘))r dt > sl ¥ P
: .

(here s may be taken = 8/k’) and

m—1 m
JT, ) > et P 2 a"P 1> L,

v=90 V=0
From the condition of the Theorem it follws that lim supJ (T, 8) =0 for
' : T—spo
every sufficiently small § > 0. Q. E. D.

§1V. THE CONNECTION WITH TRE CLASS DP-APF (BP-APF)

: For convenience we give the following definition that belongs to R. Doss
(seel7]). :

Definition 4 1. A function x () : R—R of class L, is called DP-almost
periodic (DP-a . p . f.} iff three following coditions are satisfied :

T
: . 1
1 lim su lim x(f+8) — x(t Pd!(=0;
) im sup 4 2T .fl (t+8) — x(t) |
_ ‘ -T
2) for every e > 0 there exists a relatively dense set of z-almost periods
v for which '

H
i ]

T
lim E%"—j[x(t+1) — )P di <s;
-T

3) for every a>0 we can construct a periodic [unction x.(.) with period
¢ for which

p
{ n—1 -
Hm lim sup ~ J. — 5 x(l 4 va) = x.(f) l it i = .
n—-oo _ T—> oo 2T n 3&0 .
~T

In [7] R. Doss had proved that the class DP-APF of all DP-a.p.f.s coincides
with the eclass BP-APF of all almost periodie functions defined by Besicoviich
(see T8]). - -
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C We will consider the (lunctions ©(.) € Ly, k, l-a.pf. Having the follo.
w mg form (I'ig.2). .
(That is Fig. 1in which thereis onlv one inierval I, = [ + &, and all others, inclu-
. ding the intervals on the negativé semiaxis, are equal o D

| ~ Theorem 4.1. Suppose a Ly.k, I-a.p.l. x(.) has the jorm'as in Fig.2. Then
- x(.) € DP-APF.

Proof. From Theorem 3; 1 we can see that the propentles 1) and 2) in
definition 4.1 are satisfied. We now verify 3).

Taking a = [, we whould get
T

lim — LS ! it
im -— ' x4+ — xt dt-0,
T-,WQF J‘ i !Z (+ ) i) e
S =T - v=0
where x,(.) i5 a periodic fanetion with period [
Choosing T = ml 4+ 6 ,m > 2, we have
) T p | ml4é
— w(t-+vl) — xi(f dt » ——— - =
T_H z ) = o) | At > s j
—F : al+b
316 P
_ m—Z ’
() — a1 (£ dt .
2(ml—{—é) J. W= ® ‘
o6 .

It follows lhal x,(f) = x(t) for ae f & [21 + 8, o). But my(.) is a periodic
function with period [, consequently xy(f) must differ from xz(f) at least on' a sel
of positive measure which is contained in [—101 Therefore for any n, takmg
T = ml, m > n, we have
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1 L ! T +vl) — 2,8 ’ 1t | 1 [ ;
) [T Z e | ws g [
=T V=0 —ml
. | —nl - P 0 p
= 1 T(t) — @ (¢ If = 0 l H—xif 1t
T Tomi _[ ‘ =@ ] R fx{) wh|
—ml -1
1 [o] P R

This shows that the condition 3) cannotl hold. Q.E.D.

»

. We first study smoothness of function ().

In many casés we need the propertly that was mentioned in Theorem 3.1, Le,

§V. SMOOTHNESS OF FUNCGTIONS OF CLASS APF |

7

O<k <u,Vly iy < <Toee, Vv =1,2,.., 1 €K, or even more: in every

intérval

K, we can put o

Kt = &, (0<Cinf Ky, <Csup by <Tee, Ol by, < es).
v v v

J( The following example shows that the class of these functions is sufficently
" wide. ‘ :

~

X

Take _

ci for t & {ki_; 4 &+

RY ]fi —_— (5_1.}:
c: for t € [k + oty ki — Ik

k() =
( interval connecting two poinis [A; — 57, ci]

and [& + br, crllor i & [k — 67, ki + ér ]

s -

where b:it are sufficiently small, 0 < ipf ¢t < sup‘c:it <Tee, 01l ¢t << oo,
i i

i i
i

: t
Pulling I(t) = k) + fk’(s)d.é, we have the desired function,

W

two hori

solve thi

2-ACTY

e can also point out such functions k() from hc class C=, i. c. connect
zontal semilines so that the reccived curve belongs to €=. In fact, we
s problem for two arbitrary semilines. T( is obvious. that we' must only
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consider the case when one of these semilines is horizontal. For example, wo
must conneet two semilines y=10, x<{~1 and y=x, £ >1 so that the mentioned
above requirements are satislied. Consider the following lunction

: 1
It = { EXp(tﬁ—-iM)’ IS
0. 14> 12

it i1s well-known that f(.) &€ C>. Therefore the convolution ¢ % fi.) € €
() will be fixed below). Take

F{x) = (cx) . ((p % ) (x) = cx. f o) ft — 2y di = cx. ‘ oll) f(f — ) dt.

R -zl <1y2
It is.clear that F(x) = 0 for s -1 F() € C~.

Put nowog(f) = 1 for { > 1/2 and o(f) > 0. V& Then for x > 1 we have

, 1/2
Fx) = cx . f fu—ayat=cs. [ d.
-] <1/o R
172 :
Hence, taking ¢! = f [(t)dt, we conclude that F()is the connecting [unction,
—1/2

2. Assume [(.) is sufficiently smooth. We study 'no‘w smoothness of a £,
x — a.p.. (). Clearly we must only pay our atlenlion on the points k; = Klil (0).
We bave .
7 (k) = lim —m)f—];(.jiil: tim YO0 @) = ) o2
— A t—ki—0 [0 )~k ). (dli-1ly )

P—ki—0
where te(hli=1 @), k).

Since -k — de Al o L, — 0 we gel

fothy == (ky).

a1

(li=tly hyy -
Analogously o
&
:.. Ir\',' = !(0 T
f ( ) f+ ) (]{[1]),(0)
For f(.) € C' at the point t = k; il is sufficient and necessary that
[0y - Ry (0) = af 0y (= 1y (). (3.1)
Considering fl k. (), we see Lhat (5.1) is equivalent to
it
[1 ]f’(ff[\;}(O))
Otf'(O) _ V—o
Py — i-2
. [T ke Wg0y)
H=o

= (0),
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i, Py = —2 f( ). (5.2)
For sludvmg the derwdlwes of hrghu orders we pul f () f 1)() We ha
il ; fty — [k . —
d £—>l(t) E— Kt ot (L =D.KE)
where ‘i" = h(1), & is between { and 7.
From this it follows that
finhby = o fm( J. (5.3)

This explains Why a condition of fOI m ¢3.3) is often presént in L, 4 g.p:
differential systems of the first order, .
We can also prove that

ve

. ' n—1
' faykidy) = Fiy(t) Z H (f)/‘( Wi,
J ] (lt) g n-
\ g ’

where
1 1 * 1 (v
Ho ()= H, (= (——), ... (-— '
v ( ) v ‘(]f’(i) (If\’(t) ) (1\-’(!)) )

§ VI. NORMALIZATION OF SPACES GPF AND Ly~GPF
1. Clearly in the space GPF we can consider Lbe norm
I/ =max]f(H)] = max (D], (@ =1)

1€ Ry K,

In general, every norm defined in GPF may be extended on whole R,. In

K,

“‘s"‘ the defined above norm k-UC (see Del.1, 1) isa closed set in C,and k&, a-GPF is a

closed setin k-UC, : ) .
2. We can define the following seminorms in Ly-GPF (a=1)

. r
171 = lim sup— J' r@e e,
. T—rtoe .

n-—1 kv-H

1n- ‘
1715 = lim sup— 5 J' IF @ d.
n""“°° . V= O
k,
n—} s
X 2. kvl ‘ '
If im sup¥=® ____ ~ 0, thén the seminorm I.Jh will be a norm,
n—+oe Z L,

Vo

If lim

n—»ee fn

Z k["’] >0, then the seminorm |.{, will be a norm,
Vg ,




it follows immediately, it we note that for every T there exist-s fn such that
T € K, and then - ' '
; T S et Ryt
?I\f(t)\l’df> L > f If P dr, . |
=0 :
o ' z IV Y Iy ﬂi\
w=0

moreover
kyoa o ka
IF O df = j IF @y 1e. Ny @ dr
- kv [y ]

Theorem 6.1. Assume 0 < 1< (MY (0 <& < oo, Vv = 1.9, t € K, Then
both norms ||.|l; and |l. ||, are equivalent fo the norin

e =/j b

Kyl
Proof. It is.casy lo see that thanks lo the condition of the Theorem ol - 1le
and .1, are norms. ) . ‘ 3
We now prove, for example, || ~ .. ;
For cvery T there exists p such that 7 & K. We have

T | F o ,
I - b ,
;jiw)ll <5 [ rora=

0 =04,
e e 7
) N . ; . - . 1 1\' 3
T Zﬂj.l/'mll’. Gy ) dl <= (0 0 T) < it I

p= G

O .

i

(14 @—DF}

Analogously

- : .1 ke 1‘1 11
- Ilf(z’);”dt> jl/‘(ﬂl">~m‘-mﬂ-

T ke LA+ wk) ;

t1

Q0
From this the stalement of 1he Theorem foltows. Q.E.D.
’ Received,  ober 10", 1977.
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