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- L. INTRODUCTION.

There are two widely used models for the study of n-person games,
the strategic games (in the normal or extensive form) and the cooperalive games
(with or without side payments). ‘

In this paper we are concerned with cooperative games with multipayoffs.

We shall suppose that each player i has a finite set M(i) of eriteria and
~ that cach coalition S has a set of eriteria M(S) = U M.
: i€s
We denote by N = ft, 2., n} the set of players and we shall work in
a Euclidean space whose dimension is equal to the tolal number m of criteria
ol all players (m = carninalily of M(N)). Lel E™ he the Euclidean space of

dimension m and let EM) pe the subspace of £ made up of all poinfsze £m
wilh coordinales z; = 0 for al] igs M(S). '

« Itis not excluded that M) N M(j) <~ ¢ in which case side payments are
allowed between players i, J and some parls of players ullilities (represented

by vectors of EM®) 459 EM(J')) are transferable.

The cooperative games to be defined in this paper will generalize Neymann-
Morgenstern’ cooperative games with side paymenls. «(if M) N M(j)==¢ for
certain i, j) and also Aumann’ cooperative games withoul side payments
(0 M)y M(y= ¢ for every i, j). Note that if we extend Llhese games in
Aumann’s way to cooperative games with mullipayoffs without side paymenis,
then we shail oblain again a subclass of the games under consideration.

Fhus, these games with side paymenls will constitute an essential gene-
ralization of the cooperative games usually considered in game theory.
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The basic definition will be given in section 2. In section 3 we shail
eslablish for games with multipayoffs some assertions which in cooperative game
theory are well known. Some properiies of balanced games will be stndied in
the three last seclions. Here we shall show thal the cover of a game (N, v)
is the smallest tolally balanced game conlaining v and that the class of market
games with ultility functions coincides with the ciass of lotally balanced games
in which ©(5) is convex for each.S C N. Finaily, we shall establish the nonemp-
tiness of the core of a balanced game.

2. DEFINITIONS.

Denote by M = M(N) and E' \I(S) the nonnegative orthant of FM(S)

M are called payoff vectors of player i, and a veclor

MG,

Points ot of E

T = (x!, x%,..., V) whele xi € E" " is called a payoff vector. The characteristic
mapping of lhe game is the mapping that ‘associales to each S C N a subsel v(S)
of M)

We assume: o
b(S) = Cs — EMS)

~where Cg is a compact subset of S

A pair (N, v) is then called a cooperative game with multipayoffs.

let M c M ¢ M and AC A?M For the sake of convenience denote

Ay =4 X QM”\M" where 0M"’\M‘ is the orlgm of EM .LetPo(A) denote

the set of effeclive points of 4,1, ¢., lhe set of poinls z € A for which there is

no z€ A4 such that z' > z *).

_ A payoff vector x = (x',x%.., x") is said.to be individually rational if
xi& Po (6(i)) -[— E“(‘) for all i€ N, and group rational if there is no payoff

veclor y such thal y € v(N) and y>x%, where:
x = 2 ;]_‘i .
ey M
The set of imputation [(¥) is the sel of individually rational payoff
vectors x such thal = & (N},

‘ We shall dislinguish itwo important classes of cooperatlive games with
multlpayotfs

® I o, y€EM‘, then x <y means xy <y, for every v < M.



The first class corresponds to the ease M(S) = M for all $ ¢ N and con-
lains the wellknown Neumann-Morgenstern cooperative games as a subclass.
Actually, in this case we obtain the Von Neumann-Morgenslern multipayolfl
cooperalive games in which side paymenits are allowed and some parts of
ultililies are transferable. :

* A proper subelass of the above class consisls of games (N, v) with:

vS) = ag — E“,'I, ag e EM |
b ol

The second class corresponds lo the case M(i) n M(j) = ¢ for every pair
i,j€N, i + i We then oblain the cooperilive games without side payments
and wilh mullipayoffs which constitute a direct® generalization of Aumann
cooperalive games wilhout side payments. '

Let now x, y be payoff vectors. For § ¢ N we wrile x = y iff i > g
. . s ,

for all i€ § and =85 = g @)y (5) € 0(S), x>y iff &= y for some S C N.
is S

We say that y is dominated by = if x: y. Let K be a set of payoff
vectors. Just as in Neumann-Morgenstern theory a solution of K is by. definition
a subsel D of K such that no two members of D dominate each other, and
every member of K not in D is dominaled by sowne number of D. The core of
K (denoled by C(K)) is Lhe set of members of K nol dominated by any other
member of K. ' -

A solution of the game is a solution of I(v) and a core of the game is a
core of I{v). ’

3. SOME ELEMENTARY PROPERTIES.

_ Let [,(v) denote the set of group rational payoff vectors x such that
z € u(N). ‘ . '
Proposition 1. 4 solution of I(v) is a solution of I (v) and conversely. !
Proof. Let B be a solution of I(v), then I(v) = B + domB. Let x € B, If
% ¢= I (v) then there exists a payoff vector y such Lhal y>z and § € o(N).
Take (he pa_:yoff vector z = (7!, ... , z") where for each i € N, vEM(), zi ig
defined by: |

Il 4 @)y — (), | 1
AR Ry OY X

with ¥») = [i:v € M()].

Then (z),=(y), for each v€M,i. e, z =7 €o(N) and 7> 2, i.c..z: .
N

Thus z is an jimputation and z =~ x. But & €B hence Z€& B, i. e., there exisls
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an imputation "€ B and a subset § of N such that z' = z. Hence 2’ >z, 1. e.,
s’ s
z»xand"cedomb’ \

This coniradiction shows thal x € I, (v). Hence BCI (v). \Imeover, every
point of I(¥) not in B, is also a poinl of I(U) nol in B, therefore it is dominated
by some membm of B and no two members of B dominate cach other, i e.
3 is a solulion of [ (v). )

Conversely, let D be a solution of I(v). Then [ (v) = D 4- dom, (v) D,
‘ g
Obviously, D « I(v) and no two members of D dominale each other.

Let € I(v) \'I(v), Then Lhere is a payoff veclor y such that y € o(N)
and y - x. Consider now a payoff veclor z defined by (1). Then z is an imputation
and 7 2. Il 2 € [(v) (indéed, "=z ifzreDand 2 4=zif r & a.’omI (V)D).

N ‘ 8

If = € I(v)\ [, (v), then in Lhe same way as before starling from z we obtain
imputation z, such that z>- z, Continuing this procedure, we shall have two possi-

N .

bilities: either after a finite number of steps we obtain an imputation z*e€ D
and z*»-x, or we gel an infinile sequence of imputations (x. z, z1, ... ). Since
o(N)=Cy — E} with Cy compact, there exists z** & I(r) and zx—z**, z** -2z
N
for all k. Obkusly, z** el (v). Then we can choose an imputation z°€D(z%=z**
if z#* <D and z¥ s=z2%* if z#w edomI (v )D) such that z° ~ a. This" 1mphes

x €dom_, D and so I(v)-—-D e domD

I(v)
Proposition 2. If N= 1,2} and v(l)y + v(2y C »(1.2) then the game
has a unique solution, which is just the core of the game.

Proof. We have:

!

5 % € Po() + EN® =12
Iw) = | x = (a!, 22): .
Tyt Ty € (1, 2)

First, we shall show that:
CA@) = Io)N o = (o', 29 : x € w(1,2) ]

where 34 is the boundary of A. Indeed, the preference > and > being not de-
2

fined on I(v), we have only to conszder the preference »- on the set of impu-
tations. (1,2)

Let x be an imputation with x &€ int (1, 2). Then there exists y=(y'. y?

such that y'>x!, y?>a? ‘and y<(l, 2). Thus g&€o(l, 2) and g @, ie.
x & C({(v), hence the assertion,
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Sinee Ciz is a compact set, av(1, 2) is compact and Po(av(1,2))==¢. Further-
more, since Po(u(1)) 4+ Po(v(2)) C v(1, 2) there are vectors z € Po (av(1, 2)),
xle Po(v(1)), 2 &€ Po((2)) such thal :

a2
Ty FTy <L

A
If x\; + xh‘;‘ = z then g’ — ('L, %) € C(I(»)), On the olher hand, if
xl’é + xﬁ = z there is-an index v such that

(@'Y + (22)y < Zy. Now lake:

BT o itve MmN HE)
i | x;}+zv_ (::;,4-;::;;) if veM(l)nM(z;)
, 5 zy : 1. | it VN \ (t)
I P e LN M)

2
Then u! € 21 4 RI"_;{I, ezt Rfﬂ, u! + u?=z. This implies ue C(v)),
ie. CIw)) £ ¢.

Moreover if 4 is a solution of the game. then A = I(v)\dom A, hence
Cdw) = A and A + ¢.

Now we claim that 4 = C{(v)). Indeed, assume x € ANCUI(v)), i.e., there
exists a payoff vector ye& I{v) such that y > x. Then there is z € A such (hat zl>§)y-.
1,2 (1
since yg= A, Consequently, z» x, which is impossible.
1,2
Thus the game has a unique solution, which is just the core of the game.

Now we shall give & necessary condition for the nonemptiness of the
core analogous to.a well-known asserlion in [3,6]. B

For _eacli S ¢ N, define the characteristic vector of S, €5 € E" to-be:
.. 17if ieT
es(t) = Jo if 1T

A collection & of subsels S of N is said to be balanced
lo each § in J a non-negative number T(S) such that:

E T(S) eS = eN ) (2)
sed | :

The set of these T(S) is denoted by B(d).

Let J be a halanced collection of N,

if one can assign’
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Proposition 3. If C(I(u)) -+ &, then for each § € j, lhel'e_ exisls a veclor
uS€wv(S) such that us ¢ v(Sy—int (Eii_(s)) and for any T & B(J) the following
inclusion holds .

Y 1) )y € v(Y)
~ s€d

i’roof. Let = € C(I(v)). Then z' € Po(v(i)) + Ef(i) for all i & N and
x5 & v(S) — int (Ef_(s)) for each S ¢ N. Hence there are vectors us<sp(S) such
that uS < 5, It is easy to see that uS¢=p(S)—int (Ei{_(s)) and

Y NS uSy < X THE = ) T(S)( ¥ x;) = ) ( b T(S)) al =
S€J SE) s&l i€s - iI€EN\s€l '
=z & v(N).
Remark 1.In the N.M. game (N, v) with o(S) = a5 — EE,aSGEM’ we have
veclor us & a5 — (Ef) and u5$a5—int(E1_\]{), ie., uS &€ a5 — a(Ef).

When |M|=1. EM = E! the game (N, v) reduces to the classical N.M.
cooperalive game with »(S) = a5 — EL Then we shall have numbers u5 = a8
such that for each 7 < B(J)

= 1S)at << o).
sS€J

This is the well-known baldnced condition given in [3, 6].

4. THE COVER OF A GAME. , -

The notion of cover of a side payment game has been introduced by
Shaley and Shubik [8]. The cover of a game without side paymenls has been
considered by Billera [2]. Here we shall extend this notion to games with mul-
tipayoffs. '

Lel S ¢ N. Denote by B(S) the set of all balancing weights for Lalanced
collections on §, i.e,

B(S) = {r:zsﬁEgr: S 1T)=1alli ¢ S}
. TCS
TDi
where 28 = |T C §, T=f=¢a}.q

Let there be given a game with multipayoffs (N, v). For each T € B(S)
we define )

' vy = = WD) 0Ds)
TCS
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The cover of (N, v) is the game with multipayoffs (N, vy where the
mapping v is defined for each § C N by:
Sy = [Jfo:T € B(S)|.
Let B™(S) be the set of weights for minimal balanced colleclions on S, 1. e,
B™(S) = [V:B(S): fer | T(T) > 0} is linear independent}.
In [6] it has been proved that B(S)=conv B™(S) when B™(S) considered as
a subset of EQIS!—1 , where conv A is the convex hull of A.

Since B™(S)is a finile sel, we may denote { B™S) | =k and
. k
Pie=fo:a; 2 0, = oy = 1}
j=1

Proposition 4. For each § C N we have

7©®= U

: o i
acpk %Tee“‘(s) o

Proof. Indeed
U ) Aty % = U } ow% Y 1T T i%
acP* (YeB™(8) ~ *EP* (T€B™(®) TCS M(S)
; ( Y o, Ty o(T)
a& P {TCS \T€B™(S) _
% = oD (Mg %:: U v 8€BG)] = v (S).
8EB(S) (TCS

M(S) e =

Denote

T =

; 3 2 0 Cy %E

a€P* [ TERT®) ITCS

It is easy to see that T is compact (since o(T) =Cqp — Ei{(T) , with Gy compact)
and we have: , '
TS = Cs— BN

— i
Thus ¢ N, v ) is-also a game. .

EM(S)

Remark 2. If for each SC N, vg=0Cs— L with Cg convex and com- '

pact, then:
| 7 (S)y=conv | U vyt T € B

and 0 (8)= Cs— EE(S) with C 4 being also convex.

In the case M(D) =i forallie N MONM(j)=¢ for i & j, we gel pra-
position 3.1 in [2].

£
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A game (N, p) is said to be halanced if:
. p(N) = J o Ve Bt .
1t is totally balanced if for each SC N
v(8) = | J }vy : Te B
Theorem 1. (N, » ) is the smallest totally balanced game containing
(N, v ). '

Proof. Since the function Y° with V°(T) =11 T =5 and 7°(7) = 0 for

each 7' C 8§, T==5 i{s in B(S) we have for each S € N
p(S) = vy, Ty TEBS = v () b

Now we shall first show that ( N, v ) is totally balanced. It sulfices
{o verify the condition:

T =) TeBO)

where v, = > (T (v T)
TCS

Then v (8)= v,, since 7° & B(S).

M(S)

Conversely, for each x € B(S), since o(T)= ] fvs: 8 € B(T)], il follows
that for each y&v,, there are 81 € B(T) satisfying:

y= 2 T(T) (05, S ”‘%ST(T){Z 6T(U)U(U))M(S))

=U§S( %Umr ) aT(U))(g(U))M(S)

_UESAS(U y v(U DM(S)

where

As@) = ) T80 (l).
TCS
- ToU

We claim lhat Ag & B(S). Indeed for each i € S,
L A=Y (Y WD) s2(0)) =

Uucs UcsS TOU
Ui * Ui TcS
=¥ TD(Y. sl = 2 (T) =1
1S UcT TCS
TOU=i U=t IeT

since &p € B(T), 7 € B(S).
Thus gy &« 2_" Ay oUy= vy, i e,y € v(S). This implies v, C (S) for all

i “UCS
T € B(S).
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To complele the p100f it remains to show thal-if (N, u) is a tolally

balam,ed game with » C vC v, tth u v.

Indeed, if the reatncllon of v.to § is balanced, i. e., v(S) = v {Db;

6 € B(S) 1, then v(S) = p(S). ‘Therelore (N. vy is tolally balanced if and only if
v =5, Moreover, for each SN, v(S) € 5(S), which implies v, Cpo, = 2, T(T)
~ : TCS

(v (Mule) for each T & B(S) and hence

S) = v {ve 1 T € BE) C ufp,: 7 € BO] = vS) =0($). e v = .

5. THE MARKET WITH VECTOR-FUNCTIONS.,

Lef Z be a Hausdorff topological veclor space snd for each iéN. lel X'and
Yi be non-empty subsetls of Z which will be referred to as the consumplion and
production sets for i. For each agent i, Lhere are given an initial endowment

w' € X' — Y and vector-ultility function u!: X! — EQ() ‘where:
ui = {uv.X’—:-E, vEQ(l)l

The collection {(X1, ¥i, ui, wi), i€ N} is called a markel with veclor-funclions.

The class of markeis examined by Shapley [7] and Billera [2] can be
considered as a subelass of markets with vector-funciions when Q(i)=17 for
all i€ N.

As usnal we can associate to a market with vectorfunctions a cooperative
game with multipayoffs as follows. ' )

For each S ¢ N denole Q(S) = [ ] QD). =8 = (2, i € S) and
tES
i | ul@n for T € QM)
s P 0 ‘otherwise
We define: ,

Jz° v 2 g (@)
: ~ ) L cp®, Cigs QAS) :

V(S) =
. ( xier’JZ(xi_wi)ez Yi

We shall prove that the mapping V so defined is the churacteristie
mapping of a cooperative game w1th multipayoffs, which will be called the

markel game.
Proposivion 5. For each i € N, suppose thal:
iy X4, YT are compact, convex subsets of Z.

ii) u:’ : X35 F1is a concave, upper semicontinuous function for each Q).
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Then the corresponding markel game (N, v) is a cooperative game wilh
imultipayoffs, the characlerislic mapping of which is:

V(S) = Cg — EQ<S>

-

where Cy C PQ(S) is compacl and convex.

Proof. Il is easy to verify that V(S) is the projection on EQ®} of the set
As x -EQS) ~ Bs, where Ag is the projection on X! of the set
(@ P 1€8): 3 (@ —owi—y) =0, sic X, yevi}
i€s '
and
By ={(@% n): v < ua(s) (zH].
i€s

The assertion follows immedialely.

Theorem 2. A market game (N, V) is totally balanced.

Proof. ".Ve shall show that for each S ¥
Vi =u (VT e B(SH.
It is enough to verify that V., C V(8) for each 7 € B(S). Indeed, if »T € WV(T)
then there exists sz ={a':icT o' < € X1} such that

=2 @-vhe Z Y
€T i€T _
and

T i
UQ(S) < gT Q S)(x )

Hence for ¥ € B(S)

T%g () vQ 2 I (2 uQ(q, (m))-

= Z (= Tt @) < (@)
{€5 1Cs Q) le Q(S)
TSi

where i = > T(T) zi € Xi,
TCS
T2i

On the other hand we have yi € Yi such that:
S @)= > y' hence:

i€cs €T ‘ _
27N S @-w) =S (S g
TCS i€T . TCS iE€T
Stew= Syc ST :
i<S TiEs i<s -
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* vhere yi= Y 1yl
TCS
T=i
This shows that E ”l’(’.l’")vT
, TES Q(s) ’
proved that a markel game is totally balanced.

e V(S), ie., V, C V(S). Thus we have

Let (N, v) be a cooperative game with mullipayoffs. We associale to it
a market with vector functions in the following way. We choose a positive
number b, such that: _
Cs = [—b,. bo]"’(s) ¢ A where A= [—b,, D,]" since Cs is compact for each SCcN
For each i « N, let |
o Xis= A X {Op} C E™
s == conv( U (C)y X [—es]) U (Oe=, 0s2)) < EZH
SCN .
w= (0, &) = (0, 0) — (0, &) C Xt —Yyi
ul: o4 EM() defined for each z = {7, 7). i e Fa0) z &€ EN—M() by
ui{z)y = zi -
We thus obtain a markel with vector-functions generated by (N, v).

Theorem 3. Let (N, v) be a cooperalive game with multipayoffs, where
(g is convex [or each S ¢ N. If (N, V*) is a markel game cooresponding to
the market with vector-functions generated by (N, v), then V* =,

Proof.
1) For each S ¢ N we have:
| W eX, s B (ui(scf))mmz
. ies ‘
VHSy = (z € EM(8) : . \
T g emgenr |
icS : ieS :
Thus there are for each i &S, g+ Y, tiR < Oy aiR> 0, Z GiR =1
: : K RCN
such. that ‘
gi= L ahhu. =ed
© RON
But- xi = (xi, Ogn), = € A, —wi = (Opm, =€)
Hence ' a

Y (F, Opn) + @em, —e) = 2 ( L er(RM> —¢)
ic=8 ics RCN
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Aand

ces = 2 —ei= 2 {2 ap(—er) = 2 (L aRp) —en

_ T ieS RON RCN isS
Thus ai‘R > 0 implies R ¢ S and if we deline T(R) = E “R then we have
=8
Y=Y (¥ ai{) = Y ah=1,ic, T €BES
RCS . RCS i€s RCN
Rsi- R>i
and |
= Ya=L[L sty = L. 0. L (Y ok o)
s ics RCN - RCS T(R) o
TR)>0 :
Since (; is convex for each § ¢ N. we have:
Y E A OtR( ip.)“ €(CrRIM
' ies TR) .
2 @(@yey = L @ =
ics ies
with

Y @ € Y TR crmes) < ¥(S)
ies ReS
Thus z € ¥(S). i.e., V*S) < v(S).
2) Findl[y, we shall show that p(S) C V*S) for each S ¢ N. Indeed, let
z € v(S). Then there exists 22 &€ Cq such that z < 2.

Foreach v € M(S)denote M(v, S)= {j € §: v.€ M(j)] Wehave ] M(v SY| >
For each i € §, v € M define'the vector z! by

0 © v M)
xv = { <y M
oS T UM |
Since z” € Cg and (0, 0) € Yi hence (xi,'— ISSS l ) & Yi Thus (', OEn) €
Xi, (:;:i — —ei) € Yi and
S
2(xi,oEn)—-w‘ E(:v On)-—-—(O Z(a:",— _ )E ZYi
es ics ie=s I3 1c§
E(u’(x‘DM(S) P> (x‘)M(S) =2z |
1S 163 !
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Thus z €V*(S).i.c., (N.V*#)is a tolally balanced game containing {V, v},

., p CV* This implies V*=v.
Corollary. Evéry lolally balanced game with multipayffos, where Cs is
sonvex for each SC N, is a market game with vector-functions satisfying

sonditions i) and ii) of Proposition 5 and vice versa.

5. THE CORE OF A BALANCED GAME.
pNy= v [0, T E B(N)} and let

Let (N, i.:) be a balanced game, i.e.,
that (N, p) is totally halanced and

(N, v) beitscover. From section 4 we know
(S) € u(S) for each S C N.
Proposition 6. The core of (N, v) contains the core of (N, D).
Indeed, if for eaeh x € I(v) we denote
D(x) = {gel@®:3I N %i(yi)bi(S) € v(S)y es-'ﬂil'

then
Clw))= l»ﬂ E‘ I(w): D(x) = ?5}

But (i) = v(i) and o(N) = p(N) hence I(v) = I{ry and D (x) =
Cl () = o € (v): Dy(@) = ¢} >

iz € [(v): Dy (x) = $} = (o)

onves for each S € N. De-

D (x). Hence

, Now we consider a game (N, v) with #(8) conv
note by P the standard simplex in E7, ie. ~

PsipéEﬁ, va_"_‘_ll
v

e nonempliness of the core of a balanced game by an

We shall prove tl
in [4].

argument analogous to thal used by Aubin
Lel SC N, p€ P. Wedefine:

g(S, p) = max {Uyy, Py = max (U, )
uEv(S) neCs

Propeosition 7. [41. The function ¢(S,.) is conves and continuous and

p(S)= fx & EN®: gs, p) — (P, zy ) > 0Vp € P}

3

- i M(D) i_ i 1

Let_ st BV, gy =Aps :r:M)eE .

‘Propositien 8. Let the game { N, 0} be balanced Then for each p € P
linear programming problem: - ,

min > Yy
Sy=gs p VSN
ieS 7
has a solution y* = |y™* (€ N] such that Syt = g(N, p)
: ' iEN
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Proof. The dual problem @}*} of 2, is

max = Tg ¢(S. p)

SCN ) .

Py = Ty =1 yi€ N
D Soi

Tg =0 , ws CN

Because B(N) & ¢, @"“; has a solution {Tg: S Nj and %, has a solulion
[l 14&, i e I\T;
Let B, = [SCN: 75> 0} Obviously B, is a balanced collectlon of N and

vS€ B, = y* = g(S, p)

ics
We have:
Syr =3 (myr=Z (ST =2 (S = Z T e =
iEN i8S IEN S3i B, ° ic§ B, .
= = T& maz ( p, uM)—maml(P, u)iu&€ > S(U(S))M}
S<B, T uev(s) S :

< max [ p, u): u€vdN)f = g(N, p)
On ihe other hand the inequality (N, p) < zTyi is a constraint of the
1EN .
problem 7, . Since (g is compact, we can choose for each S< N two veclors as,

" by & EMG) such that:

Coc (aS+L\I(S)) A (bs +E“‘S))

(hence ;)(S) C by — EM(S)) and Vp € P {p, (bs)y > > g(S, p)

howlctP~—[pEP Py evximreach g > 0.

Theorem 4. Every balanced cooperative game with multipayoffs has a
nenemply core. '

Proof. First, given >0 we define the mullivalued mapping:

G: u= (ul’ 3’ un) 1— g p : Q’(Ns P) - (T‘l—‘, p) "."/\-‘: f
w e ENO -g(N, p) = (u, p) Vp' € P*
It is easy to sse that G is a closed mapping and G(u)=+¢, convex, compact
for each u. Next define: ' ‘

-

- pe == (ul,..., u™;u > q, such that
“Pe {y' = pu ] is a solution of (P)

It is not difficult to verily lhat U is a closed mapping “and U(p) #qﬁ
~ convex, compadct for each p € P.
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Now lel b° = maz {(bs)y]. Then. setling yi* = pib], we have:

SCN
= yil') > ( p.uy ¥ v u€v(S), hence
€S
= y> S p v SN Thus
i€s :
(p. by =} ¥y > ) y*
SN iEN
por each solution y* = [ y* | of the problem (7).

But for p & P?, we have p ui* = pi* |
EVE we Y pait =) gt ) b
iEN iEN 1EN iEeN

We now put:

C=’u: ul zoa, Sui S bl{
iEN ien &

Clearly C is compact and U(p) C C lor each p € Pt Thus lhe multivalued
‘mapping ® defined on Pt X C by ®(p, u) = G(u) X U(p) satisfies all condilions
of Kakulani’ fixed point theoem. Lel (p*, u®) be a fixed point of ®. Then we
have for & > 0,

vp € pt, g(N, p) — (P EE>>g<N,pE) — ( pt,ut)y=0

vS SN S (pe i) > g5 p)
ieS

On the other hand, when ¢ < l.—, the veclor p* = (
m

Hln

1 1)
’m :---sm

m 1

pogn (= u”)v < 9N, p)

V=1 i=N

(L1, D (Y u'®) < mg(N, p°)
ieN

L DY @ —a) < m gV, p2) = (L, 1 @)
iEeN . ' i€EN

Z(Ea“—al)z m g(N, p*) — E (% aw =K

v—=1 i€EN. . . v=1 i€N

belongs to P%, therefore ( p° u¢) < g(N p°) i e,

The squénce u® in the compact set has a cluster poi-nt u* = ju*, i € Nj
as ed 0 and pt— p* € P. :
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f«‘ina]l},}we obtain : .
_VpEP gN. p) —(p, u*) > 0
i e, T & v(N) and

}

¥S N = (pr.ul) = giS, p¥)
i<s

which implies that u* is a point of lhe core of the game (N, v).

The author is grateful to Prof. N.N. Vorobiov for useful discussions.
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