ACTA MATEEMATICA VIETNAMICA
TOM 4, Ne 1 (1979)

!

SOLVING AN INTEGER PROGRAMMING PROBLEM

4

HOANG HAI HOC

Department of Electrical Engineering Ecole Polylechnique Monireql, Cnnadu.

. Imtroduction

We'consider the following family of zero-one integer.programming prob-
tems (IP)

s ' - It
Minimize maximize @d —a
i

LT)
Lpyeeeril i=1,...,m

R g
i=1
suhject to

n
:2‘.1 cj:z:f__<_b: .r:j=00r1.17==1,...,n’

where m = 1,2,..,

These problems can be viewed as nonlinear zero-one knapsack problems
with nonadditive objective functions. One needs to consider this sequence of prob-
lems when one solves a nonlinear mixed integer programming model for optimal
network topologies (10) using generalized Benders decomposition (3). However
this is not a peculiar case. In fact, the application of. generalized Benders de-
composition to any linear (nonlinear) mixed inleger programming model always
gives rise to a similar sequence of master problems, each of which is obtained
from the previous one by adding one or more constraints. Moreover, although
Benders decomposition principle is not a complete algorithm, in the sense that
it does not specily how to solve ¢ither master programs or subprograms, it was
successfully used to solve practical problems such as electric power generation
planning (11), mullicommodity distribuiion system design (6), etc.

* The major conclusion arising from these previous siudies (6,710, 11) is
the remarkable effectiveness of Benders decomposition as a computational
strategy for the classes of mixed integer programming models reported. The
' npumerical experience shows that only a few (less than a dozen) cuts are heeded
to find-and verify a solution within one percent of the global gptimum. Com-
putational time is then determined completely by the.efficiency of algorithms
used 1o solve sequences of master problems- and snbproblems. IFor this reason,
we are presently interested in investigating computational techniques suited to
a sequence of master problems, in particular the family of problems (IP).
However, we shall restrict ourselves to the class of enumerative techniques for
its effectiveness as a practical tool to solve combinatorial problems

We note that the members of the iamﬂy of problems ({P) are closely
related. For m = 2,3,... the m-th problem is aclually obtained by adding to
the (m-1)-th problem a new Benders cut. One can then examine the famlly
of problems (IP) from the viewpoint.of parametric and postoptimality anralysis
in integer linear programming (7). We propose to solve the family of problems
(IP) employing implicit enumeration based algorithms for postoptimizing zero—
one programs (12 14). Compnutational experience performed on the family of -
problems (/P) should then shed more insight inlo postoptimality analysis by
implicit enumeration. A

- Implicit Enumeration

This section presents an implicit enumeration which solves a problem (1P)
and gathers the information required for postoptimizing it. For this purpose let
us define the equivalent problem (IPE) as follows.

Minimize g
subject to
n
— < B ‘
jil N ::jHB ' M
m ‘ _ .
qu+ j‘il a; T =Y i= 1, 2,....m 2
' #;=0o0rl,j=12.,n - 3)
where
© B=8 — L ¢ < 0
_ j=1

D, =d — E a, >Ot=1
£ {
\ j=1
and all the coefficients @r Cpo and d. are.positive.

If we take only constraints (3) into consideration there are 2° possible
asgignments of values to (z;, Za...,). Let an assigriment of values to a subset

of these variables be called a partial solution. Let the variables x. not assigned

values be called free variables. Any assignment of values to the free variables
is called a completion of the associated parlial solution, In partlcular each
partial solution has its ' zero-completion.

As the implicit enumeration search proceeds partial solutions are generated
in an attempt to find a feasible zero-completion, since ponzero - completlon
of a feasible partial solulion (i.e. a partial solution with feasible zero-
completion) cannot have a better objective function value.

A partial solution is fathomed (a) il its zero- completion is feasible, or.
(b) if it can be shown that none of its complelions can yield a feasible solution
better than the best feasible solution found to date. Each fathomed partial
solution of problem (IPE) with infeasible zero-completion will then be
classified in two ways: (a) by the single resource constraint (1), and (b) by the

4

objective function constraints (2). For the purpose of this paper, only partial
solulions obtained during' the search, which are feasible or fathomed by
objective function constraints need be saved for posloptimization. Consequently,
let us define '

A, = {s| the zero-completion of s is infeasible, and
one or more constrainfs (2) fatbom s }

4p = {s| the zero-completion of s is feasible }

and associate the following index sels with each partial solution s obtained during
the search ‘

19— gj en 7 (9) = d}, d = 0,1

Ny =N—J —J!
5 8

where N = {1,2,... n} and X; (s) = d implies that the j variable is assigned

valuc d in the partial solution s. Hence, Jg and Ji are index sets for fixed vari-

ables and V_is the index sct of free variables with respect to s.

Algorithm I, which follows immediately, may be used o classify and collect
partial solutions while solving problem (IPFE). Certain details are omitted.
Termination criteria, rules for generating new partial solutions, and rules for
backtracking from old ones, are not given. Any methods in (1, 4, 5, 9) can be

used. Moreover, we denote by Z 2 valid upper bound on the optimal solution..
This bound is continually npdated during the search. ' :

ALGORITHM I

1
1, Initialize Ns =N, p=o, Afm Ao = JZ = Js =

2. Compute i, (s) = B+ 2 ¢,
| €n

D, (3) =4, (8)+ X cjr-_b—mz,c“T
. JEN, JET;
ni-(s)= VAR Dl. “ji.]:afj‘ i=12,.,m

3.1f £, (s) < 0, go to 4. Otherwise, s i.s feasible with objective function
walue Z (s) = Z — mazimum (vl. (s), i = 1,..., m), set p=p -1, add s to :1}..
If Z (s) << Zyset Z = Z (s). Backtrack, and go to 2. '

4. Foreach free variable jin N, define G’ (j) and G' ¢(j) as follows:
() If vy (s) << c; then o & G* (j) ' '

(ii) Fori = 1,2...,m, if v; (s)<at.j then i € G%j) and perform the following
steps: o _
@) ¥ G (j) and G* (), j e N_, are nonempty then there are po better feasible

completions of 5. Add S to Ay, where J; = Ji ‘and Jy = J- U {j}. Backtrack,
and go to 2.
(®)If ' (j) is nonempty then skip to partial solutions 5, where J;' = J’:

and J;— = J; v {j} and go to 2,

(e) I G (F) is nonempty then add 5 to 4,, where J_—:— = J; and J;- = J: viih

w=Jru{j} J;* = J;. and go to 2.

Ski p to pariial solution s* where J
5. Generaie, and go to 2,
Postoptimization using Implicit Enumeration ‘

" It has'been shown by Roodman (14) that useful postoptimization capahi-
lities for the zoro-one integer programming problem can be obtained from an
implicit enumeration algorithm modified Lo classify and collect fathomed partiat
solutions such as Algorithm I of the previous section. The underlying principle
is as follows: Whenever search along a branch of the enumeration hree is
terminated, the fathomed partial solution s can be atfributed to a constant k. Unless-
constraint & is somehow relaxed, s and its completions will remain infeasible,
regardless of other changes to the 0-1 integer program. By considering the set
of Ak of all partial solulions attribuied to I, one can obtain the minimum

' relagation in k before any partial solution in A, becomes potentially feasible.
Only partial solutions in A 1 need be examined if one relaxes consiraint k. More

recently, Piper and Zoltners (12) presented a storage structurc to cope with
difficult data collection task inherent to the approach, and a set of algorithms
using this storage structure to postoptimize after one or more problem para-
meter changes. : :

Let us consider now the family of probiems (/PE} as a sequence of closely
related problems, Each problem in this sequence is obtained from the previons
one by adding a new constraint (Bendérs cut). This added conslraint is actually
not verified by the previous optimal solution, and it is always necessary to
reoptimize to reoptimize the problem after adding a constraint. To carry out
this reoptimization, we used the approach suggested by Roodman, and refined
by Piper and Zoltners. Conceptually, we obtained the Tollowing procedure ;

ALGORITM IT |

1. Update z(s) for all pratial solutions s in 4. and Ay.

. _ . f
Determine the best solution s in As,

Let z = x(s), z=1z (3 _
~ 2. For each partial solution s in 4, with z (5)< z, perform the fol-
lowing steps:
(8) Let 4, = 4, — {s}.

(b) Examine the completions of s using Algorithm L
We remark that when Algorithm Iis used, during post{)ptlmwatnon, to

examine the completions of partial solution s then J.S" Js, N describe s; and
p Ay andvzlf describe the current state of the postoptimization. Step 1 of the
Algorithm I should then be modified appropriately.

ALGORITM Ii\‘lPLEMENTATEON AND COMPUTATIONAL RESULTS

Algorithms I and II were implemenied in order to study the computational
behavior of implicit enumeration based aigerithms for reoptimizing zero-one
programs. No particular attention was given to the efficiency of the resulting
computer programs.

The computer program 1mplement1nﬂ Algorithm I represents essentially
a variation ol the additive algorithm (1) specialized to problem (/PF) with an
efficient bookeeping scheme (4,5) which keeps track of the enumeration. This
variation includes only ceiling test and cancellation tests. As branching strategy
it is chosen to fix at 1 the free variab.le 7 for which the ratio amj/cj is minimum.

Although Algorithm II is very simple conceptually, its implementation
presents some interesting problems from the viewpoint' of storage structure.
First, to accomodate problems of about 30 variables each parlial solution is
packed into two 32 bit words., There are two bits attributed to each variable:
one bit is used to indiacate that the wvariable is {ree or {ixed, and the other
represents the fixed value of the variable. Second, the set.of partial solutions
A, and Af ate too large to be stored in core. Random access disc files are

used to save 4, and 4., Moreover, (he set 4, is actually subdivided into

. Ai Ag yrons Ag according to the objeciive [unction. values of partial solutions

callected. For all partial solutions belonging to Ai the objective function valnes

fall inside the i-th predetermined interval. Partial solutions in A, and Af

are stored sequentially in records which are chained by pointers.
In order to facilitate file processing a sufficiently large array is used as
buffer, and organized into LIFO sublists. Each sublist conlains partial solutions

belonging to a subset A} or to the set Af’ and residing temporarily in core.

When this buffer array is full, and at the end of the reoptimization, all partial
solutions are transferred on disc files. The output file obtained at the end. of a
‘reoptimization is used as input file for the next reoptimization.

All programs were written in FORTRAN IV Level G, and executed under’
the control of 08/360 MVT, on a system IBM/360 Model 75. Several families of
test problems whose sizes range [rom 10 to 30 variables were stored. First we
solved each 'problem in a family separately. Then we solved each family of
problems as a sequence of related problems using reoptimization technique. Each

;

4

family consists of 5-8 problems. Computational resulls indicate that the time
required to solve a family of problems using reoptimization technigue is actually
2-3 times longer than the total time requlred to solve the problems separately.
This is partially due to the time consuming operations ol packing and unparking
partial .solutions (by means ol integer anthmetlc in FORTRAN 1V) as well as
the inefficient file processing procedure presently employed. Furthermore, an
mportant explanatory factor is the continually increasing number of partial
solutions collected and re-examined while reoptimizing. In fact, as reoptimiza-
tion proceeds, one is going down the enumeration tree deeper and deei:»m and
. generating more and more nodes which will eventually be fathomed, saved and
“re-examined. Hence, one should bhe prevented from going down the tree too
deeply by means of efficient bounding process using embedded linear programs,
surrogate constraints, etc. This represents a difficulty common to all implicit
enumeration, and branch and bound algorithms. Last, the reoptimization lechni-
que considered will be efficient only il the pari of the enumeration tree to be
explored for solving the modified problems is not very different from the part
of the tree explored while solving the original problem. This may be the case,
if only afew coefficients of the zero-one integer program are subject to changes.
Extensive computatlonal experience is planned io study these ‘lSpeCtS

REFERENCES

1. E Balas, An Aditive Algorithm for Solving Lincar Progmms with Zero-One
Var:ables Operations Research, Vol. 13, pp.,517-546 (1965},

. J. F. Benders, Partioning Procedures for Solving Mixed Variables ngrammmg

Problems, Numerische Mathematik, Vol. 4, pp. 238-252 (1962).

3. A. M. Geoffrion, GeneraliZed Benders Decomposition, Journal of Optimizaiion
Theory and its Applicalions, Vol. 10, pp. 237-260 (1972).

‘4. A. M. Gedffrion, Inleger Programmmg by Implicit Enumerafion and Balas Method,
SIAM Review, Vol. 9, pp. 178190 (1957).

5. A. M. Geoffrion, An Improved Implici{ Enumeralion Approach for Infege: Program-
ming, Operations Research, Vol. 17, pp. 437-454 (1969).

6. A M. Geoffrion and G.W. Graves, Multicommodity Distribution Syatem Design by
Benders Decomposition, Management Science, Vol. 20, pp. 822-844 (1974).

7. A. M. Geoffrion and R. Nauss, Parametric and Postoptimality Analisis in Integer
Linear Programming, Management Science, Vol. 23, pp. 453-466 (1977).

8. F. Glover, Surrogate Constrainis, Operations Rescarch, Vol. 18, pps 741-749 (1968)

* 9. F. Glover, 4 Multiphase Dual Algorithm for the Zero-One Integer *Programming
Problen. Operations Research, Vol. 13, pp. §79-919 (1965).

10. Hoang Hai Hoe, Network Improvemenis via Mathematical Programming, Paper
presented at the IX th Inlernational symposium on MathemqtlcalProgrammmg, Budapest,
August 23-27, 1976,

11. F. Noonan and R. J. Giglio, Planuing Electric Power (‘eneratmn A Nonlinear Mired
Integcr Programming Model Employmg Benders Decomposifion », Managemcnl Science,
« Vol. 23, pp. 946-956 (1977).

12. C. J. Pipe and A. A. Zoltners, Implzczt Enumeration Based Algorithms for Postop-
timizing Zero-One Programs, Naval Research Logistics Quarterly, Vol. 22, PP. 791-809 (1975)

13. C. I Piper and A. A. Zoltners, Some Easy Postoptimality Anulysis for Zero-One
Programming, Management Science, Vol. 22, pp. 759 - 765 (1976).

14. G. M. Roodman. Postoptimalily Analysis in Zero-One Programming by Implicit
Enumeration, Naval Research Logistics Quarterly. Vol. 19; pp. 435-447 (1972).

L)

3

