STABLE RANDOM MEASURES

NGUYỄN VĂN THU

Institute of Mathematics, Hanoi

SUMMARY. In this note we prove a representation theorem for stable random measures on a locally compact second coutable. Hausdorff topological space.

Through the paper we shall preserve the terminology and notation in [1] Recall some of them: Let δ denote a locally compact second coutable Hausdorff topological space. Further, let \mathcal{F} denote the class of all Borel functions $\sigma:\to [0,\infty]$, \mathcal{M} the class of all Random measures on δ , \mathcal{M}_b the class of all totally bounded measures in \mathcal{M} . In the sequel we shall consider \mathcal{M} as a separable metric space with the vague topology. By a random measure on δ we mean a probability measure on the δ — algebra of all Borel subsets of \mathcal{M} . Given a function $g \in \mathcal{F}$ and a random measure ξ we define a random measure $Tg \, \xi$ on δ by

$$(Tg\,\xi)\,(E)=\xi\,(\{\mu:g\mu\in E\})$$

(E- a Borel subset of \mathcal{M}). In particular, if g is identically equal to a constant c>0 the transform Tg will be denoted by T_c

A random measure ξ is called stable if for every

k = 1,2,... there is a positive number a_k such that

$$\xi_{*\dots*}\xi = : \xi^{*^k} = Ta_k \xi \tag{1}$$

k — times

where the asterisk * denotes the convolution operation.

From this definition it follows that every stable random measure is infinitely divisible. Let L_{ξ} denote the Laplace transform of an infinitely divisible random measure ξ . By virtue of Theorem 6.1 [1] we get the formula

$$-\log L_{\xi}(f) = \alpha f - \lambda (1 - e^{-\pi} f) (f \in \mathfrak{F})$$
 (2)

where $\alpha \in \mathcal{M}$, λ is a measure on $\mathcal{M} \setminus \{0\}$ satisfying the condition

$$\lambda \left(1 - e^{-\pi \dot{B}}\right) < \infty \tag{3}$$

for every bounded Borel subset B of 6. In what follows (α, λ) will be called canonical measures of ξ .

Let ξ be a stable random measure on δ with the Laplace transform given by (2). From (1) and from the uniqueness of the representation (2) we get the equations:

$$a_k a = ka$$
 (4)

and

$$k\lambda = Ta_k \lambda \qquad (k = 1, 2...) \tag{5}$$

The symbol $Ta'_k \lambda$ is obvious. Suppose now that $\xi \neq \sigma_0$ then either $\alpha \neq 0$, $\lambda = 0$ and $a_k = k$ (k = 1, 2, ...) or $\alpha = 0$

$$\lambda \neq 0$$
 and there is a constant $0 < c < 1$ such that $a_k = k^{\frac{1}{c}}$ (k = 1, 2, ...).

Consider the case $\lambda \neq 0$ and suppose that the random measure ξ is supported by \mathcal{M}_b . By virtue of the proof of Theorem 6.1 ([1], p. 38) it follows that the measure λ " on $\mathcal{M} \setminus \{0\}$ defined by the formula

$$\lambda^{"}(d\mu) = (1 - e^{-\mu\sigma}) \lambda(d\mu)$$
 (6)

is finite. Consequently, by the proof of Theorem 6.1 ([1], p. 39) there is some continuous and strictly positive function g on δ such that the measure $T_g\lambda$ " is supported by \mathcal{M}_b , which together with (6) implies that the measure $T_g\lambda$ is supported by \mathcal{M}_b . Moreover, by (5) we get the equation:

$$k Tg\lambda = Ta_k Tg\lambda \ (k = 1, 2, ...) \tag{7}$$

Let \mathcal{M}_1 denote the class of all probability measures on δ . For every Borel subset W of \mathcal{M}_1 and $0 < r < \infty$ we put

$$J(r,W) = Tg\lambda (\{\mu \in \mathcal{M}_b : \mu\sigma \geqslant v; \mu/_{\mu\sigma} \in W\}).$$
 (8)

It should be noted, by the condition (3), that the right hand side of (8) is finite.

Furtheremore, from the equation (7) with $a_k = k^{\frac{1}{c}}$ (0 < c < 1; k = 1,2,...) we have:

$$kJ(r,W) = J(rk^{-\frac{1}{c}}, W)$$

wich by a simple computation implies that

$$J\left(\left(\frac{k}{n}\right)^{\frac{1}{c}},W\right) = \frac{n}{k}J\left(1,W\right)(k,n=1,2...)$$

Since for every W J(r,W) is decreasing in r on $(0, \infty)$ the last equation implies:

$$J(r, W) = r^{-c} J(1, W)$$
 (9)

for all r and W. Now putting $I = \{\mu \in \mathcal{M}_b : r_1 \leqslant \mu \sigma < r_2, \mu/\mu \sigma \in W\}$, $\beta'_g(W) = c^{-1} J(1, W)$

and taking into account the formula (9) we get the formulas

$$T_{g} \lambda (I) = J (r_{1}, W) - J (r_{2}, W)$$

$$= \int_{W} \int_{r_{1}}^{r_{2}} \frac{dn}{n^{1+c}} \beta' (ds)$$

$$= \int_{\mathcal{M}_{b}} \chi_{I}(r, s) \frac{dr}{r^{1+c}} \beta'_{g} (ds)$$

$$(10)$$

where $\mu = rs$, $s = \mu/_{\mu\sigma} \in \mathcal{M}_1$.

Since all sets of type I form a semi—algebra of subsets of $\mathcal{M}_b \setminus \{o\}$ and they generate the Borel δ — algebra in $\mathcal{M}_b \setminus \{o\}$ it follws that for every Borel set A in $\mathcal{M}_b \setminus \{o\}$

$$(Tg(\lambda))(A) = \int_{\mathcal{M}_1} \chi_A(r,s,\frac{dr}{r^{1+c}}\beta_g'(ds))$$

which together with (2) implies that

$$-\log L_{\xi}(f) = \lambda (1 - e^{-\pi} f)$$

$$= T_{g} \lambda (1 - e^{\pi f g^{-1}})$$

$$= \int_{\mathcal{M}_{1}}^{\infty} (1 - e^{-r\mu} (fg^{-1})) \frac{dr}{r^{1+c}} \beta' (d\mu)$$

$$= \int_{\mathcal{M}_{1}}^{[\mu} (fg^{-1})]^{c} \beta (d\mu)$$
and
$$\beta (d\mu) = \int_{x}^{\infty} \frac{1 - e^{-x}}{x^{1+c}} dx \beta' g (d\mu)$$
(11)

where $f \in \mathcal{F}$ and

$$= \frac{1}{c} \Gamma(1-c) \beta' (d\mu).$$

For general stable ξ (possibly ξ is not supported by \mathcal{M}_b) there exists some continuous and strictly positive function h on δ ([1], p. 39), such that T_h ξ is supported by \mathcal{M}_b . Clearly, the random measure T_h ξ is stable. Let

 (α, λ) and (α_h, λ_h) be canonical measures of ξ and T_h ξ , respectively. Then if $\alpha = 0$ and $\lambda \neq 0$ it follows that $\alpha_h = 0$ and $\lambda_h \neq 0$. In this case, by virtue of (11) we get the formula

$$-\log L_{\xi}(f) = -\log L_{T_{h\xi}}(fh^{-1})$$

$$= \int_{\mathcal{M}_{1}} [\mu (fg^{-1}h^{-1})]^{c} \beta_{h} (d\mu)$$

$$= \int_{\mathcal{M}} [\mu (f)]^{c} T_{gh} \beta_{h} (d\mu)$$
(12)

for every $f \in \mathcal{F}$. Here \mathcal{A} denotes the support of a finite measure $\beta =: T_{gh} \beta_h$.

It is clear that:

$$\mathcal{A}\subseteq \{\ \mathit{gh}\mu: \mu\in \mathcal{M}_1\ \}\subset \mathcal{M}\setminus \{\ o\ \}.$$

Let K be a compact subset of $\mathfrak G$. Since the functions g and h are continuous and strictly positive we infer that

$$\sup_{\mu \in \mathcal{A}} \mu(\mathcal{K}) < \infty \tag{13}$$

Conversely, given a Borel subset \mathcal{A} of $\mathcal{M}\setminus\{0\}$ such that for every compact \mathcal{K} of δ the condition (14) holds and given a finite measure β on $\mathcal{M}\setminus\{0\}$ supported by \mathcal{A} the formula:

$$-\log L_{\xi}(f) = \int_{\mathcal{A}} \left[\mu(f)\right]^{c} \beta(d\mu) \qquad (o < c < 1)$$
 (14)

defines a random measure ξ on δ . In particular, this random measure must be stable. Thus we have proved the following theorem.

THEOREM 1. Let \S be a stable random measure on δ . Then there is a measure $\alpha \in \mathcal{M}$ such that

$$-\log L_{\xi}(f) = \alpha f \qquad (f \in \mathfrak{F}) \tag{15}$$

or there is a number o < c < 1, a Borel subset \mathcal{A} of $\mathcal{M} \setminus \{o\}$ with the property (13), a finite Borel measure β on \mathcal{A} and the formula (14) holds.

Conversely, for any α , β , \mathcal{A} , c mentioned above the formulas (14) and (15) define some stable random measures on δ .

We now consider a particular case when the stable random measure ξ has independent increments. From Theorem 7. 2. ([1], p. 46) it follows that:

$$-\log L_{\xi}(f) = \alpha f + \int_{(0, \infty)} (1 - e^{-xf(t)}) \gamma(dx, dt)$$
(16)

 $(f \in \mathcal{F})$, where $\alpha \in \mathcal{M}$, γ is a Radon measure on the product $(0, \infty)$ x σ such that for every Borel bounded subset B of δ

$$\int_{0}^{\infty} (1 - e^{-x}) \, \Upsilon(dx, B) < \infty. \tag{17}$$

Moreover, if $\xi \neq \delta_0$ then either $\alpha \neq 0$ and $\gamma = 0$ or $\alpha = 0$ and $\gamma \neq 0$. Assume that $\gamma \neq 0$. For every number $\alpha > 0$ we define a measure $T_{\alpha}\gamma$ by

$$T_a \gamma (dx, dt) = \gamma (a^{-1} dx, dt)$$

Then, by virtue of (1), it follows that there is a number 0 < c < 1 such that for every k = 1,2,... we have the equation

$$k \uparrow = T_{a_k} \uparrow \tag{18}$$

where $a_k = \frac{1}{k c}$ (k = 1, 2,...). It is exactly the same as in the case of stable probability measures on $[0, \infty)$ it follows by the conditions (17) and (18), that for every bounded Borel subset B of 6

$$\gamma (dx, B) = \frac{1}{x^1 + c} dx \, \gamma (1, B)$$
(19)

Now putting

$$\mu(B) = \frac{\Gamma(1-c)}{c}$$
 $\gamma(1, B)$ and taking into account

the formulas (16) and (19) we have:

$$-\log L_{\xi}(f) = \int_{0}^{\infty} \int_{0}^{\infty} \left(1 - e^{-xf(t)}\right) \frac{dx}{x^{1+c}} \mu(dt)$$
$$= \mu(f^{c}) \qquad (f \in \mathbb{F}).$$

Thus we have proved the following theorem:

THEOREM 2. Let ξ be a stable random measure on 6 with independent increments. Then there exists a Radon measure μ on 6 and a number $o < c \leqslant 1$ such that

$$-\log L_{\xi}(f) = \mu(f^{c}) \qquad (f \in \mathfrak{F}) \qquad (20)$$

If ξ is non-degenerate then (μ, c) is uniquely determined by ξ .

Received April 20th, 1978.

REFERENCES

1. O. Kallenberg, Random measures, Akademie - Verlag. Berlin, 1976.

2. J. Kuelbs, A representation theorem for symmetric stable processes stable and measures on H, Z. Wahrscheinlichkeits theorie verw. Geb. 26, (259 — 271), 1973.