ON SQUARE INTEGRABLE FACTOR REPRESENTATIONS OF LOCALLY COMPACT GROUPS

NGUYỄN HỮU ANH, VƯƠNG MẠNH SƠN

Institute of Polytechnics, Hanoi.

Let G be a separable locally compact unimodular group, Z a closed central subgroup of G. Let χ be a character of Z, a representation π of G is said to be a χ -representation if $\pi \mid Z$ is equivalent to a multiple of χ . A factor representation π of G (which must be a χ -representation for a certain χ) issaid to be square integrable mod Z (abbrev. SI mod Z) if there exist non zero vectors φ , Ψ in the representation space $\mathcal{H}(\pi)$ such that:

$$\int_{G/Z} |(\pi(g) \varphi, \psi)|^2 d\overline{g} < \infty \qquad (1)$$

Note that the integration on G/Z makes sense since the integrand is constant on each Z-coset.

If π is a SI mod Z irreducible representation, (1) holds for all φ , ψ in $\mathcal{R}(\pi)$ and we have Schur's orthogonality relations. In this note we prove that a SI mod Z factor representations π is of type I if and only if (1) holds for all φ , ψ in $\mathcal{R}(\pi)$. In particular the unimodular Lie groups with factor representations SI mod Z in the latter sense are precisely those groups with SI mod Z irreducible representations which have been classified in [1]. In the second part of the note we give some necessary and sufficient conditions for a SI mod Z representation to be factor, and in particular to be irreducible.

1. A GENERALIZATION OF SCHUR'S ORTHOGONALITY RELATIONS

LEMMA 1. 1. If π is a χ -representation of G such that all matrix coefficients of π are SI mod z, then there exists a constant $C_{\pi}>0$ such that

$$\int_{G/z} |(\pi(g)\varphi,\psi)|^2 d\overline{g} \leqslant C_{\pi} \|\varphi\|^2 \|\psi\|^2, \varphi, \psi \in \mathcal{H}(\pi) \qquad (2)$$
Proof. For fixed φ and ψ the matrix coefficient $(\pi(g)\varphi,\psi)$ belongs to the hilbert space L_{χ}^2 of all measurable functions f on G such that for all z in $Z: f(zx) = \chi(z)f(x)$ for almost all x , and
$$\int_{G/z} |f(x)|^2 dx < \infty.$$
 Let $\varphi_n \to \varphi$ in $\mathcal{H}(\pi)$ such that $(\pi(g)\varphi_n, \psi)$ is convergent in L_{χ}^2 .

Since $(\pi(g) \varphi_n, \psi)$. $\rightarrow (\pi(g)\varphi, \psi)$ for all g in G, $(\pi(g)\varphi_n, \varphi)$ also converges to $(\pi(g)\varphi, \psi)$ in L_{χ}^2 . Thus by the closed graph theorem, the linear map $\varphi \rightarrow (\pi(.)\varphi, \psi)$ is continuous for every fixed ψ in $\mathcal{B}(\pi)$. Similarly, for every fixed φ the anti-linear map $\psi \rightarrow (\pi(.)\varphi, \psi)$ is also continuous. Therefore the sesquilinear map $(\varphi, \psi) \rightarrow (\pi(.)\varphi, \psi)$ is jointly continuous (cf [3], p. 83), and hence there exists $C_{\chi} > 0$ such that (2) holds.

PROPOSITION 1. 2. The assumptions beeing as in Lemma 1. 1, then (i) forevery ψ , ψ ' in $\mathcal{C}(\pi)$, there exists $d_{\pi}(\psi, \psi')$ in $\mathcal{L}(\mathcal{C}(\pi))$ such that

$$\int_{G/z} (\pi (g) \overline{\varphi}, \psi) (\pi (g) \overline{\varphi}', \psi') d\overline{g} = (d_{\pi} (\psi, \psi') \varphi, \varphi')$$
(3)

(ii) $(\psi, \psi') \rightarrow d_{\mathbf{x}}(\psi, \psi')$ is a continuous sesquilinear mapping from

$$\mathcal{H}(\pi) \times \mathcal{H}(\pi)$$
 into $\mathcal{L}(\mathcal{H}(\pi))$.

(iii) each d_z (ψ , ψ ') is an intertwining operator for π .

Proof; (i) follows from Lemma 1.1 and Riesz representation theorem. Moreover we have the estimate

$$\begin{split} \left| \int_{G/Z} (\pi \ (g) \ \varphi, \ \psi) \ \overline{(\pi \ (g) \ \varphi', \ \psi')} \ d\overline{g} \right|^2 \leqslant \int_{G/Z} \left| (\pi \ (g) \ \varphi, \ \psi) \ \right|^2 \ d\overline{g} \times \\ & \int_{G/Z} \left| (\pi \ (g) \ \varphi', \ \psi') \ \right|^2 \ d\overline{g} \times \\ \leqslant C_{\pi}^2 \| \varphi \|^2 \| \psi \|^2 \| \varphi' \|^2 \| \psi' \|^2 \end{split}$$

This proves (ii). Finally, for every ψ , ψ in \mathcal{H} (π) we have

$$(d_{\pi}(\psi, \psi') \pi (g) \varphi, \varphi') = \int_{G/Z} (\pi (x) \pi (g) \varphi, \psi) \overline{(\pi (x) \varphi', \psi')} d\overline{x}$$

$$= \int_{G/Z} (\pi (x) \varphi, \psi) \overline{(\pi (xg^{-1}) \varphi', \psi')} d\overline{x}$$

$$= (d_{\pi} (\psi, \psi') \varphi, \pi (g^{-1}) \varphi')$$

$$= (\pi (g) d_{\pi} (\psi, \psi') \varphi, \varphi')$$

i. e.
$$d_{\pi}(\psi, \psi') \pi(g) = \pi(g) d_{\pi}(\psi, \psi')$$
 A $g \in G$ O. E. D.

Remark: if π is irreducible, then $d_{\pi}(\psi, \psi')$ is a scalar operator and hence (3)

is just the ordinary Schur's orthogonality relations.

LEMMA 1. 3. The assumptions beeing as above. Then each multiple of π has all of its matrix coefficients SI mod Z.

Proof: Let $n\pi$ be a multiple of π so that the space $\mathcal{H}(n\pi)$ may be realized as $\mathcal{H}(\pi) \otimes \mathcal{K}$ where \mathcal{K} is a n-dimensional (1) hilbert space. Let $\{e_i\}$ be an orthonormal basis of \mathcal{K} , then for every φ in $\mathcal{H}(n\pi)$ we have $\varphi = \sum_i \varphi_i \otimes e_i$ where $\varphi_i \in \mathcal{H}(\pi)$ and $\|\varphi\|^2 = \sum_i \|\varphi_i\|^2$. The action of $n\pi$ on φ is given by $n\pi(g) = \sum_i \pi(g) \varphi_i \otimes l_i$. We have $(n\pi(g)\varphi, \varphi) = \sum_i (\pi(g)\varphi_i, \varphi_i)$ for every g in G. On the other hand it follows from Lemma 1.1 that

$$\|\left(\pi(g)\varphi_{i},\varphi_{i}\right)\|^{2} = \int_{G/Z} \|\left(\pi\left(g\right)\varphi_{i},\varphi_{i}\right)\|^{2} d\overline{g} \leqslant C_{\pi} \|\varphi_{i}\|^{4}$$
Hence
$$\sum_{i} \|\left(\pi(g)\varphi_{i},\varphi_{i}\right)\| \leqslant \sqrt{C_{\pi}} \sum_{i} \|\varphi_{i}\|^{2} = \sqrt{C_{\pi}} \|\varphi\|^{2}$$

Therefore $(n\pi(g)\varphi,\varphi) = \sum_{i} (\pi(g)\varphi_{i},\varphi_{i}) \in L^{2}_{\chi}$. By polarization we see that all

O. E. D.

2. THE PROOF OF THE MAIN RESULT.

matrix coefficients of $n\pi$ belong to L^2_{χ} .

Recall that L_{χ}^2 is the space of all measurable functions f on G such that for all z in Z we have $f(zx) = \chi(z)f(x)$ for almost all x, and $\int_{G/Z} |f(x)|^2 d\bar{x} < \infty$.

The representation ρ of G defined by $\rho(g) f(x) = f(xg)$ is called the induced representation of χ and denoted by $\inf_{Z \cap G} \chi$. Let χ be the representation of G in L^2_{χ} given by χ (g) χ (g) χ (g) χ (g) Let χ (G) be the algebra of continuous functions with compact support on χ (G) we set χ (G) χ (G) χ (G) we set χ (E) χ (F) χ (G) we set χ and each χ (a) has compact support mod χ (cf. [4], Lemma 3.5). For χ (G) in

(i)
$$f_0^*(x) = \overline{f_0(x^{-1})} \quad \forall x \in G$$

(ii) $(f_0^*g_0)(x) = \int f_0(y) g_0(y^{-1}x) dy \quad \forall x \in G$
(iii) $(f_0, g_0) = \int f_0(y) \overline{g_0(y)} d\overline{y}$

The addition and multiplication are defined pointwise.

 M_{γ} , put:

⁽¹⁾ Here n can be an arbitrary cardinal, finite or infinite.

LEMMA 2.1. My is a hilbert algebra.

Proof: Note that the multiplication $f_{0*}g_{0}$ in M_{χ} is well defined. Now it is clear that:

$$(f_0, g_0) = (g_0^*, {\atop o}^*) \text{ and }$$

 $(f_{0*}g_0, h_0) = (g_0, f_{0*}h_0)$
for all f_0, g_0, h_0 in M_{χ} . Moreover

$$(f_{o}*g_{o})(x) = \int_{G/Z} f_{o}(y) g_{o}(y^{-1}x) d\bar{y}$$

$$= \int_{G/Z} \int_{Z} f(zy) \chi(z)^{-1} g_{o}(y^{-1}x) dz d\bar{y}$$

$$= \int_{G} f(y) g_{o}(y^{-1}x) dy = \lambda (f) g_{o}(x)$$

Hence the mapping $g_0 \longrightarrow f_0 * g_0$ is continuous in the prehilbert space M_{γ} . Finally we have

$$(f_0 * g_0)_x (y) = (f_0 * (g_0)_x)(y)$$
, and
 $(\alpha f_0)(x) = (\alpha f)_0(x)$

for all f, g in $\mathcal{K}(G)$, and α is a bounded continuous function on G which is constant on the Z—cosets, where f_x is the right translation of f by $x: f_x(y) = f(yx)$. Thus by Lemma 3.3 of [4] $M_{\chi} * M_{\chi}$ is dense in M_{χ} , and M_{χ} is a hilbert algebra (cf. [2], A 54)

O.E.D.

Let A_{χ} be the perfect hilbert algebra of M_{χ} consisting of all bounded elements in L_{χ}^2 . By the same computation as above we see that for all f in $\mathcal{K}(G)$ and all ξ in L_{χ}^2 : $(f_0 * \xi)(x) = \lambda(f) \xi(x)$. Similarly: $(\xi * f_0)(x) = \rho(\widetilde{f}) \xi(x)$ where $\widetilde{f}(x) = f(x^{-1})$. Hence $\mathcal{U}(A_{\chi}) = \lambda(G)$, and $\mathcal{V}(A_{\chi}) = \rho(G)$. But $\mathcal{V}(A_{\chi}) = \mathcal{V}(A_{\chi})$, (cf. [2], A54), therefore $\lambda(G) = \rho(G)$.

Recall that if ρ is a representation of G, and π is a subrepresentation of ρ defined by a projection $E \in \rho(G)$, then there exists a unique projection F in the center of $\rho(G)$ such that $E \leqslant F$ and F is minimal amongs the projections lying in the center of $\rho(G)$ majorizing E; the projection F is called the central support of π . The representation π is a factor if and only if F is minimal in the center of $\rho(G)$.

Now assume that π is a $SI \mod Z$ factor representation of G, than π is quasi equivalent to a subrepresentation π of $\rho = \operatorname{ind}_{G \upharpoonright Z} \chi$ (cf.[5]). Let π be the subrepresentation of ρ corresponding to the central support F of π . Since F is minimal in the center of $\rho(G)^{\chi}$, π is a factor and $\pi = \pi$ π . Assume

in addition that all matrix coefficients of π are $SI \mod Z$. By Lemma 1.3 all matrix coefficients of $\infty \pi$ are $SI \mod Z$ and hence so are those of π ". Thus for all ξ and η in $\mathcal{H}(\pi) = FL^2_{\chi}$ we have: $(\eta^*_{*\xi})(g) = (\eta^*, \lambda(g)\xi^*) = (\eta^*, (\rho(g)\xi)^*) = (\pi^*(g)\xi, \eta) \in L^2_{\chi}$. Since $(\eta^*_{*\xi})(g) = (\rho(g)\xi, \eta) = 0$ if ξ is perpendicular to FL^2_{χ} we see that for every fixed η in FL^2_{χ} , $\xi \to \eta^*_{*\xi}$ is an every where defined linear operator from L^2_{χ} into itself. Therefore by the same argument as in the proof of Lemma 1.1 we see that this operator is continuous, i.e. $\eta^* \in A_{\chi}$. Finally, since FL^2_{χ} is clearly self conjugate, $FL^2_{\chi} = FA_{\chi}$ is a complete hilbert algebra. Hence the Von Neumann algebra $\mathcal{U}(A_{\chi})_F = \mathcal{U}(F, A_{\chi})$ is of type I, i. e. π is of type I (cf. [2], A 65). Thus we have proved the first part of.

THEOREM 2. 2. Let π be a SI mod Z factor representation of G, then π is of type I if and only if all of its matrix coefficients are SI mod Z, i. e. for all φ , ψ in \mathcal{H} (π)

$$\int_{G/Z} |(\pi(g) \varphi, \Psi)|^2 d\overline{g} < \infty$$

Proof: It remains to prove the necessary condition. Assume that π is of type I so that π is equivalent to a multiple of some irreducible representation π_o of type I so that π is equivalent to a multiple of some irreducible representation π_o of G. Since π is quasi equivalent to a subrepresentation of $\inf_{Z \cap G} \chi$, so is π_o , i.e. π_o is SI mod Z. Therefore by Schur's orthogonality relations, all matrix coefficients of π_o are SI mod Z. Thus by Lemma 1. 3 all matrix coefficients of π are also SI mod Z.

Q. E. D.

3. In view of Theorem 2. 2, it would be interesting if we could find conditions for a representation with all matrix coefficients $SI \mod Z$ to be a factor, and in particular to be irreducible. First note that if π is the sum of two non-equivalent $SI \mod Z$ irreducible representations then all matrix coefficients of π are $SI \mod Z$ but π is not a factor. Now let π be a χ -representation such that all of its matrix coefficients are $SI \mod Z$. For all ψ and ψ' in $\mathcal{H}(\pi)$, let $d_{\pi}(\psi, \psi')$ be the intertwining operator for π determined by Lemma 1. 3.

Put $\mathfrak{D}=\{d_{\pi}(\psi,\psi')\mid \psi,\psi'\in \mathcal{H}(\pi)\}$. It is easy to see that \mathfrak{D} is self conjugate.

Hence $\mathcal{A} = \mathfrak{D}$ " is a Von Neumann algebra. We have

PROPOSITION 3. 1. π is a factor if and only if \mathcal{A} is a factor. Moreover if it is the case then $\mathcal{A} = \pi$ (G).

Proof: Assume that π is a factor, then π is of type I by Theorem 2.2, hence we may assume that $\pi = \pi_o \otimes \text{Id}$, $\mathcal{H}(\pi) = \mathcal{H}(\pi_o) \otimes \mathcal{K}$, where π_o is an

irreducible representation and \mathcal{K} is some hilbert space. Thus $\pi(G)' = C \otimes \mathcal{L}(\mathcal{K})$. In virtue of Proposition 1.2. $\mathfrak{D} \subset \pi(G)'$, hence for every ψ , ψ' in $\mathcal{H}(\pi)$, there exists an operator $d'_{\pi}(\psi, \psi') \in \mathcal{L}(\mathcal{K})$ such that $d_{\pi}(\psi, \psi') = \mathrm{Id} \otimes d'_{\pi}(\psi, \psi')$.

Set $\varphi = \varphi_o \otimes \varphi_1$, $\psi = \psi_o \otimes \psi_1$, $\varphi' = \varphi'_o \otimes \varphi'_1$, $\psi' = \psi' \otimes \psi'$ in (3) we obtain

$$C_{\mathbf{x}} (\overline{\psi_{\mathbf{0}}, \psi_{\mathbf{0}}}) (\varphi_{1} \psi_{1}) (\psi_{1}, \varphi_{1}') = (d'_{\mathbf{x}} (\psi, \psi') \varphi_{1}, \varphi_{1}'),$$

where $\frac{1}{C_{\pi}}$ is the formal degree (or dimension) of π_0 , i. e.

$$d_{\mathbf{z}}'(\psi, \, \psi') \, \varphi_{\mathbf{i}} = C_{\mathbf{z}} \, \overline{(\psi_{o}, \, \psi'_{o})} \, (\varphi_{\mathbf{i}}, \, \psi_{\mathbf{i}}) \, \psi'_{\mathbf{i}} \quad \text{for all } \varphi_{\mathbf{i}}, \, \psi_{\mathbf{i}}, \, \psi'_{\mathbf{i}} \in \mathcal{K}$$

From this it follows that $\mathcal{A} = \pi(G)' \simeq \mathcal{L}(\mathcal{K})$.

Conversely assume that \mathcal{A} is a factor. Let E be any projection belonging to the center of π (G), we will prove that E=0 or 1.

Note that $E \in \mathcal{A}'$ since $\pi(G)$ " $\subset \mathcal{D}' \subset \mathcal{A}'$. Now let $A \in \mathcal{A}'$, then:

$$(d_{\pi} (\psi, \psi') \varphi, E A \varphi') = (d_{\pi} (\psi, \psi') E \varphi, A\varphi')$$

$$= \int_{G/Z} (\pi (g) E \varphi, \psi) \overline{(\pi (g) A \varphi', \psi')} d\overline{g}$$

$$= \int_{G/Z} (\pi (g) \varphi, E \psi) \overline{(\pi (g) A \varphi', \psi')} d\overline{g}$$

$$= (d_{\pi} (E \psi, \psi') \varphi, A \varphi')$$

$$= (d_{\pi} (E \psi, \psi') A^* \varphi, \varphi')$$

$$= \int_{G/Z} (\pi (g) A^* \varphi, E \psi) \overline{(\pi (g) \varphi', \psi')} d\overline{g}$$

$$= \int_{G/Z} (\pi (g) E A^* \varphi, \psi) \overline{(\pi (g) \varphi, \psi')} d\overline{g}$$

$$= (d_{\pi} (\psi, \psi') A E^* \varphi, \varphi')$$

$$= (d_{\pi} (\psi, \psi') \varphi, A E \varphi')$$

Since the vectors d_{π} (ψ , ψ ') φ where ψ , ψ ', $\varphi \in \mathcal{H}(\pi)$ span $\mathcal{H}(\pi)$, we see that AE = EA, i. e. $E \in \mathcal{A}'' = A$. Therefore $E \in \mathcal{A} \cap \mathcal{A}' = \varphi$. Id, and hence E = 0 or 1.

Q.E.D.

COROLLARY3. 2. π is irreducible if and only if for all $\phi,\,\psi$ in H (π) we have

$$\int_{G/Z} |(\pi(g)\varphi,\psi)|^2 d\overline{g} = C_{\pi} \|\varphi\|^2 \|\psi\|^2, \tag{4}$$

where C_{\pm} is a positive constant.

Proof: the necessary condition follows immediately from Schur's orthogonality relations. To prove the sufficient condition we observe that it follows from (3) and (4):

$$(d_{\pi}(\psi, \psi) \varphi, \varphi) = (C_{\pi}(\psi, \psi) \varphi, \varphi)$$

Thus by polarization:

$$d_{\mathfrak{M}}(\psi, \psi) = C_{\mathfrak{M}} \| \psi \|^2 \operatorname{Id}$$

Hence $\mathcal{A} \simeq C$ and π $(G)' = \mathcal{A} \simeq C$, i. e. π is irreducible.

Q.E.D

Remark: the sufficient condition may also be proved directly by observing that if π is not irreducible then we can select φ and ψ in two non zero mutually orthogonal invariant subspaces of $\mathcal{H}(\pi)$ so that

$$\int |(\pi(g) \varphi, \psi)|^2 d\overline{g} = 0, \text{ while (4) implies that}$$

$$G/Z$$

$$\int |(\pi(g) \varphi, \psi)|^2 d\overline{g} = C_{\pi} \|\varphi\|^2 \|\psi\|^2 \neq 0: \text{contradiction}$$

$$G/Z$$

PROPOSITION 3. 3. Let π be a \mathcal{X} — representation such that $\int |(\pi(g) \varphi, \varphi)|^2 d\overline{g} = C \|\varphi\|^2$ (5)

for all φ in \mathcal{H} (π) , where C is some positive constant.

Under this condition, if π is not irreducible then it is equivalent to a multiple of some one-dimensional representation of G. In particular G/Z must be compact.

Proof: it is easy to see that (5) implies that all matrix coefficients of π are $SI \mod Z$. Let \mathcal{A} be as above then $\mathcal{A} \subset \pi(G)$. Let E be any projection belonging to the center off \mathcal{A} . Put F = 1 - E. It follows from (3) and (5) that:

$$(d_{\pi}(\varphi, \varphi) \varphi, \varphi) = C \parallel \varphi \parallel^{4} \qquad (6)$$

On the other hand:

$$C \| \varphi \|^{4} = C (\| E \varphi \|^{2} + \| F \varphi \|^{2})^{2}$$

$$= C \| E \varphi \|^{4} + C \| F \varphi \|^{4} + 2C \| E \varphi \|^{2} \| F \varphi \|^{2}$$
and
$$(7)$$

$$(d_{\pi}(\varphi, \varphi) \varphi, \varphi) = (d_{\pi}(\varphi, \varphi) E\varphi, E\varphi) + (d_{\pi}(\varphi, \varphi) F\varphi, F\varphi)$$

$$= \int_{G/Z} |(\pi(g) E\varphi, \varphi)|^{2} dg + \int_{G/Z} |(\pi(g) F\varphi, \varphi)|^{2} d\bar{g}$$

$$= \int_{G/Z} |(\pi(g) E\varphi, E\varphi)|^{2} d\bar{g} + \int_{G/Z} |(\pi(g) F\varphi, F\varphi)|^{2} d\bar{g}$$

$$= G/Z \qquad G/Z$$

$$= C ||E\varphi||^{4} + C ||F\varphi||^{4}$$
(8)

Now it follows from (6), (7) and (8) that

$$||E \varphi||^2 ||F\varphi||^2 = 0 \qquad \forall \varphi \in \mathcal{H}(\pi)$$

Therefore E=0 or 1, i. e. \mathcal{A} is a factor and hence π is a factor as indicated by Proposition 3.1. Moreover π is of type I by Theorem 2.2. Assume that π is not irreducible. Then we can select two mutually orthogonal minimal invariant subspaces \mathcal{H}_1 and \mathcal{H}_2 of \mathcal{H} (π). Let T be a unitary intertwining operator between two equivalent irreducible subrepresentations of π corresponding to \mathcal{H}_1 and \mathcal{H}_2 respectively so that $\pi(g)T\phi = T\pi(g)\phi$, $\forall \phi \in \mathcal{H}^1$ By Schur's orthogonality relations we have

$$\int_{G/Z} (\pi (g) \varphi_{1}, \varphi_{1}) \overline{(\pi (g) \varphi_{2}, \varphi_{2})} d\overline{g} = \int_{G/Z} (\pi (g) \varphi_{1}', \varphi_{1}) (\pi \overline{(g) T^{-1} \varphi_{2}, T^{-1} \varphi_{2})} d\overline{g} = C |(\varphi_{1}, T^{-1} \varphi_{2})|^{2}$$

$$(9)$$

Note that the formal degree of $\pi \mid \mathcal{H}_1$ is just C. On the other hand it follows from (5) that

$$C \| \varphi_{1} + \varphi_{2} \|^{4} = \int_{G/Z} |(\pi (g) \varphi_{1} + \varphi_{2}, \varphi_{1} + \varphi_{2})|^{2} d\overline{g}$$

$$= C \| \varphi_{1} \|^{4} + C \| \varphi_{2} \|^{4} + 2 \operatorname{Re}_{G/Z} (\pi (g) \varphi_{1}, \varphi_{1}) \overline{(\pi (g) \varphi_{2}, \varphi_{2})} d\overline{g}$$

$$= \frac{1}{G/Z}$$

i. e.

$$\operatorname{Re} \int_{G/Z} (\pi (g) \varphi_{1}, \varphi_{1}) \overline{(\pi(g) \varphi_{2}, \varphi_{2})} d\overline{g} = C \| \varphi_{1} \|^{2} \| \varphi_{2} \|^{2}$$

$$(10)$$

Now (9) and (10) imply:

$$\|(\varphi_1, T^{-1} \varphi_2)\|^2 = \|\varphi_1\|^2 \|T^{-1} \varphi_2\|^2 \qquad \forall \varphi_1 \in \mathcal{H}_1, \ \forall \ \varphi_2 \in \mathcal{H}_2$$

Thus by Schwartz — Cauchy inequality we must have dim $\mathcal{H}_1 = \dim \mathcal{H}_2 =$ = 1. Moreover in this case G/Z must be compact or, otherwise π can not be SI mod Z.

Q.E.D.

Received April 15th, 1978.

REFERENCES

- 1. N. H. Ann. Classification of unimodular Lie groups with square integrable representations. Preprint, the Institute of Polytechnics, Hanoi, 1978.
 - 2. J. Dixmier, Les C*_algèbres et leurs représentations. Gauthier Villars, Paris, 1964'
- 3. N. Dunford and J. T. Schwarz, Linecar operators, vol 1 Interscience Publishers, New York, 1958.
- 4. G. W. Mackey, Induced representations of locally compact groups I, Ann. of Math. Vol 55 (1952), pp. 101 139.
- 5. J. Rosenberg, Square integrable factor representations of locally compact groups. Preprint, University of California, Berkeley, USA.