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In the last 15 yeéars many authors have generalized the Banach contraction
principle in relation with several classes of generalized contractions. In the
present paper we shall establish, in Part I, the inclusion relations belween
these classes, and a fixed point theorem for spaces with a family of pseudo-
melries, in Part II, some new results on fixed points for multivalued genera-
lized contractions, then in Part III, a fixed point theorem of Krasnoselski type
and finally, in Part IV, some fixed point theorems for non-expansive mappings
in locally convex spaces.

I. GENERALIZED CONTRACTIONS AND FIXED POINT THEOREM.

A—INCLUSION RELATIONS BETWEEN CLASSES OF GENERALIZED CONTRACTIONS.
Le! X be a melric space and 7 be a mapping in X. We recall the follow-
ing definitions: ‘
Definition 1 [2]. We say that T belongs to the class B iff therc exists a
number o & [0, 1) such that d(T=x, Ty) < 2d(x, y) for any @, § € X.
Definition 2 [15]. T &€ R iff there exists a non-increasing fuunclion
a: (0, =) — [0, 1) such thal ;
d(Tx, Ty) <old(w, P)d(x, y), (@ =+Y) M
 Definition 3 [10]. T€X iff there exists a function a(§, 1) defined when
0 < & << M < e such that a(g, 1) <1 and
d(Tx, Ty) <« D@, ), E < dl@, g) <) @
Definition 4 [3]. T € 4 iff there exisls a upper-semicontinuous from
the right funclion & : (0, =) — [0, 1) satisfying (1).
Definition~5 [12]. T € M iff Ve >0 386 >0 such that
e d(x, y) <&+ 6 =dTx, Ty) <. 3)
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Notation:

r(z, y) = max Jd(z, y), d(z, Tx). d@y, Ty, —é—[d(:c, Tyy+ diy, Tmylf .

Definition 6 [21]. T €@ iff Ve >0 35 >0 such that
r(z, D <<e+ b=d(Tx, Ty) < ¢
and T is continuous. .

It is known that if X is complete and T belongs to one of the above
classes then T has a unique fixed point x* and T"z — x* for every = in X
[2, 3, 10, 15, 21]. )

DPefinition 7 [20]. T &€d iff there exists a tunctlon a: [0, o) —[0, 1) such that

sup fa(?): { € [a b} < 1, (0 <a<h< o), (4
and (1) is satisfied.

. Theorem 1. The following inclusion relalions are lrue
BcRcHKcScUc M.

Preof.
i. Proof of B R. Obyiously B < R. To show that B++R we shall prove
the following fact. 7
Lemma 1. T € R iff there exisls a funclion «(g) <{-1 such thal
d(Tx, Ty) < aB)d(w, §), (0 < E < d@. ¥))- (%)

Proof of Lemma 1. Obviously, if T < ® then (5) holds. Now let (3) hold
we deline

. () =infla(®): £, (> 0)
Evidently, &« is non-increasing and a(f) < 1. To verify (1) we must show that
d(Tz, Ty) < [=(d(@, g)) + eld(z, y) (6)
for every € > 0, ‘ '
_ Let 80, by the definition of = Lhere exists &< d(x, y) such that a(®) <
< ald(zx, y) + &
From this fact and (5) we obtain (0).
Lemma 2. If X is compact and T salisfies

d(Tz, Ty) <d(x, v, (@=+y)
then 7' € R,

Proof of Lemma 2. We must show that there exists a function a sal:sfymg
the COIldlllOIl in Lemma 1. Put o

d(TzTy)
dz.y)
We verify that «(§) <<1. In fact, if «(E) = 1 then there are two sequences x,. ¥n
dfxa, Tys) _ 4.
d(x!l! yn)

a(E) = sup x, gy € X, dx, g) > L E>0.

such that

”
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Since X is compact. sO is {(:c, y) : dx, y)}&}, and wWe may assume
T~ 2%, g, — y*. But then d(Tx*, Ty*)=d(x*, y*) which coniradiels the assumption:

fwampled. Let X =1, &, =, .., = o% T(L)= L 70)=o.
2 3 n n nt+1

It is easy to verify thatT satisfies all the conditions in Lemma 2. Hence ' € R,

On the other hand, for x, = 1 we have
It

d(Tx,, Txn) o,
d(%n, Tot1) ,
This example shows that the proof of Theorem 2 (1. XVI)in[7]iserroneous.
2. Proof of R C9’£ We have only to puth&(g. m = «(&) for all 12> where
a is the function in emma 1. '

1. Proof of X CJ. We remark that Lhe function « in Defintion 3 must
be assumed non-increasing in & and non-decreasing in 1. In fact, if necessary,
« can be replaced by

a*E, m) = inf | a(F, 1): F<<ELAKOYL

i,e. T3,

Put 0= Iim o m, (¢>0
E—>i—0
N>t +0

It is easy to verify that sup lg(t): t €la, b}] = afa, b) <1, i.e(4) holds.
4, Proof of S.E€%. Put
) = lima(s), (E>0),
s—>i ' ‘
where o« is the function mentioned in Definition 7. It is easy lo verify that

a is upper semicontinuous and a(f) < a(l) <t.

5. Proof of 94 € M. To show that P C M we put pH) = ad, (¢>0),
where o is the funclion in Definition 4. Then p(g) <Ce for every g>0. By the
upper semiconlinuity of B, ve>0, 36 >0 such that

e{I<e+ o =D e
It follows that ‘
e<dx, y) <e+ s = pd@, y) <e=dTz, Ty) <s
ie. Te M
To show that @0 =& M we shall use the following fact.
‘ . Lemma 3, Let T €Y and let the sequence {d(xa, /AL monotonicélly
decrease to ¢t > 0. Then i '
fim 4(T%n, Tyn)< 1. o
p—roc  d(X_, Yn) : ' @
Proof of Lemma 3. For each n we have

AT T i g @
(o, ¥o) | H
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Choose g > 0 such that a(f) + 23< 1, then lhere exists N such that

a(d(@y, Ya)) <o) +e<l—s  (VRSN).
Since a is upper semicontinuous from the right, then (8) implies (7),

Example 2. Let H be a separable Hilbert space. {ea} be an orthonormal

basis in H. Pul X = {x.} v {ya} v {8}, where @, = (1 — —l) ey Yn=2e, §is

: n
the origin in A. e
. '
_ Setiing T8 =8, 7'z, =8, Ty, = x,(Vn) we have
d(T'ccn,‘ 70y =0, Ay, 8) = 1 — 1 .
d(Tx,, Tx,) =0, n
| { e T\?
d(Tyay TO = 1 — —, A, Try) = V(l _?) + (1 _H) '
. } d(yn. 8 = 2,
; 1
AT Tya) =1 — L, AT, g =14 —, @
n n
d(Txn'Tym)=l_'_1‘"' d(x y):‘\/l——l-2+4'
_ m wome n

d(T;’"' Tm) = v(l _"}1")2 + (1 - mi)Q . A go) = V.

It is easy to verity thal T < _#, since for e>> Y 2 them § may be chosen
arbitrarily, if 1 ¢ < V2 then & = V8 — & and finaly, if O<le<Cl then §=1-—¢.
On the olher hand, T ¢= % since (9) shows that (7) does not hold.

6. Proof of M <@, Obviously A €% since (3)

may be re .
y placed by -‘L;e . .._.....Z‘
dix, p<<e+ 6 =d(Tx, Tyy <= I : i
To prove M == % we construct the following example : I
Exzample 3. Let X = {x,, 21, Yo. Y1, 2z} as in Fig. ! )
1. where : é I
d(xu! yo) = d(yo! Y1) = d(xl’ yl) = d(a;ov Ty = 2, L .i
d(z’_xl) = d(z, y1) = 1. xﬂ-.— ---E--——y"
Putlting Tx, ==, Ty, = y1, 721 =Ty =Tz =z, , '
we have Fig: 1
ad'z,, Ty,) = 2, . : - P&, y) =2,
d(Tz,, Tz) = d(T'y,, Tz) = 1, Xy 2) = (Yo, 2) = V5,
d(Tz,, Tx) = d(Tyo, Tys) = 1, (%o, X1) =1y, 1) = 2,
d(Tx,, Ty)) = d(Ty,, Tx;) = 1. MZelyy) =y, 2) =2V 2,
c(Txy, Tz) = d(Ty,, Tz) =0, r®y f2)=r(yp, z) = 1.
d(Tx,, Tyy) = 0. E ‘ r(z:, y1),= 2.
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It is casy to verify that T € @ since if e>>2 then 8 may be chiosen arbitrarify.
it 1<e<C2 then 6<<2V2 —e and finally, if 0<Ce<{1 then 8 <2 -

On the other hand, T & A sinece il does mnot satisfy the following
necessary condition ‘

| _ d(Tz, Ty) < d(z, ). @+Y).
The proof of Theorem 1is completed.

B — A FIXED POINT THEOREM FOR SPACES WITH A FAMILY OF PSEUDO-METRICS

Now, let (X, D) be a space with a family of pseudometrics D = {d“]. it
is known lhat a space becomes such a space iff it is uniform [8]. A standard
example of these spaces Is a locally convex space. We assume that the family
% has the following property

d (x,y) =0 (vd, € D) =x=4.

Then (X, 9) becomes a Hausdorf[ space. This class of spaces includes the class
of probabilislic metric spaces [5], which in turn contains the class of metric
spaces [17]. :

Let 7" be a mapping in X. Denote
. 1
r (x, y) = maxld (x. y), d (x, Tx), d (4. Ty, wi—[du(m, Ty) + d . To)]}-

Theorem 2. Let (X, 9) be a complele space with a family of ‘pseudo-
melrics and lel T be a continuous mapping in X with the property : Ve >0,
vd, € D, 35, = 6,(e) > 0 such Lhat

- rmyp <ed s, =d, Tz Ty <e
Then T has a uniqué fixed point z* and Tz —~ ¥ (V& € ).

Proof. Let x, be an arbitrary element of X we cons'truc't- the Sequérfcé

%, =Txa(n=0, 1, 2,...). In view of Theorem 1.1 in [21] which still holds for '

pseudometrics this sequence is Cauchy for each d,&D. Hence, by definition,
il is Cauchy in X and, since X is complete, it converges to z* € X. Since
T is conlinuous, Tx* = x*. Finally x* is unique by the separateness- of X,
The proof of Theorem 2 is completed.

When 9 = {d}. d is a unique metric in X we obtain Theorem 1.1 in. [21_]
which generalizes the resulls in [2, 3, 4, 10, 12, 15}

Corollary 1. Let (X, D) be a complete space with a family of pseudo-
metrics and let T be a mapping in X with the.properly: ve>0 -Vd, € D.
36 > 0 such that ; : : : :

e d (z.)<et o =d (T Tyy<e L
Then T has a unique fixed point x* and T°z — * (V& € Xy oL aTeb
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Corollary 2 [5]. Let (X, D) be a complete space with a family of pseudo-
metries and let T be a mapping wilh the property; vd, €D, 35, €. 1)
such that

d (Tx, Ty) < kd (g, vz, y € X),
Then T has a unique fixed poinl x* and T"® -»2* (yx € X).

" This follows from Corollary 1 by sélling 6, = E_Ak“f.uln turn,

-1

Corollary 2 implies the following fact. ‘
Corollary 3 [17]. Lel (X, & A) be a complete Menger space, where A is
a conlinuous function salisfying Ata,a@) > a (Va€[0,1}). Let T be a mapping in X
with the property: 3k &€ (0,1) such thal
Frgpy (ki) = Fo(b). (v, g € X: vt >0).
Then T has a unique fixed point #* and T*r —x* (Vo € X).

Nole that from Theorem 2 one can derive many resulls in pI‘ObdbthllC
melric spaces for the class of mappings mentioned in Theorem [. For example,
it is possible Lo formulate a theorem analogous lo Theorem 2.1 in [6].

Il — MULTIVALUED GENERALIZED CONTRACTIONS
In this part X denotes a metric space, CL(X)-the family of all nonempiy
closed subsets of X, D—the Hausdorff distance in CL(X).

Theorem 3. Let X be a complete metric space, and let S, T be two map-
pmgs from X into CL(X). Assume lhat there exist non-decreasmg funcilons
: [0,00) —[0,1), i = 1,...,5 such that

() 4 oy (8) 4+ 2a3(f) + a5 <1, ay(t) + ag(l) + 2a4(f) + a5() <1,
(Vi>>0) and for any xz, g€ X
DSz, Ty) s ayd(x, Sx) + ayd(y, Ty + ayd(z, Ty) + ayd (y, $2) 4 a5d(x, y), (1oy
where a; = a;(d(x, y)), i = L,...,D.
, Then the fixed point set of S, and the fixed point sel of T are both
nonempty, and they coincide.
Proof.

Let z,€X, r > d{z,, Sx,). There exisls x; & Sx, such that d(z,, x;)<r.
Denole t, = d(x,, x1), from (10) we get
dizy . Try) < DSz, Tx) < o1(t,) d(x,, Sx,) + ag(t,) d@y, Tz —|—
+ ay(t)y d(z,, T:x:;) + as(t,) d(z,, ;).
Since z, € Sz, and d(z,, Tx() < d(z,, ®1) + d(x1, Txy) we have
d(ﬂ?] . T$1) < Md(:no . Z1),
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where
_ a1(te) + as(ts) + a5(fo)
1 —ag(l,) — ag(f)
I M=0o0r d(:r;o, x1) = 0 then x; & T'z;. Otherwise we have
d(%y , Tx:) < min {d(z, , ©1), Mr}.

Then there exists x, € Tx; such that
' ' d(x1 . 33) < min [d(x,, 1), Mr].
Analogously, there exisls x, € Sz, such that

(g, x3) << min {d(x;, x2), NMri,

< L.

where
N = %el1) + ay(ty) + as{ls)
1 —_ O(.l(f1) —— 0€4(il)

By inductlion we obtain a sequence {x,} wilh the following properties:

N tl _ d(ﬂ:l » 352).

Tx,—y if n is even,
Sxp_; if nis odd.
(i)  d(®a. Top) < min {d(@a_y, @a), ¢"r}, where ¢ = max{M, N},

(1) Ty €

Since ¢ < 1, from (ii) it follows that {xn] is Cauchy. Since X is Lomplele.
z, —x* € X. We now show that x* € Sx*. In fact,

d(x*, Sx*) < d(x*, Tpn) + d(Tpn, ST*) < d(x*, 295) + D(TTgper, ST*)
L d(x*, Tyo) - arad(a®, S:I:*’) + aznd(xzn—1 s Tan) - agad(x®, xﬁn)+
+ a4, d(@on—1, ST*) L gad(x*, Ton_1),

" where din = ai(d(®Xy—1, ), i =1, ..., 5.

Since x, — x*, for n large enough we have

d(z¥, Sx*) L d(x* Tgn) + ar(l) d(@*, ST*) - 0p(1) d(@g,_ [, Tn) +

L oag(l) d(@*, Tgn) + ay(1) d(Ton—y, ST*) 4+ ag(l) d(mgn_j , T%).
Lettmg n— oo we gel
d(x*, Sx*) [a,(l) + ag(1)] d(z*, Sz*),
hence x* € Sx*
. ‘Now we show lhat z € Sr iff x € Ta. In fact, let © € Sz. From (10)
we have -
cg(:r, Tay < DSz, Tx) < [25(0) + ag0)] d(z, Tx),

i.e x€Ta. Similarly, x € Tx implies x&Sx. The proof of Theorem 3 is complete.

Corollary. Let X be a complete metric space, and let T be a mapping
from X into GL(X). Assume lhere exist nondecreasing functions a, : (0, s )-s{0, 1)
such that Y a(f) <1, (vt > 0) and for any @, y € X. x =+ y
S ) ) ’
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DTz, Ty < ayd(z, Tx)+a2d(y, Tg)+ agd(z, Ty)+a.d(y, Tx)+asd(z, y) (1i)
where a; = ai{d(x, g)), P=1,

Then T has a fixed point. If, in addition, T is singlevalued then this
fixed point is unigque,
Proof. Define

B_Bz"q“l;;f!‘z' 133=l34=—2“" Bs = a5,

and put fi(0) =10, i =1, .., 5. Il is easy to see lhat (10) holds for § =T and
a; = B{d(®, 1)). Since B; are nondecreasing and

-

bl

Bu(D) - Ba(B)F-2B5() +Bs(D) = Br(t) +-Ro(!) +2Bu(t)+B5(D) = ) eutf) <1
j=—1

(vl > 0), it suffices to apply Theorem 3.
Let T be singlevalued and x*, y*-its fixed points. Then from (11) we obtain
d(z*, y*) = d(Tz*, Ty*) < (a +a% +a?)d(@*, y*),
where a* = a(d(x*, ¥¥), a contradiction. This completes the proof of the
Corollary.

Note that this corollary is related with a result of Alesina, Massa,
Roux [I]. For singlevalued mappings Wong [24] has proved an analogous
* Theorem, where o; were assumed upper semicontinuous from the right.

Theorem 4, Let X be a complete metric space, and lel S, T be two map-
pmgs from X into CL(X). Assume, there exists a nondecreasing function
: [0, o) — [0, 1) such that forany x, y € X

' DSz, Ty) < a(d(®, yre, ), (12)
where r(x, y) is defined as in Part L.

Then the eonclusion of Theorem 3 holds. “

Proof. Let o, € X, r>d(x,, Sx,). There exists € Sz, such that
d(x,, £1) = t, <T. From (12) we get

d(x,. Tx,) < DSz, , Tx1) < a(l,) max Jd(z,, 1), d(:n; , Ta:l). — d(x,, Tz1)

L x{toymax Jd(x,, *1), d(®1, Txl). d(a: . T)Hd@, T2)) ;= a(l)d(xa, X1

Hence _
d(x;, Tx)) < min {d(x,, %), o, )r}.
There exists x, 6 Tz, so that

d(z;, %) < min {d(x,, 1), a(to)r}
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hy 1nduct1on we get a sequence {xn} with the prOperhea (1) (i) mentioned in
the proof of Theorem 3. where ¢ = a(f,). Thus, fx,] is Cauchy, 50 rp-=a7€X,

We now show that o* < Sx*. Indud. we have
d(a*, ST*) < d{x®, xyg) 1 INTxg 1, Sx¥) - d(x®, Tan) -
+ a(d(Zgy_y » *)) max [d(T2a—y, T*), d(@gu_y. Ty, ), d(T”, Sx*),
1 .
5 [d(xg,_i, %) + d(z¥, Sz*)+ d(x*, Ton)]}.

"Assume thal d(z*, Sx*) == 2e > 0. For n large enough we have
max {d(Tgu_t, T*), d(Xon1, Lg,), d(T*, Tyn)| <.

Now we obtain

| d(x*, Sz*) < d(x*, Tqn) + a(s) d(x*, Sz*),
Lelting n - o= we get a contradiction:

d(x*, Sx*) < a(s)d(x®, Sr*) < d(x*, Sx*).

Thus, x* < Sx*. As in the prool of Theorem 3, it is easy to show thal the two
fixed point sets of S and T coincide. This completes the proof of Theorem 4.

Theorem 5. Let X be a complete metric space and T be a conlinuous
mapping. in X. Assume that there exists a upper semicontinuous from the right
function o: (0, =)— [0,1) such that for any z, y € X, x =y

- d(Tz, Ty) < o{d(@, 1)) r(, y)- | (13)
Then. T has a unique fixed point a* and T"x— z* (yx &€ X).
Proof. Let z,€X, xp1 =Tz, (n=0,1, 2,....). We may assaumc Lhat
:x:a+, + Lo (v11)- FI‘OIn (13) we have
d(Tat1 s Tote) < @ad(Xy ) Tng). (14)

where 2, = a{d(%,. %ny1)). Denoling ¢, == d(x,, ¥ny1) we oblain a decreasing
sequence which converges to p 2> 0.

If p>0 then a;, { a(p)+e <1 for n large enough by the assumplion
on «. From this and (14) we gel p = 0.

Using the method of Wong [24] we now prove that fx | is Cauchyl
Assume the rontrary, that 38 >0 Vn 3p, > ¢, > n such that

d(Zp,, Ty} > 8 d(Tp 1, Fg,) <&
Denoting by = d(xp,, %4,) We obtam
L e by < dlmy,, Tp,—1) Hd@pa—1, zq) < A@p s Tp,—1) F €.
Heance the sequence b; converges to & from the right, From (13) we oblain
d(:cpn+1 P ) = d(T:cpn, qun)g
;— ﬁ(bn) max ?‘b‘" d(TI.F I}lﬂ-]-])' Vd{m{[n'w fn +1) [1(1 Pa 3 x;{”“*_]‘) +
gz, o} < otbw oo+ day x4 4, Tguis)
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fLetting n — oo we obtain a contradiction: & < a(e)e <C &. Thus. [x.} is Cauchy.
The resl of the proof is obvious.
Note that this theorem generalized a result of Boyd and Wong {3],

In the sequel B = B(x, ., R) denotes the open ball in X with cenler at x
and radius R. The two following local forms of the contraction principle
generalize the results of Nadler [12] and Reich [16].

Theorem 6. Let X be a complete metric space and let T be a mapping
[rom B into CL(X). Assume that
1) There exist non decreasing functions a; = (0, o) — [0, 1), i=1..,35,
such that E al(f) << 1 (¥1 > 0) and (17) holds for any =, y € B, vy,
2) d(z,, Tz,) <(l—0R where
_an(8) +oals) + ag(s) -+ aq(s) + 205(s)
T2 — als) — () — agls) — ()
s =sup {d(z,, ®):x €Tz, N B},

Then for wach r satisfying
) diz, . Tx,) <<r << (1 —¢)R
there exisls a fixed point x* of T such that

d(z,, %) <

1—¢

Proof. Denoling

we have _
Bi(s) + B3(5) + Bs(s) _ Ba(S) + Bu(s) -+ B5(S)

1 — Ba(s) — Bs(®) 1—Bils) — Buls)
Repealing the proof of Theorem 3 we obtain a sequence {x.} with the poperlies
(i), (ii). Noling that ¢> d(x,, 2;) and that the condition (ii) implies

[t

r
d(x,, Tn) < ,
1—c¢

we have [z, = B. Therest of the proof is clear.

Theorem 7. The conclusion of Theorem 6 still holds if conditicn 1) is
replaced by

1) There exists a nondecreasing funclion «: (0, o) — {0, 1) such that:
D(Tx, Ty) < ald(zx, y))r(:n,_ §)
for any . y < B, £y, and if in condilion 2) ¢ = a($).

Proof. The proof of this theorem is analogous to the proof of Theorems
4 and 6.

7—ACTA 97



s o

Iil — A FIXED POINT THEOREM OF KRASNOSELSKI TYPE.

Krasnoselski [9] has proved a fixed poinl theorem for mappings of the form
T 4+ S, where T &€ B and S is a compact mapping in a Banach spase. Recently:
Sehgal and Singh [18) extended this result to the case in which T satisfies (1)
with a continuous function e. The folloxving fact shows that these results can
be both derived from a theorem of Sadovski [19] on condensing mappings.
Recall that a mapping T is called condensing if for each bounded nonprecom-
pact subset 4 we have W(T4) < ¥(4), where V¥ is the Kuratowski or the Haus

dorff measure of nonmcompactness.

Proposition 1. Let a mapping T satisfy (1) with a uppcf semi-continuous
function . Then T is condensing.

Proof. Let ¥ be the Kuralowski measure of noncompaciness, and
¥(A) = a. There exists 1 ~ 0 such that a(a) <1 — 9n. By the upper semi-con-
tinuity of « there is g, >0 such that

o) < al@) + 1 (a—5, <t < a e .

We may assume g, < d.

Let & be arbitrary in (0, g). By the definition of W there is a cover
{ A1, An} of A such that s(A) < a+s =1, n,.where 8(,) denotes the
diameter of a set. :

We shall prove that there isa number g <1t such that W(TA) < gla + e)
Fix i € {1,..., n} and let . § be arbitrary in A;. If a —g, < d&, ¥ < a + ¢ then
diTz, Ty) < (1 —mla -+ g) since a(d(x, ML a(@+n<l—" If d{m, y) < a—g,

then d(Tz, Ty) < (1 ——;"—) (a + &) since e<Ta Selling ¢ = max }i—n, 1- —;L
a a

we obtain
s(TAy < qla+ ) (=L 0

Since {TAq,w. T4} covers T4 we gel W(TA) < g(a+ #). Since € is arbi-
trary, ¥(TA) < ga<¥(A) The argument is analogous for the Hausdorff measure
of noncompactness and so the proof of the proposition 1 is completed.

Now, following the method of Krasnoselski [10] we shall prove a fixed
point theorem for mappings of the form T - S, where T &€ M. '

Lemma 4. Let X be a Banach space, D be an open set in X, T: D—X be
a mapping of the class . Then J—T is a homeomorphism from D onto (I-T)D.

Proof. Let x, be an arbitrary element in D. There is >0 such that
S(x, . 28)C D, where S(z,. o) is the closed ball with cenler at %, and radius . Put
f,=x,+Tx, and define the mapping Fox =T% + f(Yx € D).
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Since T' € M there exists § > 0 such thal
. -yl <et+6 = |Te-Tyl e
Put 8" = min [e, 8}, r € (&, €+ &), x € S(x,, r). Then, since |2 — £, || <Te + 4
and T &€ M we have
| Fox — @, [| = | Fox — F oz, =11 T2 — T, § e

Thus, F, maps S(x,, r) inlo S(x,. &). Hif —j,iKr—e then. Fx =Tax 4 f
maps S(x,, r) into itself. Since F& M there cxists a unique x € 5(x,, r) such
thatx = Tx +f, i.e. (/ — T)x = f. This shows that the ‘mapping (/ — Ty~ exisls.
and is coniinuous on (I — T)D. This concludes the proof of Lemma 4.

Lel [T(?t) A € 10,11} be a family of mappings in #.Assume thatT(A)x is
continuous in A for each fized = and that the number & mentioned in Definition
5 does not depend on A. In this case the family {T(})] is called uniform.

Lemma 4 shows that [I — T(A)]D is open and that for each A € {{}, 1] and
f €l —T(M]D the equalion x = T(A)x +f has a unique solution x = R(A, [).
Lemma 5. Let {T(A)] be uniform. Then the mapping R(A, f) is continuous.

Proof. Let x €D and let €2 0 be such that S(z,, 2e)C D. Choose 6 > 0 so0
that 1x—yil <<e+6 = | T(AWx —T(A)y I <s, (vA €[0, 1]). Put 8’ = min [s, s},
r€ (s e--6"), A, €[0, 1]. Define f, = x,—T(A,)x, and Fx =T )z |/, It is

easy to see that F, maps S(x,,r) into S(x, , €). Choose 9> 0 so that ﬂ\<\1- ; € ond

r—e

l A — Ao | <__T[ = “ T(A)xo - T(?\'u)mo ” "i
Let (A, f} be an arbitrary point in the n-neighbourhood of (4,, f,) and define
Fx = T(A)x + f. Since for each x in S(x,, r) we have
I P — 2, = 1 T+ f —T)a, — o | <IN T)x — TN, I +
<

T, — TOE, 1+ I f—f e + =2 25

2 2

E - =TI,
¥

F maps S(z, , r)into itsell. Sine F € M the equalion x = T(A)x -} f has a unique
solution in S(x,, r). Thus, R(}, f) is continuous, compleling the proof of Lemma 5.

Theorem 8. Let D) be an open bounded convex set.in a Banach space X
and let T, S be lwo mappings from D (the closure of D)into X, Assume T €,
S is compact and such that (T 4 8)x € D for every « in 2D (the boundary of 1)
Then T+ S has a fixed point in D.

Proof, Consider the vector field ®x = x—Tx—Sx on D and put F(u, v) =
=u—Tu—Sv (4, v € D), Obviously ® is F-partial invertible [10]. We may
assume Lhat @-is nondegenerale on 41) and hence a quasidegree TH®, F; D)
is defined, We must only show that T¥®, F; D)<=
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Consider the family of vector fields
BNz = . — ATx — A8z — (1 —A)%0, o<r<1, xe D),

where x, is a fixed arbitrary point in D. In view of the boundary condition
T 4 S)aD C D, ®¢k) is nondegenerate on aD for 0 < A<C 1. By assumplion
the field ®(1)=® is nondegenerale too. The family {AT} is uniform and the
mapping S(A, T) = AST |- (1 — M)z, 18 compact. Thus, @(1) defines a quasi-homo-
topy from () = x — x, 10 &()x = dx. From this T®, F; Dy=1 which
concludes the proof of Theorem 8.

Note that the mentioned boundary condition can be replaced by a weaker
one : there exists €, < D such that (T + S)® — XoF (T — x,) for every g oD
and ¢ > 1. .

IV — NONEXPANSIVE MAPPINGS IN LOCALLY CONVEX SPACES

Let X be a locally convex space with a family of prenorms # genera-
ting the topology in X.
Definition 8. [11,22] A mapping T: X— X is called strictly contractive if
Vp&e? Ik = k(p) (0, 1) such that
p(Te —Ty) < kp(x —u), Vz. ¥ & X.
or nonexpansive if ¥p &€ P, vx, yecX
p(Tx =Ty < P& — )
Recall that a set S in a vector space X is called star-shaped atx €8 if
asL (=2 xS, (vhelo, 1], 2&S)
Lemma 6 . Lel X be a complete Hausdorff locaily convex space, S bea
closed bounded star-shaped set in X, T :S->X be a nonexpansive mapping

satisfying the boundary condition T(a8) C S. Then there exists a sequence
fxo} < S such that ©, — 7T, — 0.

Proof. Let |k} be a sequence of numbers tending to 1 ( —> ). Define.

, T,% == kT + (1 — kn) =z, €S,
where = is the point at which § is star-shaped.

Obviously Ty i3 strictly contractive and Tx(38) C < for each n, hence, by
a recent result of Sehgal and Singh [18] each T, has 2 fixed point x, Then

x, = keoTx, + (1 —k,) .

Consequently,
In—-Tﬂ:n == (—1— — 1) (_3:- — ZTn)y vn,
k,

whence VP <P 1
Ty — TX,) =
p( ) ( P

— 1) p (T — T VI

n
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Since S is bounded, we get
P(-’Cn —-Tﬂ:n) - On VP & @s

as n > o Q. € @, — Txy — 0. The proof of Lemma 6 is completed.

Theorem 9 . Let X be a complete Hausdorff loeally convex space, let S be
a compact star-shaped set of X, let T': S—>X be a nonexpansive mapping salis-
fying the houndary condition: T(2S) ¢ S. Then T has a [ixed point.

Proof.
By Lemma 6 there exists a sequence fz,] such thal xq — T2y — 0. By the

compactness of § we may assume that z,— x* € S. Since T is continuous,
Tx, — Tx* Hence z* =Tx*, which concludes the proof of Theorem 9.

Nole that this theorem gencralizes a result of Taylor [22].

Definition 9. We say that a locally convex space X satisfies the Opial
condition if for every « in X and every net {x,] weakly converging to x there
exists p ¢ P such that '

lim p(x, —y)> lim p@, —2)
v v
for each y=+==.

Theorem 10. Let X be a complete Hausdorff locally convex space satisfying
the Opial condition, let § be a weakly compact slar-shaped sel in X, lel Tt S—X
be a nonexpansive mapping salisfying the boundary condition: T(aS) C S. Then
T has a fixed point,

Proof.

By Lemina 6 there exisis a sequence {x.} such that z, = & — Tx,— 0. By
the weak compactness of S. there cxisls a subnet [z} of jw,} which weakly
converges to x* < S. Since T is nonexpansive, Vp € ¥ we have

p(Tx, — Tx*) < p(x, — 7).

Hence, Vp ¢ @ 4
lim p(x, —x*) > lim p(Tx, — Tx*) > lim plx,~zy—Tx*).
v v v

Since z, — 0 we have -
lim p(x, —«*) > lim px, —Tz%), vp &P
v v

Consequently Ta* = x* because X satisfics the Opial condition. The proof of
_-Theorem'lO is ecompleted.
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