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1. INTRODUCTION AND NOTATIONS.

-

Let E be a real separable Banach space, E’ the topological dual space
and 3 (E) the Borel o -algebra on E. By E-valued random variable (F-valued
r.v.), defined on the basic probability space (Q, oA, P) we mean a measurable
mapping &: (Q, oA) ——> (£, B(E) ). The distribution of ¢, denoted by £ ()
is a probability measure on E given by :
L(DA)=P{o:3(n)eA}, AcB (E)

Let us recall that a real random variable X is said to have a symmetric
stable distribution of index « (0 << o <{ 2) and scale factor b if the characte-
ristic function of X is of the form

¢X(t);exp{—b[tla} (b > o) }
A probability measure g on E is said to be symmetric and stable of
index « if every element ' € E considered as a real random variable on the.
_ probability space (E, B (F)), p hasa symmetric stable distribution of index o

- Since the case « = 2 corresponds to the Gaussian case, in what follows,
for simplicity of writing a symmetric stable probability measure of index e
will be called an « -—— Gaussian measure. A E-valued r. v. whose distribution
is an a« — Gaussian measure will be called an E-valued & — Gaussian r.v.

Through all the paper we shall consider oaly o — (Gaussian measures
with 1 < o < 2. In section 2 we investigate the almost sure (a.s.) convergence
(in norm topology) of the series '

S | )

n=1 '
where (&, );z 1 is a sequence of independent lp -valyed o — Gaussian r.v.s
(1L p < + o). In the case a = 2 this problem’ has been treated by Nguyén
Zuy Tién in [1]. For every @ — Gaussian measure |t on. lp we define an element
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Ty € lp . The condition for the a.s. convergence of the series (1) is given in
terms of { ‘Bp.n } where g = £(§, ). Namely, Tor the series (1) to be conver-

gent a.s. it is necessary that

oo oo p/a
ZOCEI<zy, e >0 <o, (2)
i = n=1 '
where B, =£L£(E,) (e‘l. )y is a sequence of coordinate functionals.
i=1
Moreover, if .
P<a"=:}+°° if a =2,

o if o <2,

then the condition (2) is both necessary and sufficient for the series (1) to be
convergent a. s.. But in the case P > o’ the condilion (2) generally needs not
be sufficient and this will be shown with the help of an example.

In section 3 we treat the problem of relative compactness of a family #
of o« — Gaussian measures on [ p - In the case a = 2 this problem has recently

‘been treated by Nguyén Zuy Tien, V.1, Tarieladze, S.A. Chobanjan in (2) where
Gaussian measures were considered on more general Banach spaces. Here we
shallshow that therelative compactness of a family (:rué ﬂ) in l is the necessary

conditipn for the relative compactness of the family _#. This condltlon is also
sufficient when P=<z* and not sufficient when Pa*. (It is interesting to note
thathere we have an analogous situation to thal in section 2). As a corollary, we

obtain the necessary and sufficient condition for a sequence n, ) of a —
Gaussian measures in I (1< P nr.*) to converge weakly to y.

2. Convergence of sums of mdependent! — valued — Gaussian random
uanabIes S !

At first let us note an important property of « — Gaussian measure on
general Banach spaces (see [3]). Every o — Gaussian measure it on F has a
f

sirong moment of p—th order for each P <C a* (i.e. S I| ”Ii (dx) < + o for

all P < a¥).

We begin by proving some needed lemmas:

2.1. LEMMA. For every o << P<(a* theré exisls universal posilive constanis
A, (p) and B, (p) such that for each « — Gaussian measure )t on R! with scale
factor b we have.

P pla :
S'xiu(dX)=b A ) @2

RL
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) ' 7 P
P .
el (@0 = 50) {12 @) (2-3)
B‘.I. . Rl
Proof. Suppose that 7{®) is a standard « — Gaussian r.v. (i.e. the ch. f. of
(% is of the form exp {— {{|*}). Then p = £ (d'/* Y(*) and we have

Slxlpu sy — B e = 57 Epre)? = 87 A @)
Rl
From (2--2), (2—3) follows.

{1} . ’
2.2. LEMMA. Let (T n )n=1 be a sequence of independen! standard o —

. g (e ,
— Gaussian r. v.’s. Then lhe series T C.7 :: (Cn € RY) is convergent a.s. if and
n=1 Y

yif £ .
only if Z G < e

Proof: The proof easily follows from .the method of characteristic
functions. :

n/n=i}

l) -
2. 3. LEMMA. (See [4]). Let (T ( ) be a sequence of independerit

standard o — Gaussian r. U'.S.

pos =)|P . ,
Then T'|Cp 7% | < + oo a.s. if and only if

=1

2 Cn\P <+ o incase 1< p < a*

n=1
T (Caf? (1+Iﬁ —1-—-)-(-}-04 incase p = a-<?2
n=1 [Ca

Z |Chl*=+ = incase 2o <p

. n=1
2. 4o LEMMA. Lel (X )1:1 be a sequence of real o.— Gaussian . v’. ssuch

that for any integer n the vector (X, X,5eens X,) has an o — Gausstan distribulion
on R".

a) Suppose that 3|XpP <<+ oo a.s. Then we have

n=1

SEIX)P <A+ (A< p<+

n—1 7
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b) Conversely, if P <Ca* then .§(E|Xn!)p <+ oo
) n==1

1

implies that = bflan-lp <+ o= a.s.

n=1

Proaof.

a) By the above assumption E = (Xn)- is an l, —~ valued o — Gaus.
n=1

. sian r.v. Consider the random variable fg‘ = (] Xﬁl)::r We have E | 'EA]] =

= ElE{| << 4 o= (because of &> 1), Hence E'g\ exists and it is equal - to

(E(Xa) €, ie. T (B[Xy )<+ on

A=} _ r=1

b) If p<<a* by (2-3) we have E[Xn® = Bu(p) (E|X,)’. Hence

b3 (E]an)p < 4 o implies E( E]Xn]p) < - o= and consequently

n=1 ‘ nr=1

b> [ X, P < + o a.s.

n=1

Consider the mapping p: lp — lp defined by

px)=(z ) , x=(x )
| nl n=1 - n=1 R

If wis an « — Gaussian measure on IP We define a vector T, & IP b

Z, = §p(zv) Widx)

i
b
This last integral is a Bochner’s integral (it exists since
Sﬂpfx)iil-l(dx)=S!l$|!u(d$)<+°°)' >
lp L . !P i{

2.5. THEOREM. Let (&) ~ bea sequence of independent L, — valued o —

n=1
Gaussian rv’s (1< a <2), (1<p <+ o)
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For the series 3 t, to be convergent a.s. (in norm topology) il is neces-
n=1
sary that

g (El<z, , 6 > 1P < oo | @—4)

i=1 n=1

o
]

where u, = L (gﬁ), {e) is a sequence of coordinate functionals.

n=1

Moreover, in the case p < a* the condition(2 — 4) is necessary as well as .
sufficient. - :

Proof. Suppose that the series & t, converges a.s. to S. Then for each
¥ we have r=1

By Lemma 2 — 2 (S, ef) is an o — Gaussian r.v. and

EKS, ep| =£ Bl ep)* = _z"_’1|<xpm ep |

4

On the other hand

= P

Z1¢S, e’ =uSsi <+ e as.

i=1

Applying Lemma 2 — 4 we gét the condition (2 — 4). '
Now suppose that the condition (2-4) is satisfied and p <C a*. By

' Lemma 2-2, for each e} (i==12,...) the series §(En, e}) converges a.s. Let
- n=1
'

S;= % (&n, ¢}). Then by Lemma 2-4:

n=1

Silp<+m a. 8.

g M8

!
i=1
This implies the existence of a lp-vaiued r. v’. s such that for -each
*
e]._(i= 1,2,...)
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<S,e >= = LR

> a.s.
i=1

Hence, from Ito-Nisio's theorem [5] it follows that

( s',= b E . a.s.
=1

Remark1: In the case P > a®,the condition (2-4) generally needs not be
sufficient. Indeed, consider the series

- =)
Zc e T .

n 1 n n n
where (e, )7 ; is the natural basis of !
. ( Cn ):: I

1s a sequence of real numbers

This series is convergent a. s. if and only if

L= -3

T je v |P < + o a.s. or, by Lemma 2-3, if and only if
n=1

Z Je | <A ocoincase P > e £ 2

n=1 ' '

or 2 Jc | (1+ln )<+oeir_1caseP=-,u o= 2.
n=1 n l%l

o
por € =) =L F 1 e,
i=1 n=1 n=1
Therefore, if we choose a sequence ( ¢, ):z ,  such that
Z |cnlp<+°° '
n=1
. 1 S
but Z e P(1 ) =4 o incase p=a L 2;
n=1 n lcnl '
or lE[cn-lp < e
n=1 '



o0

but z lcn\d' = 4 oo in case p > a == 2
n=1 :
then the condition (2-4) is fulfilled but the series
p 1 ¢, enYp is divergent a. s.
n=

Remark 2. Let us observe that in fact the «if » part in Lemma 2.3 remains

e q e . . )
valid without the assumption of independence of 7 . From this note, it foll-
ows that the condition

3 (5ot 1
3: E__l(.‘ru,ei,)] 1+ | )<+°_
i=1 n=1 n . .
E ! ( xpn' ei > i
n=1
when p > a == 2
oo =)
or X Z |(a:y”e°;)1¢ < + oo
i=1 n=1 n
when p > a <+ 2
implies the a. s. finiteness of the series & | S5; P ie.
i=1
(= .
the a. s. convergence of the series 2 &, In general, however, this
n=1

condition is not necessary.

'3 RELATIVE COMPACTNESS OF A FAMILY OF o — GAUSSIAN
MEASURES.ON Lp SPACES (1< P <+ o0).

Before studying this problem it will be useful to investigate some general
properties of « — Gaussian measures on general Banach spaces.

3. 1. 'THEOREM. Let M be a family of o.— Gaussian measures on a Ranach
space E. If the family A is uniformly tight that is if % >0 3K compact C L
such thai W (K) > 1—¢ e M then there exists a positive constant C such that
guedt >0 pililz > el .
Proof. By the uniform tightness of I we can choose T>0 such that
u{gf-x”>T}§%- for allpe M. G —1)
Fix g e 4. Suppose that X is an E-valued r. v. with distribution |t and Xy, Xayees X
are independent copies of X. We have
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e TR
a

PipX <it"=P} max X |l =
X< 31\§_J_\<\nu A<

_—_1-—P? max | X, n>t£,>1—PS max S, u'>—;—tl,

<J<n 1<;<n
wWhere S, =X+ X, et X
By Levy’s inequality
Pl max 181 > >t] <epfus, 1>t
1<;<n 2 2
we get ’ : :
1
PUIXI<U" >1=3P}IS, 1>t N )
. /e .
By choosing i =2n""T (3 -2) gives

PIXi>2n’* Ty <1~ [1—2P {5, 1> n" T}

Noting that / is distributed l'ike X we have by ' (3-1y
nia R
P{;|xn>2n1/°"r}<1—[1—2P{:1Xn>'r}]1f
1/n
1 Ind
1— (— . 3-3
< (2) <o | - (3-3)
If t > O then we canfind n > 1 such that
2(n — 1)1/‘3L <i€2n‘1/aT and' so . .
. 1nd 2*TInd
PLIXI> t}<P{IXI>2(-D""T}< —= < —
So we find . |
o {lE>ty<Crr Wiz 0 yuped,
Where C=2°T In4 '

The théorem is proved.
Let _# be an arbitrary family of measures on E. A measurable mapping

f: E — R!is said to be equi-integrable with respect to  if

[f(x) | ¢ ([dx)— 0 as a —+ oo
ueﬂ{if|>a}

It is not hard to prove.
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3.2 LEMMA:

a) Lel f be a measurable mapping : E-R If f is equi-integrable with res-
pect to M then

Sup Slf(x) |1 (d2) < + o
ue M

b) Let (p.n)n: be a sequence of measures on E such that M — Q. If fis

continuous and equi-inlegrable with respect to ([,!.‘,t)n""1 then we have

tim | @), @) = \r@ w @

n—>oca
E

The next theorem is an application of theorem 3-1.

3. 3. THEOREM. Let M be a family of umformly tight a — Gaussian

measures on E. Then for each r < a the mapping = — |] |7 is equi-inie-
grable with respect to AL

Proof. By integrating by parts an applylncr theorem 3-1 we have

Sl!xilrll(dx) I -;S'tr 4y fnel > 1=
flayr>a} alfr

_ r-—I- ' : " 1y
=r \l izl >tpdt4+an{ izl >a}
1/1. .

oo

a

<Cr5t"‘1‘°‘ dr+ ot~ B
1

a’r
Since
Al T SR ¢ a8 a — o
.all'r
af _7 —"'""‘ 0O ‘ as a —» o=
that is .
' S Tx)? u(dx) = 0 " uniformly as a — o=
{ uxn '>a} ‘

3-4. COROLLARY. Let M be a sequence of o — Gaussian measures such:
thal |, — 1.1 Then for each r < « we have

Suxuf ln (dx) = S[]a:”r W (dz).

+

£
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In order to investigate the problem. of compactness of « —Gaussian
measures on Ip we prove the following theorem giving a general necessary and

sufficient condition for uniform tightness of a given family of o« — Gaussian’
measures on Banach spaces with Schauder basis.

3. 5. THEOREM. Let 4 be a family of Q—Gaussian measures onthe Banach

space with Schauder basis (e, ) k:;:

i) If A is uniformly tight then for eachr << a

1) sup iz pdy <+, (3-4)
ne M E ’
2 dim sup { |Vy x| 1 (ds)=o, f (3-5)
Ne—ocopte # E
avhere oo
' VN33=2 (a:,e;)cn
n=N

(er ), > isa sequence of coordinale funclionals.

ii) Conversely, zf these conditions (3-4) and (3-5) are satzsfzed for some
ir > 1then J{ is uniformly tight. ‘

_ Proof : we use the following result from [6] valid for a family of arbitra-
Ty measures on a Banach space with Schauder basis. For a'given family # of
measures on E to be uniformly tight it is necessary and safficient that

lim- sup u{ll.rIE>R}-"0, : (3-6)
R—>ocope fl
‘ lim sup M {I]V x> 0'}— o for eachc>o 3B-7)
N—)-ocu,e_jt g

i) The condition (3-4) follows directly from Theorem 3-3 and Lemma
8- 2 We must only show (3-5). According to (3-7)

e
; sup { 1Vea | >1} <<=
Vex>od V(e)lsychthat ne 5

for all N > N (&). |
Fix N > N (g), pe K. Since ¥V, ¢+ E — E is a linear continuous operator,
V) presents itself as an E-valued @ — Gaussian r. v. on the probability space

(E,B (EY ). The same argument which led us to (3-—~3) in the proving theorem
3—-1 now shows that )
1/OL . ['n 2z
Voxl > 2n <1 —{1— <
” N > e 7 ( ) ":-. n+1
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If £ > 0 then we can find n » 1 such that

An— DTS 20
So

2 ?'l VNSCI>!€ \‘Ql‘l;IVNJ:{[>2(n—1)”°‘£ __2:..<___.

From here, it follows that

oo

o

Sll Vy zthp(de) = Srrf‘iu {llyyzi>t}dt < eCr "'Szf—l—“dt = de,
E O

o
where

A = 2% S tr—1-egy
. ‘0 .
Thus we have shown that .
ye >0 1N (¢) such'that for all pe X, N > N(e)

Wlvyz 171 (d2) < s,
) :
that is

lim sup 1V, zl"n (dr)y = 0.
N—ooe pe fl LS ¢

ii) This assertion is an immediale consequence of (3--6) and (3—7) (using
Chebysev inequality).
*  Now applying the above theorem to lp spaces, we obtain the condition
for relative compactness of a given family of « — Gaussian measures on {
The condition given here may often be easy to verify.

3—6. THEOREM. Let JH be a given family of «--Gaussian measures onl

i) Assume that 1 < p << a*. Then M is relatively compact if and only if the
family (a:p')uE s relatipely compact in l

ii) In all cases, ihe relative compactness of the family (;z:"_,.) ne inl_is
always necessary for the relative compaciness of the family .

Proog. Suppose that _/ is relatively compact that is _# is uniformly tight
by Prohorov’s theorem. By theorem 3—5 we have

sup d o,
\ ; ne Sﬁxﬂﬂ(x) < +

J ) i
lim sup S iVy ol u(dr) =0.
Noo [te st

Y
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On the other hand I

N2y h =1 et@) 1 (@)1 < (e @) 11 @2)={ 124 (d2),
, - -

lp L P
50 . '
sup faxy, | <<+ os. ! - (3—8
ne A H . )
Since Vya, = Vy (o @) 1 (dx) = {Vy o(2) 1 (d2),
lp lp
hence
iVyzy I=1{Vyo(@)n@i<
Ip
<1y e@in @)= {1Vyzin(d)
Ip lp .
80

lim sup [[V,x, ]| =0 (3-9)
N—ce ue_/% TR
According to the compact criterion in I, (see [7] page 248), which slafes

that for a set KCl, to be relatively compact xt is necessary and sufficient that

L Sup f|zil <+ oo : (3-10)
. €K
2. lim sup || V@ ll =0, (3-11)

we conclude that the family (;1:”) = _ﬂ is relatively compacl in !P.
- I (:vu) net is relatively compact in Ip and I < p < «® then we have:

fiziPudn =% (ke em)Pude) = ,
Ip 2=l Ip ' N

= Bup) E(J1(a et Inedz)? = Bup) T (zy, e 17
. n=1 lp ' p=1 .

= Bu(p) =y e

VivyziPuds = 3 (i@ ety Pucde)
I =N b ‘

=8um ¥ (1o enyincdz)r= B (p) B Lo w "
n=N lp n=N

—_ P
= B, (p)I Vyay i 7.
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So it follows by (3-10), (3-11) and theorem 3-5 that _# is relatively compact
Finally, we give an example to show that in case P > o the relative
compactness of (xu) e does not, in general, imply the relative

' compactness of _#.

Example. Let (cn)m be a sequence of real numbers. Consider
n=1

w,=L(S,)(n=1,2,.) where §,, = b5 ci € Y(C;’. The relative compactness
f=1

of (n H)w is equivalent to the convergence a.s. of the series e en—y(a’

n=1 . n=1

by Ito-Nisio’s theorem [0]. Therefore (p.n)m= is relatively compact if and

n=1
only if
ci]a[cn]-cc (1—|—ln ! )<'+ooincase P=a-=-=2
n=1 - lcn
or .,
Zlepla<lA oo incase P>a < 2
n=1

It is easily seen that Ly, = (AL (1)Cs5.0y Au(i)cn, 0,0,...)

Hence, if we choose a sequence of real numbers (¢,)

n-1
so that - Slepla < 4 oo
B n=1

but o . 1
Zleyle (1+ln )z—-}—oo in case P=a =2
n=1 [cn| ‘ )
5 Iy 5 & __ :

or eyt <4 oo hut 2 e, |* =+ oo in case P > e« 5= 2
n=1 n=1

then the family (xun) ~ s relatively compact but ‘the family (1,) -
. n=1 . n=1
is not so.

3. 7 Corollary For a sequence (pn) of a — Gaussian measures on
n=1

I (1L P4 o) lo converqc weakly to an o — Gaussian measure Y il is
necessary thal
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1

1. lim Ty, = Ty (in topology norm)

2. ,Ill:nw S ej (T T*YU p(dx) = S e; (X, T°) Y(dx) for each x*el;;
l

lp
In the case P < a* this condition is also sufficient.

Received April 1% 1978.
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