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Let G be a separable locally compact unimodular group, Z a closed cen.
tral subgroup of G. Lot % be a characterof Z, a representation x of G is said
to be a y-representafion if m1Z is equivalent to a multiple of Y. A factor
representation st of G (which must be a y-representation for a certain %) is=
said to be square inlegrable mod Z (abbrev. SI mod Z) if there exist non zero
vectors ¢, ¥ in the representation space &% (=) such that:

SG/Z | (t(g) »:) | *dg < = . _ o 1)

Note that the integration on G/Z makes sense since the integrand is cons-
tant~on each Z-coset.

If s is a ST mod Z irreducible representation, (1) holds for all ¢, ¥ in
6 (n) and we have Schur's orthogonality relations. In this note we prove that
. a §I mod Z factor representations s is of type I if and only if (1) holds for
all ¢, ¥ in &% (7). In particular the unimodular Lie groups with facior represen-
sations SI mod Z in the latter sense are precisely those groups with S/ mod Z
* irreducible representations which have been classified in [1]. In the second part
of the note we give some necessary and sufficient conditions for a2 SI mod Z
representation to be factor, and in particular to be irreducible.

1. A GENERALIZATION OF SCHUR'S ORTHOGONALITY RELATIONS

LEMMA 1. 1. If = is a % -represeniation of G such that all mairiz coeffi-.
cients of @ are SI mod z, then there exists a constant C, > O such that

SGIZ It (g) e 9)12d7 < C= ol vt opyed® @
Proof. For fixed ¢ and ¢ the matrix coefficient (= (g), ¥) belongs to the
hilbert space L; of all measurable functions fon G such that for all z in

7z:f (zx)= ?c'(z)f(x) for almostallz, and”SG/z_ [ f(x)12de < oo Let@p — g
in %6 (ét) such that { x(g) ? y) is convergent in Lx .
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Since (% (g} 9 . p). — (g, ) for all g in G, ((g)9,,¢) also conver-

. 2 .
ges to (x(g)es ) in L’l . Thus by the closed graph theorem, the linear map

¢ —(= (.) , ¥) is continuous for every fixed ¢ in P56 (). Similarly, for every fixed
t the anti-linear map y — (:r: (-) 9, ¥) is also continuous. Therefore the sesquilinear
map (@, ) - (x (.) @, ¥} is jointly continuous (cf [ 3], p. 83), and hence there
exists C_. > O such that (2) holds. : !

PROPOSITION 1. 2. The assumplions beeing as -in Lemma 1. 1, then
(i) forevery ¢, ' inF6 (x), there exists dx= (\, ) in £ (96 (%) ) such that

SG/U @ @ D(Z (D ¢» ¥) 47 = (&, . ¥) ¢, ¢ @)
(it) (v, v") — d (¥ V") is a continuous sesquilinear mapping from
F (%) X F6 () into £ (6 (x)). |

(iii) each d. (9, ¥") is an intertwining operator for . 4

-~ Proof ; (i) follows from Lemma 1.1 and Riesz representation theorem.
Moreover we have the estimate

gz @D E@ W) dgl < () (= (@) o 9) P dyx

Yoz 17D @ 9) [ &
<IN hzie vy

. This ' proves (i1). Finally, for evlary P, Y. in G (ﬁ) we have
(d“,(w. W) (9) ¢ @7) = S (= (@) 7 (9) 9. 9) (% (x) 9, ¥)dx
: “Giz ‘
={ =@ ev)(={zg=F) ¢ v)dz
- G6lz i
= Wz (9P )om(g-)9)

¥

={"{(g)d (v, V') o, ¢")

Le de(9¥)x(g)==(g9)d(¥:¥") AgeEG
- Q. E.D.-
Remark if = is irreducible, then d_ (v, ¢ ) is a scalar operator and hence (3)

is just the ordinary Schur s orthogonality relations.

LEMMA 1. 3. The assumptions beeing as above. Then each mullzple of x
has all of its matrix coefficenls SI mod Z.
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Proof: Let nx be a multiple of x so that the space %% (nx) may be rea-
lized as F (%) @ where K is a n-dimensional ( hilbert space. Let { ¢, } be an

orthonormal bas1s of &, then for every ¢ in F45(nx) we have ¢ = 2 9, ® e
)
where ¢, € &6 () and || ¢ | 2= Z flp; Il *. The action of nm on @ is given by

nx (g) ¢ = 2 n{g)e; ® I . We have (nx (g)p, (p)*-Z (7(9)e; »; ) for everyginG.
On the ot.her hand it follows from Lemma 1.1 that
I (e(g); 9, ) 1 2 = g | @) e0,) 1%7 <Crll 0y 1
GIZ ‘
Hence 2 ((o}e;» )l < Ve ~11<p = ch loi®
Therefore (nx (g)p, cp)_ Z (m(9)pp9;) € LX By polar:zatlon we see that all

matrix coefflc:lents of ax belong to LX.'
Q.E.D.

2. THE PROOF OF THE MAIN RESULT.
Recall that L%c is the space of all measurable functions f on G such that
for all z inZz we have f(zz)=7% (z)f(:&) for almost all z, and S | f(a:) | 2 do< os.

G/Z
The representatlon o of G defined by p(g) f(x) =.f (xg) is called the
induced representation of % and denoted by deTGx Let A be the represen-

tation of G in L?-.’, given by A ()f (x) = f(g:-‘a‘:)‘. Let % (G) be the algebra of |
continuous functions with compact support on G. For every [ in & (G) we set
fo(x) = Sx (z ) f (zx) dz, pzeG. The set My of all f; so obtained is dense in

Z .
Lx and each f, has compact support mod Z (cf 141 Lemma 3. 5). For fo, go in

M, put: i
Of@=f@) Ve
(D) (fo*go) (@)= S fo (8) Go(y2) dy VweG
G/Z
(31) (for Go) = S fo &) FoW) di

GIZ
The addition and multiplication are defined poinlwise.

(1) Here n can be an arbitrary cardinal, finite or infinite.
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LEMMA 2.1. My is a hilbert algebra.
Proof: Note that the multiplication f .goinMy ;is well defined. Now it
is clear that: ' ' ' '
(for 90) = (g o) and

(fo*gO! .ho) = (go’ fo* ho) B
for all fo, go, o in My. Moreover

(fo*go) (CC)——_ SG]Z fo(y) go(y-‘x) dg- .
. == SG/Z fzf(zy)'xa(z)—-lgo(y_lm) d» d!_,;—

‘ =, 7@ =) dy = A (f) go ()

Hence the mapping go —+ fo + ¢o is coniinuous in the prehilbert space
My, Fmally we have
(for 9o)g (1) = (fo » (90))(y). and

)@ = (o@ A- “
for all £, g in % (G), and & is a bounded continuous function on G whichis
constant on the Z—ocosets, where f,, is the right translation of / by x: 7, (3) =
f(yx). Thus by Lemima 3.3 of [4] Myx My is dense in MX' and M’X, is a
hilbert algebra (cf. [2] A 54) s o

Q.E.D. |

Let Ay be'the perfect hilbert algebra of M, consisting of all bounded *
elements in L2 By the same computation as above we see that for all f in

#(G)and allgin L ¥: (for E) (&) = X (f) E(x). Similarly: (§ « £o)(x) = p( f) Ex) |

where f (z) = f (z~*). Hence U(Ay) = MEY and “UAy) = p(Gy. But
U(Ay) = Y (Ay) (cf. [2], A5Y), therefore A (GY = o(G)”.

Recall that if p is a represehtation of G, and = is a subrepresentation of p
defined by a projection E € p (G), then there exists a unigque projection F in
the center of p (G)' such that E < F and'F is minimal amongs the projections
lying in the center of p (G)’ majorizing E; the projection F is called the central
sapport of x. The representation 7 is a factor if and only if F is minimal in-
the center of p (GY.

Now assume that ¢ is a S mod Z factor representation of G, than =x is

. quasi equivalent to a subrepresentation x’ of p = indGTZx (cf.f5]). Let m» be
the subrepresentation of p oorrespondlnu to the central support I of 1:’ Since
F iz minimal in the center of p (G);, x» is a factor and ot =~ 7° ~ x”’. Assume
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in addition that all matrix coefficients of % are SI mod Z. By Lemrma 1.3 all
matrix coefficients of eew are ST mod Z and hence so are those of . Thus for

all g and nin F6 (") = FLywe have: (n*,£) (g)=(1" % (@) E) = (0", (p (9) E)*) =

(®(Em) € LY. Since (n*%,8) (9) =(o (9) & 0) = 0 if g is perpendicular to FLY
we see that for every fixed 7 in FLL;L’ E - 1%,k is an every where defined

linear operator from Li into itself. Therefore by the same argumeﬁt as in fhe

proof of Lemma 1.1 we see that this operater is continuous, i.e. M*e Ay

Finally, rsince F Li is clearly self conjugate, IfL%c = FAy is a complete '

hilbert algebra. Hence the Von Neumann algebra UAy) e = UF, Ay) is of
type I, i. e. = is of type I (cf. [2], A 6D). Thus we have proved the first part of.

THEOREM 2. 2, Let mt be a SI mod Z faclor representation of G, then mt
is of type I if and only if all of ils matrix coefficients are SI mod Z, i. e. for all
¢, ¥ inJ6 ()

-

N ic@enrdg<-
[z

Proof: It remains to prove the necessary condition. Assume that = is of type
Iso that'm is equivalent to a multiple of some irreducible representation of lype
I so that = is equivalent to a multiple of some irreducille representation =, of G.
Since = is quasi equivalent to a subrepresentation of indZTG %, 80 is T, yi.e. x
is SI mod Z. Therefore by Schur’s orthogonality relations, all matrix coefficients

of x_are SI mod Z. Thus by Lemma 1. 3 all matrix coefficients of = are also
SI mod Z,

Q. E. D.

3. In view of Theorem 2. 2, it would be interesting if we could find con-
ditions for a representation with all matrix coefficients S/ mod Z to be a factor,
and in particular to be irreducible. First note that if = is the sum of two non-
equivalent SI mod Z irreducible representations then all matrix coefficients
of 7t are SI mod Z but 7 is not a factor. Now let ot be aX -representation such
that all of its matrix coelficients are SI mod Z. For all ¢ and v'.in %6 (),
let d, (¥, ) be the intertwining operator for z determined by Lemma 1. 3.

Pul 9 = { d, (¥, V) |, W € F6 () }. It is easy to see that P is self conjugate.

Hence -4 = 9 is a Von Neumann algebra. We have

PROPOSITION 3. 1. =t is a factor if and only if A is a factor. Moreover
if it is the case then o4 = = (G). : '

Proof :"Assume that 7 is a factor, then = is of type I by Theorem 2.2, hence
we may assume that ® = ::o® Id, %6 (=) = %6 (:to ) ® K, where % i3 an
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irreducible representation and % is some hilbertspace. Thus t(GY =C ® £ (%).
In virtue of Proposition 1.2. 9 ¢ = (G), hence for every ¢, ¢’ in &6 (), there

‘exists an operator @’ (¢, ¥) € £ (K) such-that d_ (y, v) = Id ® &', (v, 9").
Set ¢ = ¢, ® P Y =1, ® Py, 9’ = P, @@ LY =9 @Y in (3) we obtain
: : o 1

- C"‘ (‘Po' ‘P,o ) ((\0!1 ‘5’1 ) (‘P"l * CPI ') = (d” (‘P’ "P') CP1 ’ (P-I )’

where

is the formal degree (or dimension) of ¥ ,i.e.
CI . O

T vIo  — G0, Vo) (o4, % )¢’1 for all ¢, ¢, ¥ € X
1
From this it follows that ¢ = x {(G)* = £ (¥K).

Conversely assume that ¢ is a factor. Let £ be any prolectlon belonging to
" the center of = (G)’, we will prolve that E = 0 or 1.

Note that £ € o since 7 (G)” C D G A. Now let 4 € o4, then:

(dx (0 9) @ EAQ) = (da (0 ¥) E @, Ap')
-? i
S(sr (@) Bo, ) (& @ A9 9) dg
GIZ .
—\a@eEn T@HITH G

E - 6/z .
= (E% v)e 49) ’

= (dx (Ev, V') 4% ¢, ¢*)

= S(:r: (9) 4% ¢, Ev) (= () ¢, V) dg
G/Z )

~lc@er o nE@o D 4
G/Z
= s (9 V) AR* 4, @)

= {d (9 V') @, AE Q")

" Since the vectors d, (y, ¥)¢ where 9, v, ¢ € G4 (%) span G6(m), we see
that AE = -E4, i. e. E & 4" = AA. Therefore Eeaﬂna/r ¢.Id, and hence

C E=0or 1.

' | , ' Q.E.D.
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COROLLARYS. 2. m is irreducible if and only if for all ¢. v in F6 ()
we have

Sl(vr' (@0 12dg =Cx Mol 1vh2 (1)
G/Z ‘ :
where C is a posilive constant.

Proof: the necessary condition follows immediately from Schur’s orthogo--
nality relations. To prove the sufficient condition we observe that it follows
from (3) and (4): :

(dg (95 ) 95 @) = (Cp (0 ) @ )
Thus by polarization: ,
dy (0, ¥)=Cp NP2 1d
Hence of == C and & (G) = 4 == C, i. e. 7 is irreducible.
) Q.E.D

Remark: the sufficient condition may also be proved directly by observing
that if 7 is mot irreducible then te can select ¢ and v in two non zero mutu-
ally orthogonal invariant subspaces of &% (7) so that

. S | (z2(g) 9, ¥} |2 dg = 0, while (4) implies {hat

G1Z ‘
(e (@) 9“9y |2 dg = C“'l] @12y 12 = 0: contradiction
61z | |
,. PROPOSITION 3. 3. Let = be a % — representation such that .
Sl(ﬂ(g)tpscp)lzd‘é#clltpllk ; (5)
G/Z

for all ¢ in F¢ (%), where C is some positive consiant.

Under: this condition, if % is not irreducible then it is equipalent lo a multiple
of some one-dimensional representalion of G. In particular G/Z musl be compact.
roof : it is easy to see that (5) implies that all malrix coefficients of =
are ST mod Z. Let .4 be as above then o4 ¢ w=(G). Let E be any projection
belonging to the center off 4. Put F =1 —E . It follows from (3) and (5) that:
(dg((Ps(P)CPan)=C[[<Pil‘. (6)
On the other hand: s '

Clgli*=C(NEql*+ IFel? .
=C|Egll*+ ClIFoli*+2CN Eell*I Fol® | (D

(d_ (2 9) ¢ ) = (A (9:9) B, E9) + (dy (9. ¥) Fo, Fgp)
- Sn('ar (9) Eg. ) 1 *dg + | 1 Ge (9) For 9) 17

and

G/Z : Gz
- S | (% (g) B¢, Eg) | ® dg -+ S | (x (g) P, F)? dg
. GIZ G/Z

=ClEpll*+ CliFollt - N (8)
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Now it follows from (6), (7) and (8) that
IEol* Fe*=0 Vo & o ()
Therefore E=0orl, i. e. o4 is a factor and hence = is a factor as
indicated by Proposition 3.1. Moreover % is of type I by Theorem 2.2, Assume
that st 'is not irreducible. Then we can select two mutually orthogonal minimal
invariant subspaces &%, and %8, of ¥ (m). Let T be a unitary intertwining
operator between two equivalent irreducible subrepresentations of = correspon-
ding.to. &6, and 96, respectively so that w(g)Te = Tn(gdp, ¥ ¢c FF
By Schur’s orthogonality relations we have '

S("‘ (9) 2i01) (7 (9) 2sp:) dy =4
G/Z _
S(“(g) 01> @) (3 (@) T~ 92, T-"92) dg = C | (g1, T2} |2 (9)
6z
, Note that the formal degree of = | &%, is just €. On the-other hand it
follows from (5) that

. CH%—F%H‘—TSi(ﬂ(g)%—l—%,%-l-%)l’f@

, G/z
=Cllo 1 4-FClle]]* + 2 ReS (= (9) 9, CPQ (7 (@) 92 ©2) d?; '
' ' ‘ G/z
1. €. ) '
Re S(ﬂ () @ @) (2(9) P @) dg =C o 1% 1 g2 ¥ - (10)

GlZ
Now (9) and (10} imply:

M T ) [ 2= ol 2 I T @ l? V16T V 02 € T

Thus by Schwartz — Cauchy inequality we must have dim %, =dim' &6, =
= 1. Moreover in this case (G/Z must be compact or, otherwwe 7 can not be SI
mod Z.

Q.E.D.
Received April 15th, 1973,
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