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A large number of problems in linear and nonlinear analysis, convex and
nonconvex optimizalion, conlrol theory, mathematical econormics, and some
other fields of applied mathematics, can be reduced to solving an equation of form

0 E F(a;)y x G Q’ (*)

where Q is a given subset of a linear space X and F is a mulli-valued mapping
from Q inlo a linear space Y. Obviously, ifY = X and F(x) = f(x) — x, then
solving the equation (¥) amounts to finding a fixed point of the mapping f.

Since the appearance of Scarf’s pioneering work [9], combinalorial me-
thods for finding fixed poinls have allracted much alteniion (see [4], where an
extensive bibliography on this subject can be found). In some recent papers
[10] [11] [12], the author has developed a new combinatorial algorithm for
finding fixed points, which allows to overcome 2 major difficulty of Scarf’s
original algorithm, by using a procedure different from the methods known in
the literature under the names of «homotopy» and asandwich » methods. The
present paper is a continuation of this work. Specifically, starting from the -~
above mentioned algorilhm, we shall atlempt to construct melhods for solving
equations (#) under very general hypolheses on Q and F. In this way, apart
from some new results on the solvability condition of equalions (#) (for exam-
ple, the inward* boundary condition to be introdueed in section I, lhe general
approximalion scheme for reducing to finite dimensions in section 2, some
results on quasi-variational inequalities in section 3, we shall obtain an algo-
rithmic proof, based on a ‘unified combinatorial approach, for many known
fixed point propositions. These include some recent and general results in this
field, such as Fixed point theorems for inward and outward mappings {21 [7]
or fixed poinl theorems on non compact domains [6].

As a matter of nolations, we shall denote, for a set A in a linear topo-
logical space X: int A= the interior of A; ri A== the relative interior of A;
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}i — the closure of A co A =the convex hull of A aff A = the afl;ine imli of
A: 34 = ANint A (the topological boundary of A); s d=jrzed:(Fu X)(Ve=0)
AL <L)y st ruE A} (the algebraic boundary of 4);
[.(x) = w MA— x) (the tangent cone of A at x)
AZ0 '

Nix) = {g eX*:(Yug Ay, u— o) > 0} (the inward normal cone of 4
at x), where, as usual, X* is the dual space of X, (y, x) is the value of the

functional y € X* at point z € X. Also we shall write @y — « to mean the
w

convergence in the weak topology of X.

§1. EQUATIONS IN FINITE- DIMENSIONAL SPACES.

1. Equations in a simplex.

Let there be given. in a finite-dimensional euclidean space X a n-sim-
plex S = [a,, @1, Qals ie. the convex hull of n+1 affinely independent
points a,, Q1,0 o (called the vertices of 8). For every { = 0,1,..., 1L, the convex
hull of n points a; (51 is a (n— 1)-simplex which will be called the i-th
face of S and denoted by D;.

We start from the following result.
Theorem 1, Assume that a mapping L :S — R" salisfies the condition
V:U e I'i Di L(x) —_ bi (I— = 031,-0., I-‘.) ) (1.1)

where b,, Dy ,..., ba 8T8 such that
0 g ini cofby, by b} (1.2

Then there exists a point x € § with n+4 1 sequences [a:fk)} ¢ S such that

:r(i:")-—ra—:_(k-—:r o) for every i = 0,1,..,n an.d
vE 0 € colle®), L@ L@l | (1.3)

Proof. Using the algorithm provided in [10], (11}, [12], we can find for
every giveng>0a set U in S such that -
U |=n+1, diam U <&, 0 € co L) ' (1.4)

By laking ¢ = &} 0 we oblain for each k a set Uy = {m(lg). :nul‘) rore :n(f:)] G S
such that diam Uy <& and 0 ¢ co {L(:n(lg)), L (a:(ll{)),.... L(m(];],yf."‘smce S is com-

pact and &} 0, we can assume by taking subsequences if necessary,

x(lii) >x 8 (}«; — oa) for every i =0, 1,., I
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Note that if U satisfies (1.4), thed any point & g U ean be used as an
approximation of x, the level of accuracy being measured by diam U. Thus
the mentioned algorithm allows to compule x with any required accuracy.

It turned out lhat this result can be applied to sélve equation (#) under
very general hypotheses on Q and F. Let us firsi consider the simplest and
fundamental case.

Definition 1. A multivalued mapping F from a simpléx § = [a,. ai,... a;]
nto R® is said lo be a S_mapping it

Ve < ri D by € F(x) (1.5

wheére b; = 0 is a normal of D; directed inward S, i.e. (b, » — x) > 0 for every
z &€ D;and everyx’ € 8.

Theorem 2. Lel S =[a,, ai;..., a,] be a simplex containing ¢ in its inlerior
and let F be a S-mapping, which is upper semi-continuous and such that F(x)
is nonémpty, convex, compact for every x < §. Then the equation 0 ¢ F(x) has
a solution in S.

We f{irsl show:

Lemma 1. If 0&int S and b;+40 is an inward normal of D, then

(1.2) holds.
Indeed, S can be described as the set of all x satisfying

(bi, zy i (i=0, 1,..., n),
where «; is some positive number. Now, the system
{by ) <0, (i=0,1,.., 0

is inconsisient, since if z is any solution of it then for every A >0 we have
(b AZ)<<O0<Toy (i =0, 1,... n), ie, Az < §, conflicting with the boundedness of S..
Therefore, by the Farkas—Minkowski Lemma, there exisl numbers 6, > 0

n n

(t=40, 1., n)satisfying = 0, = | and (Vze X) = (b, z) > 0. The latler rela-
i=0 i=0

lion implies Z0,b; = 0. Bul if §, = 0, then

n
0=( =2 tbi, —qs )= — = Bi(bpa Y=— = 8 <0,
i=0 ? i=iq ¢ i=Fio
a contradiction. Hence, 8 > 0 for every i, i.e. (1.2) holds. [
Proof of Theorem 2. If we take L: §— R® to be a section of lhe mapping
F, such that L(z) = b; for every = & ri D, (=0, 1,..., n), then by the previous
Lemma, L satisfies the conditions of Theorem 1. Hence there exisls ?E 8 with

x = lim a:(l;‘) (i=20, 1,,.., n}, where x(lii)_saiisfy (1.3). But the set F(S) is compact
k—~> oo
because of the upper semi-continuity of F (see for ex, [4]). There-

(k)

fore  one can assume L(x ()= u (=0, 1., n) as k— . Since L(x(]i‘)) <

F(a:.(l;)), it follows from the closedness of F thal g < F(E) (i==0, 1,.., n), and
hence 0 < F (), by using (1.3) and the convexily of F(z). |7
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2. Equations in 2 convex corffgact set.

Condition (1.5) is a kind of boundary condition for a mapping F defined
on a simplex S. We now generalize this condition to -the case where I is
. defined on a convex compact set C.

Let X denote a Hausdorff locally convex space, X* its dual. Let C be a
closedconvexset in X, F a mullivalued mapping from X into a Hausdorff locally
convex space Y (in the sequel usually ¥ =X or ¥ =X*).

Definition 2, We say that a multivalued mapping F from X into X sat-
isfies the inward boundary condition on a convex set C € X if for every x 2,0

(Vv € Ne(x)) (Fu < F(x)) (o, 11y >0, (1. 6)

We say that a mullivalued mapping F from X inlo X* satisfies the
inward* boundary condition on a convex set € C X if for every x € 0,0

(Vu € le@) (P €F@) (v, m)>0. (1.6)*
' Lemma 2. If F(x) is convex and weakly compact, then
(1.6) & F(x) N Ic(x) &= 6. (L.7)
If F(x)is convex and weakly* compact, then ‘ -
) (1.6)* < F(@) N Ne(@) + ¢. (1.7)*

In any case ([.7) = (1.8); (1.7)* = (1.6)*.

Proof. The last assertion being obvious, it is enough to prove the first
part of the Lemma. Suppose F : X — 2X and F(x) is convex and weakly compact.
Then by the minimax theorem (see e.g. [5])

inf sup v, u) = sup inf (v, u)
v&ENclr) u € Filx) ucF(x) vE€Nelg)

so that (1.6) is equisalent to
(3u € F(x)) (Vv e N¢ (2)) (v, u) >= 0.
But {¢(x) = [u: (v, u) >0 Vv € Nc(x)], hence (1.6) & (1.7).
Similarly, if F: X —» 2X® and F(x) is convex and-weakly* compaect, then
the minimax theorem shows that (1.6)* is equivalent to p
(v € Fx) (Vu e I(x) (v, u)y >0,
which is nothing else than (1.7)*.

The inward boundary condition has been previously considered by some
anthors (see e.g. [7]). Bul il seems that the inward* boundary condition is
introduced here forthe first time. In the simplest cases F(x) == ¢ and F(x)  [c(x)
(then (1.6) holds), or F(x) C Nc(x) (then (1.6)* holds).

Theorem 3. Let F be a multivalued mapping from a convex compact set C
in R® into R®, such that F(x) is nonempty, convex and compact - for every x&C.
If F is upper semi-continuous and if : a) either F salisfies the inward boundary
condition on C; b) or int € 5 ¢ and F salisfies the inward® boundary condition
on €, then the' equation 0 & F(x) has a solution in C,
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in order to prove this theorem, our melhod is to extend F to an S-map-
ping over a simplex § D C, containing 0 in ifs interior, such that the equalion
0 € F(x) is not solvable in S\C: then, by theorem 2, it has a solution in C.

The exiension of F requires some properlies of convex sets in R, which
we shall need also for Banach spaces. Therefore we shall establish these pro-
perties in Banach spaces. ‘ -

Let us recall that a norm ||.|| in a linear normed space X is said to be
smooth if the unit ball in X has at each boundary point just one supporting
hyperplane; it is said to be rotund (or strictly convex) if no open line segment
in the unit ball meets the unit sphere. It is known (see [3]) that every reflexive
Banach space has an equivalent norm which is both smooth and rotund. We
say that a linear normed space X has property (H) if: zy = % and ]| — |2

imply [l — xj|— 0 (for example, the spaces LP with p>1, have Lhis property;
see [7])- .

Lemma 3. Let C be a convex closed sel in a reflexive Banach space X
wilh a rotund norm. For every & € X there is just one y = n(x) € C satisfying

* /

Ny —xl =minju—xlt. . : (1.8)
u<C
The mapping m: X —C is weakly conlinuous in the sense that: @, -2 implies
st(xy) = 7(@). If € is compact or X has property (H), then 1 is continuous.

Proof. Consider a sequence g € Csuch that [y —x|—p = inf{lu—=x|.

_ .o neC
Since p is obviously finile and >0, the sequence fyx} is bounded, and so, by
using subsequences if necessary. one can assume jx 3> 5. But the convex set
C being closed is also weakly closed, so that y & C. Furthermore, the convex
function @(x) = || x || being conlinuous is weakly lower semi - continuous, so thal

limlye —x b= ly—2l,
and hence ||y — = | = u. '

It |y — || = p for come othery" & C(y" & y), then the open line segment
joining y, y must lie in C (because € is convex), and so for every u of this
line segment one has ju—z{ > u; since on the other hand Jju— xi<wp by
the rotundity of the norm, we get a contradiclion, Therefore y = mt(x) is uni-

quely defined.

: Suppose %y —x, and lel g, =at(x,), y==a0(%). Since 1y — /< i — 2| < Y — T
+la, —xl<Ig—x i+ 8z, — =), we have |y, — 2>y — 2. The-
refore if X has property (H), y,—y. If € is compacl there is a subsequence
‘along which yy—g and since [y—=xl={y—=x}y, it follows that y=y
(by the uniqueness property), i.e. yy —Yy. Thus in these two cases, & is continu-
ous. In the general case, the sequence [y} is bounded (because || y,—2 || =y —=xi]),
and so there is a subsequence along which g, + y: then, as previously, ¥ =y
i.e. y, + y. Hence x is weakly continuous. ]
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Observe thit (@) = x for v &€ € and m(x) € 2,C for x¢=C. We call m()
the projection of x on C. It X is a Hilbert space, it is easily seen that m(x) is
characterized by the condition 5t(x) — & &€ Ne(n(x)), i.e.

(Vuel) (x—mn(=z), a—xx)) 0.

In the case where X is a reflexive Banach space, let j: X —X* be the
mapping such thal (Jjx), y = =i, [ j@)li =l x| . For every u € X such that
full < llxllonehas (jx), u—x)< | J) . | ull —(J@)xd= x| (lu I - llz]h<<0
i.e. j() is the «oulward normal» of the ball of radius [|x |, at point x: from
the smoothness of the norm, j(x) is uniquely determined for each given x.

Lemma 4. Let € be a convex closed set in a reflexive Banach space X,
(with a smeoth norm). For every closed ball B in X (centered at 0) the sel
G = €+ B is convex closed, and for every x < all":

Ne(m(z)) > No(x) = [Ajla(x) — x): A0},
where m(x) denotes the projection of xon C.

Proof. The convex set C being closed is weakly closed, and since Bis wea-
kiy compact, the 'set C' == C + B is weakly closed, and hence closed. Let r denote
the radius of B. Since xz € aC* C €', we have x € z + B with z € C, consequently

| x) —2§ < ||z — x § < r. But the inequalily Il (zx) — = | << r would imply
a€int (n(x)+B)Cinl €', contrary to the fact x<asl'. Therefore, || ®{x)—x || =1,
and x € 8B’ where B'= n(x) 4 B. Obviously, NB'(x) = {Aj(z(x) — x)): A < 0} :
On the other hand, Ng:(x) € Np-(x) and N¢(x) += {0} because C* has a nonempty
interior. Hence Ng«(x) =Np(®). For every z €€ we have z+4+x -z}l
(because x — m(x) € B), therefore (j(m(x) — x), z — w(x)) = {j(m(z) — =),
(z + x — (x)) — )< 0, which means j(x(x) — x) € Ne(x(x)). T

Finally, before proceeding to the proof of Theorem 3, it is convenient lo
recall the following fact which we shall ffequently use: :

If € is a convex set (in a Hausdorff locally convex space) with an inte-
rior point w, then for every x & int C, the set

Né@) = [y € Ne(®): (. 0 — ) = | .9

is nonempty, convex and weakly* compacl.

Proof of Theorem 3

I — Case where a) holds (i.e. I satislies the inward boundary condition).
By translating if necessary we can hssume that 0 is a relalive interior point
of C. Let $=[a,, aj ..., a;] denote a simplex such that CCint S. We shall exlend
F to a S-mapping F’ in the following way. . :

For every x&C, set F’(x) = F(x). For every x é S\.C let w(x) denote the

projeclion of = on G, let o(x) denole the point where the line through = and
' z— (@)

I o) — se(x) |

. From the ‘con-

7t(x) meets the-boundary of S, and let A(x) =
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linuity of « (Lemma 3) it castly follows thal () and A(x) are also continuous.
Sel

E.]

Fw) = Mz). Ng(ox)) + 1 - rMz)) - fle) (1.10}

where
2o@) = {y e Ng(a(x)) : (Y, —o(x)) = 1} (see (1.9))
) = |y € Fla@)): (73 — % y) > 0} (1.11)

Since m(x) —x € Ne(m(x)), it follows {rom the inward boundary condition that .

f(x) is nonemply; moreover, f(x) is obviously convex and compacl.

We lhus obtain a multivained mapping F from Sinto R" such thal F'(x)
is nonemply, convex, compact for every x €8, I« € riD; (the i-th face.of S)
then o(x) = &, A(x) =1, whiie_N"S(cr(x)) reduces to a normal of I} directed
inwards S, so that F is a S-mapping. To verify that F’ is upper semicontinuous,
we observe first that Lhe mapping z - Ng(2) being obviously upper semi-conli-
nuous, lhe set Ng(a5) is compact. Now, if o, € SNC, Zx—= %, Y — s Yx & F'(x,).
then y, = Mmwm + (1 — ME )W, wilh U € Ng(o(x) vk < f(zy), and by com-
pactness there is a subsequence along which u, — 1, vy —v; from the continui-
ty of w(x), AM&), o{(®) and Lhe upper semi-conlinuity of the mappings Ng(.).
F(.), we then have u € N°S (c(x)), © Ef(a:); y = Mz + (1 — A(x))p, which im-
plies y € F'(z) (since for x € oC:A(x) = 0 and fix) ¢ F(x) = F'(x)). On the
other hand,'ifz, € C, T =~ &, Y~ g, € F'(xy), then il is obvious that
y & Fx) = F’(x). Thus, F’ is closed and hence, upper semi-continuous.

From Theorem 2, lhere exists x < S satisfying 0 < F'(x). Assume that |

& ¢ S\C. Then 0= Au -+ (1 — M) . v, for some u & Ng (o)), v € f(x).
0< MT) << 1 (0 <TA(x) because %= C; Max) < 1, for otherwise A(x) = 1 and we

would have 0 =u, conflicling wilh the relation {(u, — g(aT,)) — 1 which foilows

from the definition of Ng (d(:_c))).‘Bul, by (1.11), (x(x) — x, v)>>0, hence
(v, T(T) — o(m) = 0. (1.12)
On the other hand (u, nt(x) — o(x)) > 0, since 1 € NS (x}). This, together with,

(1.12) and the relation 0 = A{@)u L (1= A®)e, 0<Al)< 1 implies (u, = () —
o (x)) = 0. Chus n(x) must lie in Lhe supporling hyperplane of S (at o(x))

that is normal to u. But this is impossible, because x(x) < inl S. Therefore,

z ¢ C, and hence < F(E)t

11, — Case where by holds (i. e. inl C+¢ and F salisfies the inward®
boundary condition). By translaling we can assume 0 € int C. Let § = [a,,U1e-s0n)
~ denole as before a simplex such that € ¢ inf S.
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For every x & S\ _C, denote by p(x) and s(x) the points where the ray
igsued from 0 and passing through « culs aC and aS, respeclively, and let
Iz — p) |

(| s(z)—p(®) ||
contintuous funclions of x. Set for every such = € S\ C;

F'x)= M=) .Ng (5(x)) + (1-1@)) . f(x),

Mx) = . It can easily be shown thal p(a:)_, s{x)} and hence A{x), are

where NJ (.) has the same meaning as previously, and

f@) = lyc F(p)) : (y, p@) <0} (1.13)

Since - p(x) € fc(p(x)), the inward* boundary condilion ensures that f(x) is
nonempty; noreover [(x) is obviously convex and compact. to-

Thus, by selling F’(x) = F(z) for x £C, we obtain a multivaiued mapping
F* from § into R™ As previously, we can verify that F’ salisfies all conditions
of theorem 2 (in particalar, is a S-mapping). By virtue of this Theorem, there
exists T < 8 such that 0 = F'(x) and it is not difficult o see that '€ C. Indeed,
if X S\C, then 0 =A@ . u + (I —A(x).v, with u &€ N (s(x)), v <f(®),

0 <A (x) < 1. By (1;13), (v, p(x)y <0, hence (v, s(x)<<0; but from the
definition of N2 (s(x)): (u, s(x)) < 0. Therefore, <, s(x); = 0, i.e. O lies in a

supporting hyperplane of S at s(x), which obviously conflicts with the facl
0 ¢ int §. Thus, T < C, and hence 0 < F®). 0

. 3. Equations in an arbitrary compaci set.

Consider now the equation 0 € F(z), x cQ, where'Q is a compacl (but
non necessarily convex) set in R™

Theorem 4. Lel Q@ be a compact set in R" let F be a upper semi-
continuous multivalued mapping from Q inta R", such that #(&) is nonemply,
‘convex and compact for every x &€ Q. Assume there are a convex compact sel
C 5 Q and an upper semi-continuous multivalued mapping G from € into R,
such that G(zx) is convex, compact for every x < C, while 0 & G(x) & ¢ for every
x € C\ Q, and such lhat, moreover: a) either G salisfies the inward boundary
condilion on C; b) orinl € <=¢ and & salisfies the inward* boundary condition

on C. Then there exists a point x < Q such that: ;
1) either z €inl Q and 0 € F(x);
%) Or TeoQ and 0€8 Fig) + (1 —8). G{E) for 0 < 0 < 1.

Proof. By replacing if necessarjr G(x) by ¢ forevery zcint 2, we may assume
G(x) = ¢ for every x<int Q. Furthermore, by setling F(zx) =¢ for every z€C\Q,
we can consider F as defined on all of C. Lel

H) = cofF(z), G(x)}.
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Then H(x) is nonempty, convex, compact for every x € € and lhe
mapping H is upper semi-continuous and satisfies condition a) or byin Theorem 3.
Therefore, by this Theorem, one can find an x € C such that 0 € H(x). The
conclusion follows immediately. O

Corollary. Let Q be aclosed set in R?, containing (- in its inferior. Let
/ be a upper semi-continuous multivalued mapping from Q into a compact
set in R", such that f(x) is nonempty, convex, compact for every o € Q. If
either of the following conditions holds: a) for every x & 2Q and for every
A>1: Axg=fix); b) for every © € a2 Llhere is A = A(x) < | such that AxE€f(x),
- then f has a fixed point.
Proof. Denote by € a ball around 0, containing f(Q) in its irll‘lerior. By
- applying Theorem 4 with Q n C playing the role of Q in this Theorem, and
F(z)=f(x)—=, G(x)=—, one can find T such that: 1) either 5’6 int(Q ~n €y and
0 € F(x),i. e. x<€f(x);2) or x €N C) and 0 € OF (x) — (I— 8)xr for
0<C8<1(8> 0 becduse x == 0 for every x &€ 3(Q N ()). In Lhe lalter case, we
can assume 0 <C1 (otherwise x is a fixed poinl), so x <0f(z) wilh 0<<0<C1,
which implies = ¢= oC, since f(Q) CintC. Therefore, if case 2) holds, then
= &€ aQ; since Lhis conflicts with condition a), there is, by condition b), a number
A < Lsuch that Az € f(x), and the convexity of the set f(z) then implies © < f(z).T1

§2. EQUATIONS IN INFINITE-DIMENSIONAL SPACES

1. General approximation scheme.

In this section we shall study the solvability of the equalion (*¥), in the

general case where Q is a compact set in a Hausdorfl locally convex spaee X,

and F is a multivalued mapping from Q into a Hausdorff locally convex space Y.

‘We shall always assume . that F(x) is nonemply, convex and compaLi for every
z € Q and that F is upper semi-continuous.

In order Lo solve the equation (*) we shall ‘proceed according to the.-

following general scheme:

(i) Select two families of linear (usually finitedimensional) spaces

Y, (v € N), and two families of mappings p, : domp, C X — X.. q,:

domq, C Y —Y, such that : every p,, ¢, Is linear and for every set N N
cofinal with N in the ordering «v, —v, iff Xy C X%» we have: '

z, € X, x, e T, (WEN) px,)=0=2=0 ' 2.1)
L R
g €Y, y, 2l (WEN) q,@)=0=y=0 (2.2)

(ii} For every v € N, solve the equalion
NeF (), ueQ, ; (2.3)
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where Q, == p,(Q2), Fv-is the mapping from @, into Y, defined by _
F, () =colq,(v|[F(®:z &€ Q p,le)=ul] (2.4)
Theorem 5. Under the stated hypotheses, if for every v €N the equalion

(2.3) has a solulion u, = p,(x,), ©, € Q, then every cluster poinl x of the net
x, | is a solulion of the equalion ¢ € F(x) in Q. This proposition follows from
: q prop

Lemma 5. Assume that N° ¢ N is cofinal with N and for every v & N’
we have

v, € colg (U [F(®):z-€Q p,@® = u, )], (2.5)

T, €Q p®) =u, T, 2T € Q. ‘ (2.6)

Then there exist a subnel [”v , b € M} of the net [o,, v€ N'} and a net va ]
such that , ’

=%ﬁ%}yva§€ﬂh (2.7)

Proof. Let [V,. o€ A] denote a local base of convex closed neighbour-
hoods of 0 € Y. In view of the upper semi-continuity of F there is for each «
a neighbourhood U, of 0 € X such that

.

WVecx+U) Fix)c Fim+V,. (2.8)
We have ,
v, = E Ay;q,(w,;) with w; € F(x‘vi)',
iCly :
2, €Q pE)=u, A0 Y Ay=1 1L <.
€1, .
From this it is not hard to see that for some v, = v(a):
(W vy(viel,) z,€x+7U,. S (2.9
Indeed, otherwise there exisls a set N7 ¢ N’ cofinal with N’ such that
(VWve NHYHiel) r,Ex+ U, ' 2.10)

Since Q is compact, it can be assumed that z,; N—*’:E € Q. We have
(V'\? S N")Pv(xw T ) = Dy (xv) Pv(x )= t, —u, = 0.
and (T,;—x,) 5~ N (x — x), lherefore by 2.1 T =, i.e.

TR

x'ﬁ N

contrary to (2 10)
Thus, Lthere is v, = v,(2) satlsfymg (2 9). Then, by (2.8)
(Vv o= v ) (Vi G I,) F(z,) C F(a:) +V,
and hence
vaiEF(:F)'{'Vu’ E Awwv:er(x)"*‘v
iET,
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inee F(x) + V, is a convex set, Scttingﬂ gy = E Ayillyy, W€ obtain
iCly
1(gy) = Uy and |
(v - vo(@) W EF@ V. .19

Denote by M Lhe set of all pairs p = (v, 2) € N X A such that v vg(2)
and set v, = v for every p = (v, o). Then it is easy lo see that {oy,. B € M}
is a subnet of the net {v,, v & N{. Indeed, M is a directed set with the ordering

| p#(vs a) = pt = (v, a) & (v 2v) & (o =), '

since for any given pp = (v, %) € M, pg = (vg, 0g) € M, 1f We take o = {e1, oo}
and v = {v,(a), v, vafs then p = (¥, %) € M and p+~ {ui, we}. Moreover, given
an arbitrary v, if we take a € 4 and v {v(a), vi}. lhen we shall have
pe=(v,a2) €M with vp = v = V1.

From‘ (2.11) we can wrile, for every p = (v, a) € M-

y'\l’p. == y"\’l_,, —}" 8‘\,9“ with y vpgf“\(x). S'\;H < Vm'

Since F(x) is compacl, it can be assumed that ¥ v, i—;—g_ €F(x). Buley, 7> 0,
therefore yy, 37 ¥ - 1"_1"—

Proof of Theorem 5. For every v € N there is by hypothesis an %, & Q
such thatp, (x,) = Uy, 0 € F (u,). By the sompactness of @ there exists N'CN
cofinal with N such that Ty z. It suffices now to apply the previous Lemma,
with v, = 0 (¥v) and to ohserve llilat, since 0 = qvp(gvp) [or every p we musl

have y =0 DY (2.2). O

2. Case Y = X.

In order to apply Theorem 5 we conslruct {he net {X,, Yy Pw y,} in the ?
Tollowing way. ' C

Let Z, be finite-dimensional subspaces of X*, whose union v Z,is' dense

. : e

in X* in the weak® topology and is such that for every element § of this union
there isv, = v,(y)satisfying (yv = vo) ¥ & Z.. Such Z, always exist: for example
we can take [Z,, v N| to be a family of finite-dimensional subspaces which
is exhaustive for X* in the sense thal for every finite-dimensional subspace Z
‘of X* there exists Z, > Z for some v £ N. '

Then let X, = Y, =Z,* and let p, = ¢+: XX, ’be the linear mapping
that sends every x € X C X** lo the functional « restricted to Z, C X+,

Lemma 6. The above consirucled net {X,; Y, p. ] salisfies conditions
2.1, (2.2); moreover, py, ¢y are continuoys and surjective,

120




Proof. Suppose that N’ ¢ N is cofinal with N and
vaXs va: s(VVEN)pv(a;v)“O

(ie. VYycZ,. (4, x \,)i =0): Consider an arbitrary y € X*, Since the union of all
Z, is weakly* dense in X* there is, for an alhltrauly given g>>0, an element

Ye of this union salislying|(y, . T )hu {1y, x Yz ? On the other hand, since

T, E*E there is v, such that (Vv =~ v,) | (ye, x,) — (Y., x| <—;—. Further-

more, it can be assumed (that Y, < Z, (Vv v), Le. (ye,xv)_. (Yo P pAxy)y=0.
Hence | (y, =) | <<s and so, ¢ being arbitrary, (¥, x ) = 0(Vy € X¥%)i.e.
x = 0. Thus (2.1) holds, The continuity of p, is obvious. Finally, if u ¢ X,,
then u# can be extended to a linear continuous functional x over X*: then
r € X and p,(x) = u, proving the surjectivity of p, . T0 '
Lemma 7. Lel € be a convex set in X and let G be a multivalued mapping
from X into X, satisfying the inward boundary condition on C. If p : X — X,

is a continuous surjective linear mapping,-and C, = p, (C), then the mapping

CTyiul=To @ = p, (U |Gx): 2€X, p, (x)=u|) satisfies the inward boundary

condition on C,, . !

Proof. Suppose u€a,C, and y&Nc, (1). There is then p€Xy such that
(VA>0)u+ avesC,. Let weX be the element that satisfies p,(w)=v. For
every £&C such that p (x) = u we have (VA >0) p(z + Aw)=u+ e C,,
so x -+ AweC, and hence x<a,C, Since y&Ne, (1), (Yu'€C)) ( g, v’ —u ) =0,

But yop, is a lmear continuous funetional on X and (Va'&() (yopv,
=)= (Y P&) — pUF)) = (g, p(x)—u)>0 (because p(z’) € C,).
which means that g.p, € V() for every x & G satisfying p.(z) = u. Since G
salisfies the inward boundary condition on C and z€a,C there is z&€G(x) such
that ( gopy, z) >0, or else (y, py(z))>0. So for every ye&Nc.(u) there is

s = py(2) satislying (g, s) > 0 with z€G(x) and x€a,02, py(x) = u. [}
' Theorem 6. Let Q be a compact set in a Hausdorff locally convex spaee: -
X, let F be a upper semi-continuous multivalued mapping from Q into X,
such that F(x) is nonempty, convex and compact for every x€Q. Assume there
are a convex compact set C>DQ and an upper semi-continuous muliivalued
mapping G from C into X, such that G(x) is convex, compact for every x&C
while 0¢ G(x) = ¢ for every z€C\ @, and such that, moreover, G satisfies the

inward boundary condition on €. Then there exists a point = € Q such [hat:
® 1) eilher x€inl Q and 0 EF(x);
2) or x€2Q and 0 €OF(x) - (1 —9) G(x) for 0 < B L.

Proof. As in (he proof of Theorem 4 we can assume G(x) = ¢ {or every
x €int Q,and F(x) = ¢ for every z &€ G\ Q. Then the mapping H defined on C by

H(x) = co { F (x), G(:n)}
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"ié\":ypper semi-conlinuous, satisfies the inward boundary condition on €, and
- H(x) is nonempty, convex, compact for every x<C.

‘ Lel Xy, Yy, py, q, be chosen as above and lel Q, = py(Q), Cy = p,(C).
For every uc Cy we set

Ay () = [2cC: pa) = 4, A
By (u) = ViH(®) 1 1Dy (], Hy (@) = co py(By (u)).

Since p, is continuous, Cy is a convéx compact set in Xy ; furthermore,
. Ay (u) being a closed subset of the compact set Cis ilself compaet and, since H
is upper semi-continuous, the set By (u) is also compact (seefl]). The mapping

By is closed, since if uy —u,, Yo — y, and ys < By(ug), then ys < H(xg) with
P(Zg) = Ug, Tg eg and, C being compacl, we can assume x¢ — x, < Q, hence
Y, € H(z,) (by the closedness of H) and p,(x,) == u, (by the conlinuity of p,),
. i.e. y, € B,(u,). Then the range of B, being contained in a compact set, it
followsthat B,, and hence. p,, B, , is upper semiconlinuous. Since, moreover, for
every u & C, the set p,(B,() is compact, the mapping H, also is upper semi-
continuous (see [1]). By Lemma 7, i, satisfies the inward boundary condition
on C,. Hence, by Theorem 3, one can compute a point u, satisfying 0 € H,(u,),
and u, £ C,, i.e. u, = p(x,) with x, &€ C. Since C is compact, there is for the

net |z,, véN} a cluster point a:_é C and by Theorem 35,
- 0 c H(x) = co{F(zx), G(x))

Obviously, < Q and is the required poinf. T

Corollary. Let C be a convex compact sel in a Hausdorff loeally con- - -

vex space X, and let F be a multivalued mapping from C into X such that F(x)
isnonempty, convex and compact for every x = C. If F isupper semi-continuous
and %atisfies the inward boundary condition on €, then the equation Oer(a:)
has a solution in C.

Proof. Apply the previous Theorem, with @ = €, G = F. If onc is inle-,
rested only in the existence problém, and not in the algorithmic queslion, then
this Corollary is a known recent resull in fixed point theory {7] and genera-
lizes a classical and long known theorem of Kakulani.

3. Case Y = X*,

As a counter part of Theorem 6, we have lhe following result for the case
Y = X* (in what follows, X* is supposed tobe endowed with the weak* topo]ogy,
or any, finer locally convex topology)

Theorem 6* Let Q be a compact set in a Hausdorff locally convex space
X, let F be a upper semi-continuous multivalued mapping from Q into X*,
such Lhat F(x) is nonempty, convex and compact for every x € Q. Assume there
are a convex compact set C D Q such that aff € = X and a upper semi-conli-
nuous multivalued mapping G Lrom C into X, such'that G(z) is convex. compacl
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for every z « C while 0 ¢= G(x) = ¢ for every x <G\, and such that, moveo-
ver, G satisfies the inward® boundary condition on €. Then there exisis a point

T < Q such that:

1) either T ¢ int @ and 0 ¢ F(w);

2 or'gcoQand O 0F () - (1 —0) G(z) for 0O

Proof. As previously, we can assume G(x)=¢p for every x cinl Q, F(xy=¢
for -every x € C\Q and consider the mapping H defined on C by H(x) =
coF(x), G(x)}. This is a upper semi-conlinuous mapping satisfying the inward®
boundary condition on €; also H(%) is nonempty, convex and compact for
every x € (. : , : ‘

Now take a family of finite-dimensional subspaces Xy, v €N, of X,
such that their union is weakly dence in X and for every elemenl of this
union there is v, = v,(x) satisfying (Vv = v,) T € Nyi Xy being equal to the li-
near hull of C n X, (by translaling, sve can assume that 0 € Q, so that X is the
linear hull of C). Such a family is always available: for example, we can take
N to be the collection of all finite subsets of C, and X, to be the linear hull
of v& N.

Let Yy = X* and let py be the identity mapping of X’v (i.e. py is defined '
on Xy and py(x) = x for cvery x € Xy), let qy be the restriction of functio-
“nals to X,(i.e. for every g€ X*, q.(y) ¢ X7 isthe functional y reslricted lo Xy).
We have Qp = py(Q)=2nXy, Cy= py(0)= CNnXy.
~Let us verify Lhat:
I, py, ¢, are linear conlinuous surjective mappings satisfying (2.1), (2.2),

I1. The mapping H (1) = ¢.,(H(w)) satisfies the inward* boundary condition
on C,.

Indeed, that p,, g, are linear continuous and surjective is obvious (the
surjectivity of ¢, being a consequence of the Hahn-Banach Theorem). Also

condition (2.1) is evident. To prove (2.2), suppose y, e X¥, y\,_—;;ﬁ and (Vv e N')
N

qulyy) = 0. If x € X, then il [ollows from the weak denseness in X of the union
of all X, that for every given ¢ > 0 one can find an element x. if lhis union,

=

satisfying | (g, =, ) — (g, ) | < -i— .On the other hand, since y, — ythere iswv,
. , N '
such that (VveN’, ve= v )[{ Yy, T ~{y, T | < —Z . Also it can be assumed that

(VV 6 N’, V- '\70) ﬂ:s er. i.e. (yvr xB) == (qv(yv)! xg} = 0’ 'rhen l (-.lja x) l < g

and since & > 0 is arbitrary, (y, a) =0 for every « é X, hence y = 0 which
shows that (2.2) holds. ' ’
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To prove property I, it suffices to observe thalif u < 3,C, then ng2,C:
therefore for each w EIC‘ ()  Ig(w) there musl exist v € G < H(u) such that

(v, w) > 0, and evidently q.,(v) € H.(), {g.(v), w) > 0.

Thus, properties I, II hold. Clearly Q, is compact, C, is convex, compact,
and we may suppose that for every v&€N:-X, is the linear hull of C, =C N X,;
furthermore, by arguing as in the proof of Theorem 6, we can see that H, is a
upper semi-continuous mapping. Therefore, by Theorem 3, lhere exisls u, g G,

satisfying 0 < H,(u,). The proof'may then be completed jusl in the same way as
with Theorem 6. 1 :

Corollary. Let C be a convex compact set in a Hausdorff locally convex
space X, and lel E be a multivalued mapping from C into .X such that F(x) is
nonempty, convex and compact for every T & C. 1f aff C=X and if ¥ is upper
semi-continuous and satisfies the inward* boundary condition on G, then the
equation 0 ¢ F(z) has a solution in C. :

" Proof. Apply the previous Theorem, with @ = C, 6 =F.

Remark. 1) [t is obvious that the equation 0 ¢ F(x) is ¢quivalent Lo
0c—F(x). Therefore, all lhe previous results remain valid, if the inequalities in
(1.6) and (1.6)* are reversed, i. e. if we téplace the ihward (inward*) boundary
condition by the outward (outward®) boundary condition.

2) Every previous result can of course be restated as a fixed point
proposition.
4, Equations in a noncompact set.

The approximation method presenled above requires the sel Q to be
compact. If this assumption is not satisfied, the problem is much more diffi-
cult. However, in the case were the image of © under the mapping o :— F(xy-tx
is relatively eompact, essentially the same method can be applied. :

‘As an example, let us establish by Lhis method the following proposition

which generalizes a theorem of T.W.Ma and was firsl proved (in a noncons-

‘tructive way) by G.Kayser (see e.g. [6]).

Theorem 7. Let © be a closed set in a Hausdorff locally convex space X,
containing 0; lel f be a upper semi-conlinuous multivalued mapping from Q
into a compact set in X, such that f(x) is nonempty, convex. compact for évery
x € Q. Assume there exist a.closed neighbourhood W of ¢ and a closed convex
set K in X such thal Q = WnK, f(QCK, and Az ¢ f(x) for every x&(d WHY~K
. and every A>1, Then f has a fixed point.

Proof. We can suppose Az g f(x) for every x € aWNK and every A1
(for if Ax € f(zx) wilh A = 1, then x is a fixed point). Consider a net {V,,veN}
of convex, closed, balanced neighbourhoods of 0, coverging to 0, and for every
v N select a finite subset Q, of K satisfying ¢ cQufic U gV Lel Xy

q&Qv
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denote the linear hull of Q,,let B,CV, be a ball in X, around 0. and let K,=Kn
nX,, W,=W nX,.For each ucX, denote by m,(u) the projection of uon K, (in
X,). Define Q, to be the set of all ugcW, n (K, + B,) for which w (n)cW,.
~ Since m(u) = u forn c K, , it follows that Q, contains W,nK,; moreover, since
Vv +uC W for all u in some neighbourhood of ¢ and all v »- some v,, we shall
have w(u)c W, for all u in some neighbourhood of # in X, and all v~ v,
which implies that for these v, Q, is a neighbourhood of 0 in X,; {inally, Q,
is obviously closed, because of the continuity of m, and the closedness of W,
and K,. We now show that the mapping fy(u) = (f{zt,()) -+ V) N co Q,, defined
on §,. satisfies all conditions in the Corollary of Theorem 4. First observe that
for some v, (which can be assumed to be equal to v,), we shall have Axg=f(x) LV,
whenever x € sW K, A3> 1, v v;. Indeed, otherwise there would exist a set
N’C N cofinal with N and for each v € N” a point =, € aWAN K, an element
v, €V, and a number A, > I such that A,x, — v, f(x,). Since f(Q) is relatively
compact, while v, - 0, we can assume 1/A, — p, & [0,1], A, @, — y,, hence
Ty—=>x, S oW N K, with x, = py, and p,>0 (because p, = 0 would imply
x, = 0, conflicting with the lact 0 <int W). Then A, > A, = 1fp,> 1 and
AT, Ef(x,), contrary to the hypothesis,
~ . Consider now any v+ v,. For every u&Q,, since for each y E_f(:rtv(u))
there exists g € Q,C K, salislying y € g+ V,, ie. g€y +VINQ,, it follows
thal f,(u) is nonempty. Furthermore it is evident that f,(u) is convex, compact
and thal £, is upper semi-continuous. If u€aQ, (the boundary in X,), then either
uCdWNK,,oruegri Ky (forueri Ky and u€ri W, imply ueri (W, N K,)
and hence, u€ri Q,): in the first case, we have seen that Aues f(u)+V, for
A>>1 and, consequently, Auesf (u), because s, (u)=u;in Lhe second case, the fact
0 €ri Q, and the convexity of K, imply Aunes Ky for. A > 1, and hence,
Aues fy(u), since fu(u) C K,. Thus, Corollary of Theorem 4 applies and yields
a point uy & fy(u), i.e, v € f(wy(uv)) + vv with v, & Vy. Using the relalive com-
pactness of f(Q) and the fact v, -0, we can assume u, - &, and since ,(u,)—
—u, &< V,, it follows that T (uy) — x. Finally, lthe upper semi-continuity of f
implies x € f(x). T : ’

|
§3. SOME APPLICATIONS

We devole this lasl section 1o some illustrative examples of applications
to variational and quasivarialional inequalities.

1. Variational inequalities.

Theorem 8. Let C be a convex closed set in R%, let f be a’ upper semi-
continuous multivalued mapping from C into R", such thal f(x) is nonempty,
convex, compact for every x € C, and let ¢ be a finile lower semi-continuous
convex function on C. Assnme that either of the foilowing conditions holds:
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i) ¢ is compact, : o L R
2) There is a € C such that inf (y, * — a)f + p(2) > o0 as| x| — oo

y i) :
(coerciveness assumption). Then one can find ¥ € € and y € f(x) satisfying
| (Vz € C) (7. T — %) + 0@ — ¢@) > 0 3.1)

Proof. First consider the case where hypothesis 1) is fulfilled and
assume, additionally, that int € <= ¢, namely 0 &€ inf C. '

Select a sequence of convex compact sets €, C inl C such that 0,

for every v, and C, C Cyyq, D C, = C (for example we can take C, to be

vem]
the set of all z &  satisfying p(x) < 1 -~ ¢,, where p is the gauge of .C and
gy § 0) _

Since C, C int C, the function ¢ has a subdifferential ap(x) <~ ¢ at each
point x € C,. By applying Theorem 4, with C, playing the role of C in this
Theorem, Q = C,, F(&) = f(x)+ap(x), G(x) = -—Ng,,(a:) = —{u € Ney(x): (v, o) =1},
we obtain a point x, € C, such that : either 0 € flx,) + op(x,), or 0 € 8(f(x,) +
4 ag(ay)) — (1 — B)New(,), for 0 <8< 1 (here 60 because 0 ¢= Neo(ay) if
z, & 3C,). In boll situations we have a point v, € f(x,) + ap(x,) satisfying
(Vx < C,) (v, T —x,) >0, i.e. we have y, &€ f(z,), 7, € 29(x,) satisfying

(Vxecv) (yv_'_zd’ x‘—mv)>0-

and hence '
Yz €C,) (Y T — %) +o(x) — ¢@,) >0

By the compaclness of C, we can assume mv—yfe C, yvege flxy,

and since @ is lower semi-continuous: lim o(x,) >> ¢(x), so thal (3.1) holds.

Thus the theorem has been proved (for the case where assumption 1)
holds) under the additional condition int C=¢. If this condition does not
hold, one can always assume that 0 is a relalive interior point of G and con-
sider the linear space X' generaled by C. Then every x € R" can be written
= 2 4z, with 2 € X', 7 € XL, Let 2 = w(x) and consider the mapping-
g = xn,f. By the above, lhere exist xeC and u ¢ g(x) salisfying (Voe )
{(u, © — ) + o(x) — px) > 0. It u = ny), Eef(:c), then (u —y, £ —x) =0/
so that (3.1) holds.

Turning to the case where hypothesis 2) is fuifiiled we observe that [or
r> | a | and large enough we shall have, for every x satisfyingillx || 2> r:

inf [y x—a)+ ¢(x®) — (@] >0 (3.2
. y& f(:z:) - '
Since the set C, = {z ¢ C: | | < r} is compact, there exist, by the preceding
argument @ < C, and g < f(x) such that

T (VaeCy (Y x—a) + @) - @) >0 (3.3) -

s
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Taking z = a < C, 1elds o Coe e
. SRTAC T <p(a) — (@) = 3 ST (34)
From (3.2) it follows thal | = Il <<r, and 1t 1ema1ns onIy to prove the followmg

1

Lemma 8, If :c e C, satlsfles (d 3) (with y < f(@) and o I < r then (3 1)
holds.

Indeed, for everyx € €\ C, lhere sz €C, such that rx: = Ax+(1—2A) x
with 0 <A <1, Then

_ - 1 - :
<y,a’:—x->=%<y,x’-—x Y= oe(@) —e@) >

>%[fp(:-v)~—?t¢(:v)——(l—l)fp(5)]-——(p(E)—tP(:v). o

Theorem 9. Lel C be a convex closed sel in a reflexive Banach space X
iet { be a multivalued mapping from € into ¥ = X* such thal f(x) is nonempty,
convex, weakly compaclt for every x < C, and let ¢ be a finite lower semi-conti-
nuous convex function on C.

Assume that ;

1) [ is upper semi-continuous, in the weak lopology of X* and the finite
topology of X.

2) f is monotonous, i.e. {yi=Ys Ti—%Ty) >0 for every z,, x,cC and
every y1 £f(®1), Yz f(xa), :

3) There exisls «cC  such that ;

inf (y, £-—-a) + @(x) —~ o0 as x| — . (3.6)
pefla) .
Then one can find = €€ and y &€ f(x) salisfying
Vel (Y, T— %) +¢@) —o(z) > 0. (3.7)

Proof. Lel {X,, v eNI} denote a net of finile-dimensional subspaces of
X, such lhat for every x < X there is v, = v (x) satisfying (Vv v,) z € X,. Let
Y, =X%,0,=CnX,, Letr>|al be large enough to ensure that for ev ery |,
x sallsfymg i & § >r we have ,

inf  [(g, x—a) +¢(x) — ()] >0
yf(x)

As seen in the proof of Theorem 8, for every v< N one can find x, € C, with
1z, | <rand y,,ef(:v,,) such that .

(Vx 2 C,) Yy B~2,) -} () — @(x,) > 0 (3.8)
" (we assume that every X, conlains a). Since x,, v< N, all belong lo the convex

closed and bounded set {x € C: ) x| <r|, it can be assumed that z, — T cC.
‘ - w

Then, using hypotheses 1) and 2) it is not hard lo prove lhal x yields a solution
to the variational inequalily (3.7) (see e.g. (9], where such a proof has been
. carried out).
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In locally convéx spaces we can prove the following proposition, which
reduces to a known theorem of F. Browder [2] when ¢ =0, X* is equipped
with the lopology of uniform convergence on bounded subsets of X, and B(y, ®)
denotes the value of the funclional y < X* at poinl x € X.

Theorem 10. Let ¢ be a convex compact sct in a locally convex space X.
let f be an upper semi-continuous multivalued mapping from C into X*, such
thal f(x) is nonemply, convex, compact for every x< C. Let p: X* X X—>Rbea
continuous bilinear functional and let ¢:C - R be a lower semi-continuous

convex funetion. Then one can find = < C and y ¢ f(x) satisfying:

V30 By T —2) + o) — o{®) > 0. (3.9)

Proof.. We can assume 0 < C. Select a family of linite-dimensional
subspaces X,, ve N, of X, such that X, is the linear hull of C "X, and for
every x < C there is v, salisfying x < C, for all v v, (e.g. N is the collection
of all finite subsets of C and X, is the linear hull of v& N). LetC, =Cn X,
and define as follows a mapping F from C iato X,: for every y € X*, By, ®)
being a continuous linear functional in , there exists a fully determined ele-
ment g(y) < X, such that (g(), ®) = By, x) for all x € X,; let F(x) = g(f(x).
Clearly, F(x) is nonemypty, convex and compact for every a < C. Furthermore,
F is upper semi-conlinuous. Indeed, let x,—x,, v,—0,, U, < F(x,); we have
v, = ¢(yy), Yy <f(x,) and by compaciness we can assuine y, -y, &f(x,); but
for every =z, (v,, )= Um(vy, T) = hm Yy T} = B(Fer T) = {g(Yo)r T)s hence
v, = g(y,). Thus, F is closed and hence, upper semi-continuous, since F(C) is
compacl. By Theorem 8, one can find x, < C, and v, < F(x,) satisfying

v € C,) 0y T— ) + @) — ¢(@y) = 0.
Rememberiﬁg that v, = g(y,). Yvcfx,), we have
(Vo cCy By T —T) + 9@ —¢2;) == 0.
Using compactness we can assume gz, >z € Cy—-ycf@ If xcl then

x € C, for all v vy = v, (x) and (3.9) follows from lhe previous relalion, by

taking into account thie conlinuity of B and lhe lowér sémi-continuity of ¢.
I

2. Quasi-variational inequalities.
Theorem 11. Let C be a convex compact set in R?, let f be a upper semi-

confinuous multivalued mapping from C into R, such that f(x) is nonémpty,
convex, compact for every « € ¢, and let E' be a continuous multivalued

mapping from € into aff C, such thal E(x) is nonempty, convex, compact for
every < C and the mapping x I— Nrgo(x)\ [0} satisfies the inward or inward®
boundary condilion on C. Then one can find z €C N E@) and y < f(x) satisfying

(Vz=E@) (g x—x)>0. (3.10)

\

Proof. Without loss of generality, we can suppose ini (= ¢ (if neces-
sary we can replace R" by aff C and each set f(zx) by its projection on aff ().
Consider firs{ the case where int E(x) = ¢ for every rxeC. Let Q@ = fxeC:
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.,t.eg(x)]_ Since the mapping E is cbn[inu_ous, Q is closed, Lot @ — reQ;
zeint E(x)]. Il © € C\Q’ then x4 inl E(2), and so the set N peey(x) has at least
one element v = 0. Denote by Z the unit sphere and let G(x) = co(ZnNE(a_)(a;))_
Clearly G(x) is a convex, compaclt subset of Nyp(p)(x) and, by Lemma 9 below,
0EG(T)=¢p lor every = &€ C\Q". : '

Suppose x, € C\ Q" and =z, ->930. Taking y, €Z /\A’E(xv)(xv) and a subse-
quence along which y, —y,, we shall have y, € 2 and Yo € Ng(e,)(%o). Indeed,
from the lower semi-continuity of E there exists for every x<E(x,) a sequence

x,",—er:c such that x;GE(a:v); but (Vr' € E(xy)) { gy, T'—xy ) >0, hence ( gy, x;p -
— Ty ) 2> 0, which implies (y,, £ —=x, )} >0, ie. o & NE(%) (x,). Since y, €3,

we have y, == 0, so that x, & inl E(z,), i.e. x, € O\ Q. Therefore the set & is
openand C\ Q C €\ &, 80O\ Q. .

Furthermore, the ahove reasoning shows that the mapping x= —

X N NE()(x) is closed on C\ Q' hence the mapping 6 is upper semi-continuous.

Applying Theorem 4, with F(x) = f(x) yields a poinl € Q such that :
' a) either 0 & f(x), so that (3.10) holds with 7 = 0;
b) or 0 €—6f(x)+(1—0) G(x) with 078 < 1 (here 6 =0 because 0 EG(x)) :
in this case there is y € f(z) N Ny(j(x), i.e. (3.10) is satisficd.
Thus the Theorem has been proved under the condition inf F(x) ¢ for
every & € C. If this condition is nol satisfied, we can suppose 0 € intC and

consider the set €. = {x: p(@)<{l+e|, where e>>0 and p is the gauge of C.
Denoting by B; a ball such that C+ B, C C,, we extend [ and E over the whole

+ C;in the following way. For x € C let o(x) = x, and for x < Ce N\ C let o(x) ‘

denote the poinl where the ray through @ cuts aC; then sel f (z) — flo(x)),
E{x) = E(o(z)) + B.. Since C.. is homothetic lo C, it is -easily seen that
the mapping @ — Ng_(r)(x) \ [0] satisfies the inward (or inward® resp.)
boundary condition on C.. Noling that now in/ E(x) & ¢ for every x € (! and
applying the resull of the first parl of the proof, we can tind . &N (E(o(z )+
+ B.) and y.€f(o(x,)) such that

(Vx € E(o(x)) + Be)  (yg, x—x) >0 ‘ (3.11)

Letting &}0 and laking a subsequence along which xgz— 7, y, —y, We

shall have © € C n E(x) (because p(ze, C) — 0 and o(xg) — o(%) = x), and
y < f(x). For every x E‘E(E), there is, by the lower semi-conlinuity of [ a
sequence &' — such that x € E(G(:re))_?.nd from (3.11) we ge.t(gs,:x:'8 —z )>0

~ hence (g, x —x) > 0.

It remains to prove:

Lemma 9 If a convex set D has an inte'rjor poeint and for some point x
we have 0 & 4 C Np(x), then 0 & co A.
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~ Proof.iAssume the confrary, that 0 € co 4. Then there are ;€ 4 and
A > 0 satisfying ZA;, = 1. Zhwp = 0. Since A C Np(x), we have (Yu.€ D)
(v, u — x) > 0 for every i. Bul (yu € D) (ZXA; v;, u — x) = 0, therelore
(0, & — x) = 0 for every i. In view ol lhe hypothesis inl D = ¢, (his conflicls
with the-fact v; == 0, [ ’

Theorem 12. Lel C be a convex closed sel in R"; lel { be an upper .
semi-corlinuous mullivalued mapping [rom € into R such lhal](.u) is nonemply,
convex, compact for every x &€ C; let £ be a continuous multivalued mapping
{rom C into aff €, such that E(x) is nonempty, convex, compacl for cvery
x € C; let £ be a conlinuous multivalued mapping from C inlo aff C, such
that £(x) is nonempty, convex, compact for every € C, and FE(x)—z C ¢ (x)
for every x € ,C. Assume-thal the following «coerciveness » condition holds;

. There are a point a € {) E(x) and a compact set K such that

] z€C
vz e\ K inf (gpx—ay>0 (3.12)
' yeflx) '
Then one can find € C N E(x) and y € f(w) satisfying
(Vz € E(@)) (g z—x)>0 (3.13)

Proof. Select a ball B around a, of radius r > 0 so large thal (Vx € K)
hx—afj<r. Let C=Cn B, I'(®)=EFEx)nN B. Il is easy to see Lhal the
mapping £ is continuous. Indeed, the upper semi-continuily is obvious. To
prove the lower semi-conlinuity. consider any y, € E'(x,), x, € (', and any
heighbourhood U of y, (we can assume U lo be a ball centered at y,). Since
* the mapping F is continuous, lhere is a neighbourhood V of x such that, for
evely ® € V N.C' the set (x) meets I/ at some point y:if ye= B and ag= U,
then Lhe projection z of y, on the segmenl [a; y] belongs to E(x) (since a and
y both belong to E(x)), and also to U (since ||z ~y,.<lly—y, 1) and to B
(since z—ay <Clly,—ail) so that in any case we have E'(x) N U == ¢.

On the other hand, (Vz € aC’) E'(x) ~ x C I(x) (ahd hence the mapping
& — Ny (1) (x)\ {0} satisfies the inward* boundary condition on C). Indeed, if
T <o, then either x 8l or x ¢ aBNint(l: in the first case £’ () — xCIc(x)NB
ClIg(x), wheréas in the second case E'(x} —x ¢ Ip(x) = [p(x). Therefore, by

Theorem 11, there are « < E'(z) and y € f(x) such that

(Vx € E'@) <y, z—x)>0.

Since a € E'(x) we have (y, a — ) > 0 and hence, by (3.12). x € K, i.e-
|x — a|| < r. Therefore, (3.13) follows from (3.14), by Lemma &, |~}

Theorem 13. J.et € be a convex compact set in a reflexive Banach space
X. lel f be a multivalued mapping from C into Y = X*, such that f(x) is nonem-
pty, convex, compact for every x € C, and let I/ be a conlinuous multivalued
mapping from € inlo aff C,-such that E(z) is nonempty, convex, compact for
every € € and E(x) — x C I¢(x) for every x € 3,0, Assume thal:
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1) f is upper $emi-conlinuous in the weak ldpolog}' of X* and the finite
topology of X, '
2) f is monotonuous and bounded.
Then one can find x & C N E(ﬁ:i:_)' and § & f(i) salisfying
(V= € E@x)) (g.x—=x)>0 (3.15)
Proof. For every natural number v lakea ball By (arouund 0) of radius &y,
where g| 0. The set £(C) being compact (in view of the continuity of E), there is a
finile subset Qy of F(() such that F(C) C U (q —i—% BY) Since E(C)C aff C,
q&Qy :
each ¢' € Qy has the form g = S k;; ¢y, with ¢;; € C, Let Ay =| J{gu},
| i i j .
Xy =aff dy, Cy=Cnmy. Ey(x) = (E®) + By) N coEC)n Xy
Clearly aff Cy == X, and for every x &€ C the set Ey(x) is convex, com-

pact (nole that co E(C) is compact as the elosed conivex hull of a compact se! in
a Banach space); moreover, Fy(x)is nonempty (indeed, if v € [(x), then there

isqge Qy C ECyn Xysueh thal v € g + % By, hence ¢ € (v + By) n E(CYy N

Xy € Ey(x)). We claim that Lhe mapping Ey is continuous. Indeed, the upper
- semi-conlinuity being obvious, let us prove the lower semi-conlinuily of
Ey. Consider any v, € Ey(x,) and any neighbourhood & of 0 € X;;. We have
v, =5, 4+ w, with s, € E(x,), 1w, € By. Let «&€(0,7) be so small that a(Qy—v,)C U,

and let U" = . —%

- DBy. Since F is continuous, there exists a neighbourhood V
— o .

of 0 € X such thal for every x & (x, + V).~ C there is v € E(x)n (s, 4+ U"),
ie. v =135,+ u, with v € E(x). w € U’. On the other hand, as we have seen

previously, v € E(x) implies v'= g + w, with w & —12~ Byand g&€Qy CE(CYN X,
Selling s = v, + a(q — v,), we have 5 —v, =al(qy—v,) € a(Qy — v,) C U. Fur-

thermore, s = ag 4+ (1 — v, € co E(Cy N oy (because 0 <Ca< D and s —v =
v, Fo{g —v)=w,—uw fa(—~w, +u —w)= (1 —a)w, —w)— aw

= (1 — adr, + a(— 1w — L au‘) Sl — )3y + a(% By + «:} Bv) = By, e,

&
R e ]3(3;) “';‘ Bv-

Thus, for every € o, + V, the set Ey(x) meels v, -+ U at least al one poinl s,
proving the lower semi-conlinuity of .

Let now C =C+B,, G, = mg‘,. For.every < (), denote by m(x) the

projection of x on € and set ﬁ:v) = ](:rt(a:)'),ﬁ,,(m)' = I, (m(x)). Since x is conti-
nuous (Lemma 3) the mapping f is upper semi-conlinuous, while_ff,, is conti-

nuous al every xEC;. H x EOHC; C 8,07, then the clement j(w(x) —x) & X*:
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defined as in Lemma 4 is simultaneously an outward normal of €’ at =, of C
at m(x), and of the ball =m(x) + B, at x. For every u€ E(n(x)) + B,, since
u==v+w, with w&B,, vEE@mx) C x-t+Ic(n(x)), we have {j(mn(z)— x),
U—x) = (fj(n(x) —x), v — x(x)) + (Jjm(z) —x)w+ 7(X) — %) 0. Thus, the
reslnctmn of thé functional—j(m(x)—=x) on X, is a common element to N o e))

and \~ (x) Therelore, the mapping x — l\~ )(a:)\[(J] satisfies the inward*

boundary condmon on C;, and by appling Theorem 11, we obtainz, €C, N
N E (e, ) and y, < f(x(x,)) satislying

Sl
vz € E (70(x,)) (Y, T—T, ) > 0 ‘ . (3.16)

Since x,, are all contained in the compact set co E(C), we can assume %, — %

and since p(z,, €) <, |0, we have x € C. By Lemma 3, n(z,) —> #(%) = &
and from the closedness of E:x & E(x)
,Lel x be an arbltrary element of E(x). For every A € [0,1] and every
y}‘ < f(:c ), where £ = Az + (1 — Mz € E(x), we have, smcef is monotonous,
wh —y,, * = x(@,)) >0, Le. )
wh, 2t — w2 — (@) (3.17)

Using the con[inuity of K, we can find a sequence :):A—)-:r,?" such that

3‘./_- L’(:m(:v ). and hence, as has been seen previuosly, xl = qi + -%- B, with

7\

g, € E,(w(x,)). By (3.16):

' A ‘
(yv' q'p - xv) > 0 (3'18)

But
wh,wh — w(z,) > (g, 2P —a(@) = @, gk — =) +

A Ay A A
+ Gy Ty — @) Yy By — Gy ) T T - Ty ),

* therefore, by taking the limit.as v — oo and noting that the last three terms of
the just written sum tend to 0 (because y, is bounded), we have ('y?‘ , :1:7‘ — xT)>0.
Since " — % = A& — x), we then deduce (91‘.'|.L , € — ) > 0. But f being upper

semi-conlinnous op the segment [x, =], the set’ U f(a:;\‘)is compact (in the weak
D<A

topology). Hence one can select a subsequence along which ah

A

—»x and y* —y&
o)

f(xz). Thus for every « € E(x) we have found g € f‘(E) such that
(g, x—x) > 0,
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i.e. inf sup - (yo =) > 0 and hence, by the minimax
€ E@)  gef(n)
theorem, sup inf (g, x—x; >0 r___l
Y Eflzy < Elx)

Theorem 14. Let C be a convex closed sct in a reflexive Banach space X ;
let f be a mullivalued mapping from.C into Y = X*, such that f(x) is nonemply,
convex, compact for erery x € C; let £ be multivalued mapping from C info
aff € which is continuous in the weak lopology and such that the set E(C) is
compact, f(x)is nonemply, convex, compact for every < C and E{x —xlc(x)
for every x £9,C. Assume that:

1) f is upper semi-continuous in the weak topology of X* and the finite
topology of X,

2) f is monotonous and bounded,

3) either of the following conditions holds:

a) C is bounded,
b) There are a point ac N E(x) and a bounded set K such that

r&C
(vx € (\K) inf (g, x—a)>0 (3.19)
_ y<f (@) :
- Then one can find © € E @y N Cand j € flxy sausfymg
| (vaSE@) (T, z~T) > (3.20)

Proof. Conslruct the subspaces Xy and the mappings Ey as in the proof
of Theorem 12, andsel E% =C"'nX,, C'=C+B, (B, bieng a ball around 0, of ra-
diuse,), ’f(a:):f(?m(x)) £y = Ef=m(x)) for every z € C). Since = is weakly conti-
nuous by Lemma 3, the mapping f (from C’, into X* %) is upper scmi-continuous,
while the mappu‘lcr Ev (from C%, into Xy) is continuous, Also it is easily scen that
E(CU) —-xcl -(:I:) for every x € 0,C. Therefore, by Theorems 10 and 11,
there are xy € Ey (%t(xy)) N €, and yy € f(m(zy)) satisfying (3.16) (we can
assume a € (Qy for every v,i. e a € ﬂ Ev (x)). The proof can then be comple

ted just in the same way as that of Theorem 13 (here we have nol :'c(:t:v)—+
®(x) = z, but only w(zy)-— x ; however, this does not malter ; since E is
. n

A

continuous in the weak topology, for every x & E(x) lhere is a sequence

w

x> oty |7

x% — zh sucih that x% € E (w(xy)) and E(C) being compact, one can assume
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‘Theorew 15. Let € be a convex closed set in arcflexive Banach space X,
let f be a multivalued mapping from C inlo Y = X* such that f(zx) is
nonempty, convex, weakly compact, and lel £ be a multivalued mapping from
C inlo C, such thal E(x) is noncmpty. convex, closed and bounded for every
x < C and [ is continuous in the weak topology, Assume:

1) f is upper semi-continuous in the weak lopology of X* and the finite
topology of X ; ]

2) f is monotonous and f(C) is conlained in a strongly compaet sct in X%

Then one can find « € £(x) and y € f(x) salisfying
. (V€ E@) (1 & —x)> 0. (3.21)

" Proof. Let {V,, v&€NJ] bhe a local base of cenvex, closed, balanced
neighbourhoods, in the weak topology of 0 &€ X. Since E(() is weakly compact,

there cxisls for every v a finite subset 4, of E(C) such that E(C) ¢ (q+
Ay

+ —;— v, ) Let X, denote the linear hull of- A, (assuming, as we may without

toss of geverality, that 0 € (C) and 0€ 4, for every v); let C,=Cn X,

E,(x) = (E(x) + V) n C,. '
Clearly X, =aff €, and, as in the prool ol Theorem 13, it is easily

“verified that every I, (x) (:x:e(, Y is nonempty. conves, compact, and thal the
mapping K, is conlinuous, :

Therefore, by Theorem 11 one can find T, EL‘ JS(x,) and y, €f(x,)
satisfying
Vo & E,(x,) (y,,, r—x,)>=0 (3.22)...

1 Since {x,] ¢ €, we can assume ®, —;‘;-5 € E{x) -and (3.21) [ollows from
(3.22) by an argument analogous to that used in the last part of the proof of
Theorem 13 (the only difference is. that here =«(x,) = x,, x% - qi —> 0 and
we should use the following theorem (see [8], theorem 3 (1.IX)): if uy € X,

u, —7> 0, if M is strongly compact in X*¥, then (y, uy) — 0 uniformly w1th

respect to y € M, hence, since f(C) is contained in a strongly compacl set of

) Al -
X% gy, @y, —gy) — 0, ete...) [T,
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