Comportement asymptotique des valeurs propres d'une classe d'operateur de type «schrödinger»(*)

par
PHAM THÉ LAI
Université de Nantes
Institut de Mathématiques et d'Informatique

§ 0. RESUME

Ce travail est consacré à l'étude du comportement asymptotique des valeurs propres de l'opérateur:

$$\mathcal{A} = \mathcal{A}_0 + V$$

dans \mathbb{R}^n , où \mathcal{A}_0 est un opérateur différentiel d'ordre 2m, à coefficients constants, formellement auto-adjoint et elliptique, et V un potentiel tel que $V(x) \gg 1$ et $\lim_{\|x\| \to \infty} V(x) = +\infty$.

Soit $N(\lambda)$ le nombre des valeurs propres de $\mathcal A$ qui sont plus petites ou égales à λ . Alors

$$N(\lambda) \sim A\Phi(\lambda, V) \quad \lambda \rightarrow + \infty$$

où $\Phi(\lambda, V)$ est la fonction :

(0.1)
$$\Phi(\lambda, V) = f(\lambda - V(x))_{+}^{n/2m} dx$$

 $(f_+ \text{ désigne la partie positive de } f)$ et λ est une constante qui dépend du symbole principal $\mathcal{A}'(\xi)$ de \mathcal{A} :

$$(0.2) \qquad \qquad \lambda = (2\pi)^{-n} \int_{\mathcal{A}'(\xi) \leq 1} d.$$

^(*) Presented to the Vietnam Second Mathematical Congress, Hanoi, August 1977.

Le cas de l'opérateur de Schrödinger, c'est-à-dire le cas \mathcal{A}_0 = Laplacien, a été étudié par G. V. Rosenbljum (5). Notre travail généralise donc celui de (5).

Les hypothèses faites sur V sont celles de (5) et sont énoncées au § 1.

§ 1. NOTATIONS ET ENONCE DU RESULTAT

Pour un ouvert Ω de \mathbb{R}^n et m entier $\geqslant 0$, nous notons $H^m(\Omega)$ l'espace de Sobolev usuel d'ordre m sur Ω et comme d'habitude $L_2(\Omega)$ l'espace $H^0(\Omega)$.

Pour $u \in H^m(\Omega)$ et A = 0, ..., m, nous notons la semi-norme

$$|u|_{H^{\lambda}(\Omega)}^{2} = \sum_{|\alpha|=1}^{\infty} \frac{\lambda!}{\alpha!} ||D^{\alpha}u||_{L_{2}(\Omega)}^{2}$$

où D^{α} est la dérivation

$$(-i)^{|\alpha|} \frac{\delta^{\alpha_1 + \cdots + \alpha_n}}{\delta x_1^{\alpha_1} \cdots \delta x_n^{\alpha_n}}$$

et $\| \|_{L_2(\Omega)}$ la norme de $L_2(\Omega)$ issue du produit scalaire usuel noté $\langle , \rangle_{L_2(\Omega)}$. L'espace $H^m(\Omega)$ est muni de la norme :

$$\|u\|_{H^{m}(\Omega)}^{2} = \|u\|_{H^{m}(\Omega)}^{2} + \|u\|_{L_{2}(\Omega)}^{2}$$

Nous notons $H_0^m(\Omega)$ l'adhérence de $\mathcal{C}_0^{\infty}(\Omega)$ dans $H^m(\Omega)$.

Lorsque $\Omega = \mathbb{R}^n$, nous notons H^m au lieu de $H^m(\mathbb{R})^n$; de même, les notations $\langle , \rangle \int f(x) dx$, etc...

Suite à l'introduction, nous considérons un opérateur différentiel d'ordre 2m à coefficients constants

$$\mathcal{A}_0(D) = \sum_{\substack{\alpha \leqslant m \\ \beta \leqslant n}} a_{\alpha\beta} D^{\alpha+\beta}$$

avec $a_{\alpha\beta} = \overline{a_{\alpha\beta}}$ pour tout α , β ; $\mathcal{A}_0(D)$ est donc formellement auto-adjoint.

Nous faisons l'hypothèse d'ellipticité suivante : il existe une constante E > 0 telle que, pour tout système de nombres complexes $T = (T_{\alpha})$, $|\alpha| = m$, nous avons :

(1.1)
$$\sum_{|\alpha|=|\beta|=m} a_{\alpha\beta} \tau_{\alpha} \overline{\tau_{\beta}} \geqslant E \sum_{|\alpha|=m} \frac{m!}{\alpha!} |\tau_{\alpha}|.$$

Il est clair que (1.1) entraîne la condition d'ellipticité usuelle :

$$\mathcal{A}'(\xi) = \sum_{|\alpha| = |\beta| = m} a_{\alpha\beta} \, \xi^{\alpha+\beta} \geqslant E |\xi|^{2m} \qquad \xi \in \mathbb{R}^n.$$

Considérons la forme intégro-différentielle sur \mathbb{R}^n :

$$a_0(u, v) = \sum_{\substack{\alpha \mid \leq m \\ \beta \mid \leq m}} \int a_{\alpha\beta} D^{\alpha} u \overline{D^{\beta} v} dx$$

Puisque $\mathcal{A}_0(D)$ est formellement auto-adjoint, $a_0(u, v)$ est hermitienne sur \mathcal{C}_0^{∞} . Comme $a_0(u, v)$ est continue sur $H^m \times H^m$ et \mathcal{C}_0^{∞} est dense dans H^m , $a_0(u, v)$ est hermitienne sur H^m .

D'après L. Garding, la forme $a_0(u, v)$ est coercive sur H^m c'est-à-dire qu'il existe des constantes α , c positives telles que:

$$(1.2), a_0(u, u) + \alpha \|u\|_{L^2}^2 \geqslant C \|u\|_{H^m}^2 \quad u \in H^m.$$

Considérons un potentiel V sur R", vérifiant:

(1.3)
$$V \in L_{loc}^{\infty}, \quad V \geqslant 1$$

$$\lim_{|x| \to \infty} V(x) = +\infty.$$

Remarquons tout de suite que l'hypothèse $V \gg 1$ est faite par commodité; on peut seulement supposer que le potentiel V est borné inférieurement car on se ramène au cas précédent en changeant \mathcal{A}_0 par \mathcal{A}_0 + cte.

Notons

$$H_V^m = \{u \in H^m ; V^{1/2} u \in L_2\}.$$

C'est un espace de Hilbert avec la norme naturelle

$$||u||_{H^m}^2 = ||u||_{H^m}^2 + ||V^{1/2}u||_{L_2}^2.$$

Considérons la forme intégro-différentielle :

(1.4)
$$a_V(u, v) = a_0(u, u) + \int Vuv dx.$$

Elle est définie et continue sur $H_{V}^{m} \times H_{V}^{m}$.

Puisque V est réel, $a_V(u, v)$ est hermitienne sur H_V^m

Elle est coercive sur H_V^m car de (1.2), nous avons:

(1.5)
$$a_{V}(u, u) + \alpha \|u\|_{L_{2}}^{2} \geqslant C \|u\|_{H^{m}_{V}}^{2} \quad u \in H^{m}_{V}.$$

(Dans la suite, les constantes issues des majorations seront notées par la lettre générale C; par conséquent, différentes C se suivent sans être forcément égales).

Soit A l'opérateur non borné dans L_2 , auto-adjoint, engendré par le triplet $(a_V(u, v); H_V^m, L_2)$. A est une réalisation auto-adjointe de l'opérateur différentiel $\mathcal{A}(\circ, D) = \mathcal{A}_0(D) + V(\circ)$ c'est-à-dire que, pour $u \in D_A$ le domaine de A, nous avons :

$$Au = \mathcal{A}(0, D)u$$

au sens des distributions.

D'après (1.5), le spectre de A, qui est réel, est semi-borné inférieurement. Il est formé de valeurs propres réelles à multiplicités finies dont le seul point d'accumulation est $+\infty$ en vertu du :

LEMME 1.1. L'injection de H_V^m dans L_2 est compacte, lorsque m > 0.

Soit $(\lambda_j)_{j\in N}$ la suite des valeurs propres de A, les valeurs propres étant rangées dans l'ordre croissant, répétées suivant la multiplicité. Notons

$$N(\lambda; A) = \sum_{\lambda_j \leqslant \lambda} 1.$$

Nous allons faire les hypothèses suivantes sur V.

Elles sont de deux sortes. La première est de caractère taubérien et concerne la fonction $\sigma(x, V) = \text{mes } \{x; V(x) < x\}$.

La deuxième concerne des hypothèses locales ponctuelles et intégrales sur le potentiel V. Ces hypothèses sont:

(1.6)
$$\sigma(2\lambda; V) \leqslant C\sigma(\lambda; V)$$

pour a suffisamment grand,

$$(1.7) V(x) \leqslant CV(y)$$

presque partout, lorsque $|x-y| \leq 1$,

(1.8) Il existe une fonction continue $\eta(t) \ge 0$, $0 \le t \le 1$, $\eta(0) = 0$ et un réel $\beta \in [0, 1[$ tels que:

$$\int_{\substack{|x-y| \leq 1 \\ |x+z-y| \leq 1}} |V(x+z) - V(x)| \, dx \leq \eta (|z|) \, |z|^{\beta} V(y)^{1+(\beta/2m)}$$

pour tout $y, z \in \mathbb{R}^n$, $|z| \leq 1$.

Voici le résultat principal de ce travail:

THEOREME 1.2. Sous l'hypothèse (1.1) sur $\mathcal{A}_0(D)$ et les hypothèses (1.3), (1.6), (1.7) et (1.8) sur le potentiel V, nous avons

1.9)
$$N(\lambda; A) \sim A \Phi(\lambda; V) \qquad \lambda \rightarrow + \infty$$

 $\hat{m} \Phi(\lambda; V)$ et λ sont définies par (0.1) et (0.2).

(Dans (1.9),
$$f(\lambda) \sim g(\lambda)$$
 signifie que $\lim_{\lambda \to +\infty} \frac{f(\lambda)}{g(\lambda)} = 1$).

§2. RESULTATS AUXILIAIRES

Dans ce paragraphe, nous énoncons quelques résultats simples dont la preuve est laissée aux lecteurs.

2.1. COMPARAISON DE FORMES HERMITIENNES

Soient a(u, v) et b(u, v) deux formes hermitiennes positives définies respectivement sur les domaines X et Y avec $X \subset Y$.

Soit Z un sous-espace de X. Pour $\lambda \in \mathbb{R}$, on note:

Soft Z this sous copart
$$U \subset Z$$
; $a(u, u) > \lambda b(u, u)$, $u \in U$

étant entendu que l'écriture $U \subset Z$ implique que nons prenons la codimension de L relativement à Z, c'est-à-dire la dimension du quotient Z/L.

PROPOSITION 2.1. Si $Z_1 \subset Z_2 \subset X$, alors:

(2.1)
$$N(\lambda; a, b; Z_1) \leq N(\lambda; a, b; Z_2)$$

pour tout $\lambda \in \mathbb{R}$.

PROPOSITION 2.2. Supposons que X muni de la forme a(u, v) soit un espace de Hilbert. Soit X_0 un sous-espace fermé de X et X_1 l'orthogonal de X_0 .

Alors:

(2.2)
$$N(\lambda; a, b; X) \leq N((1 + \varepsilon)\lambda; a, b; X_0) + N(\frac{1 + \varepsilon}{\varepsilon}\lambda; a, b; X_1)$$

pour tout $\lambda \in \mathbb{R}$ et $\varepsilon > 0$.

2.2. PROBLEME DE DIRICHLET ET DE NEUMANN SUR UN CUBE

Soit Q_{ρ} un cube de \mathbb{R}^n , de côté $\rho > 0$.

Notons:

$$a_{Q\rho}(u, v) = \sum_{|\alpha|=|\beta|=m} \int_{Q\rho} a_{\alpha\beta} D^{\alpha} u \ \overline{D^{\beta} v} \ dx.$$

Grâce à l'hypothèse d'ellipticité (1.1), il est facile de voir que pour tout $\gamma > 0$, la forme $a_{Q_{\rho}}(u, v) + \gamma \langle u, v \rangle_{L_2(Q_{\rho})}$ est fortement coercive sur $H^m(Q_{\rho})$. Notons:

(2.3)
$$N_{\rho}(\lambda; Y) = N(\lambda; a_{Q\rho} + Y, || ||_{L_{2}(Q\rho)}^{2}; H^{m}(Q_{\rho}))$$
$$N_{\rho}^{0}(\lambda; Y) = N(\lambda; a_{Q\rho} + Y, || ||_{L_{2}(Q\rho)}^{2}; H_{0}^{m}(Q_{\rho})).$$

Ce sont respectivement les fonctions de répartition des valeurs propres des problèmes de Neumann et de Dirichlet sur le cube Q_{ρ} relatif à l'opérateur différentiel $\mathcal{A}'(D) + \gamma$.

PROPOSITION 2.3. Il existe des constantes C > 0 et $\lambda_0 > 0$ telles que : (2.4) $\lambda (1-\varepsilon)^{n/2m} \left(\rho^{2m}(\lambda-\gamma)+1\right)_{+}^{n/2m} - C\left[\varepsilon^{-(n-1)/2m} \left(\rho^{2m}(\lambda-\gamma)+1\right)_{+}^{(n-1)/2m}+1\right] \\ \leq N_{\rho}^{0}(\lambda; \gamma) \leq N_{\rho}(\lambda; \gamma) \\ \leq \lambda (1+\varepsilon)^{n/2m} \left(\rho^{2m}(\lambda-\gamma)+1\right)_{+}^{n/2m} + C\left[\varepsilon^{-(n-1)/2m} \left(\rho^{2m}(\lambda-\gamma)+1\right)_{+}^{(n-1)/2m}+1\right] \\ \text{pour tout } \gamma > 0, \ \rho > 0, \ \varepsilon \in \left]0,1\right] \text{ et } \lambda \geq \lambda_{0}.$

Remarque. On obtient la proposition 2.3 en utilisant les proposition 2.1 et 2.2 et les résultats de (3) et (4).

§ 3. ETUDE DU MODELE

Nous considérons dans ce paragraphe le cas où $\mathcal{A}_0(D)$ est homogène c'est-à-dire que:

$$\mathcal{A}_0(D) = \sum_{|\alpha| = |\beta| = m} a_{\alpha\beta} D^{\alpha+\beta}$$

et le cas où le potentiel V possède une régularité ponctuelle.

Soit B un réseau laticiel de cubes unités. Par

$$W_{\alpha} = W_{\alpha}(\Xi)$$

nous notons la classe de potentiels V satisfaisant (1.3) (1.6) et l'hypothèse suivante: il existe une fonction décroissante $\mathfrak{I}(t)$, $t \in [1, \infty[$ avec $\mathfrak{I}(t) \to 0$ lorsque $t \to +\infty$ et un α vérifiant $0 \le \alpha \le 1$ tel que pour tout cube $Q \in \Xi$ et tout $x, y \in Q$, l'intérieur de Q, on ait

$$|V(x) - V(y)| \leq |x - y|^{\alpha} V(x)^{1 + (\alpha/2m)} \gamma(V(x)).$$

Ce paragraphe est consacré à la preuve du :

THEOREME 3.1. Si $V \in W_{\alpha}(\Xi)$ pour un certain réseau laticiel Ξ , alors (3.2) $N(\lambda) \sim \Lambda \Phi(\lambda, V) \qquad \lambda \to +\infty.$

Preuve. Soit ρ , l'inverse d'un entier $\geqslant 1$, et considérons Ξ_{ρ} le réseau laticiel obtenu en faisant une partition de chaque cube de Ξ en cube Q_{ρ} de côté ρ . Notons V_{ρ}^+ , V_{ρ}^- respectivement les bornes supérieures et inférieures essentielles de V sur Q_{ρ} .

D'après le principe variationel de Courant, on a :

(3.3)
$$\sum_{\Omega_{\rho} \in \Xi_{\rho}} N^{0}(\lambda; V_{\rho}^{+}) \leqslant N(\lambda, A) \leqslant \sum_{\Omega_{\rho} \in \Xi_{\rho}} N(\lambda; V_{\rho}^{-}).$$

D'après (2.4), il existe une constante C>0 telle que pour tout ε vérifiant $0<\varepsilon \leq 1$, il existe une constante $C(\varepsilon)$ telle que :

(3.4)
$$N(\lambda, A) \leq Y(1+\epsilon)^{n/2m} \sum^{1} (\rho^{2m} (\lambda - V_{\overline{\rho}}) + 1)^{n/2m} + C(\epsilon) \sum^{1} (\rho^{m} (\lambda - V_{\overline{\rho}}) + 1)^{(n-1)/2m} + C\sum^{1} 1$$

où Σ^1 est la sommation des Q_0 pour lesquels :

$$(3.5) V_{\overline{\rho}} \leqslant \lambda + \frac{1}{\rho^{2m}}.$$

Soit $\frac{1}{2} \geqslant \delta > 0$ fixé arbitraire et prenons $\lambda \geqslant \lambda_0 = \frac{1}{\delta}$.

Choisissons p tel que:

$$\delta \lambda \leqslant \rho^{-2m} \leqslant 2\delta \lambda.$$

Alors, pour Q_0 figurant dans la sommation Σ^1 , on a, en. vertu de (3.5) et (3.6):

$$(3.7) V_{\rho} \leq \chi (1+2\delta).$$

Dans le second membre de (3.4), il y a trois termes que nous notons dans l'ordre (I), (II) et (III).

En utilisant (3.6) et (3.7), nous avons:

$$(III) \leqslant \frac{C}{\alpha^n} \, \Sigma^1 \, \operatorname{vol} \, Q_{\mathbf{p}} \leqslant (2\delta \lambda)^{n/2m} \, \sigma \left(\lambda \, (1+2\delta) \, ; \, V \right).$$

En utilisant l'hypothèse (1.6) sur V, nous obtenons :

$$(III) \leqslant C \delta^{n/2m} \Phi(\lambda, V) \quad \lambda \geqslant \lambda_0$$

avec C indépendante de δ , λ (et de ϵ).

Pour la somme (II), nous avons:

$$(II) = C(\varepsilon) \sum^{1} (\rho^{2m} (\lambda - V_{\rho}^{-}) + 1)^{(n-1)/2m} \leq C(\varepsilon) (2\lambda \rho^{2m})^{(n-1)/2m} \times (III)$$

Il vient, en utilisant (3.6) et la majoration de (III):

$$(II) \leqslant C(\varepsilon) \, \delta^{1/2m} \, \Phi(\lambda, V) \quad \lambda \geqslant \lambda_0.$$

Pour majorer (I), fixons un t > 0 (à choisir dans la suite) et soit $\Sigma^{1'}$ la sommation des cubes Q_{ρ} , figurant dans Σ^{1} , pour lesquels $V_{\rho}^{-} < t$ et $\Sigma^{1''}$ ceux des cubes Q_{ρ} de Σ' pour lesquels :

$$t \leqslant V_{0}^{-} \leqslant \lambda(1+2\delta).$$

Ecrivons (I) = (I') + (I''). Alors, en utilisant (3.6), nous avons (I') = $Y(1 + \varepsilon)^{n/2m} \Sigma^{1'} (\rho^{2m} (x - V_{\rho}^{-}) + 1)^{n/2m}$ $\leq Y(1 + \varepsilon)^{n/2m} (x(1 + 2\delta))^{n/2m} \sigma(t, V)$

pour $\lambda \gg \lambda_0$,

$$(I'') \leq Y(1+\alpha)^{n/2m} \Sigma^{1''} \int_{Q_{\Omega}} \left(\lambda (1+2\delta) - V(x) + |V(x) - V_{\overline{\rho}}| \right)_{+}^{n/2m}.$$

En utilisant la propriété (3.1) de 'V, nous obtenons :

$$(I)^{"} \leqslant \Upsilon(1+\varepsilon)^{n/2m} \Sigma^{1"} \int_{\mathbb{Q}\rho} \left[\chi(1+2\delta) - V(x) + \rho^{\alpha} (V_{\rho}^{-})^{1+(\alpha + 2m)} \Im(t) \right]_{+}^{n/2m} dx.$$

Choisissons maintenant $t = t_0$ suffisamment grand pour que l'on ait :

$$\delta^{-\alpha/2m}(1+2\delta)^{1+(\alpha/2m)}\mathfrak{I}(t_0)\leqslant \delta.$$

Alors, nous obtenons:

$$(I)^{"} \leq Y(1+\varepsilon)^{n/2m} \int_{-1}^{1} (\chi(1+3\delta) - V(x))_{+}^{n/2m} dx.$$

En groupant toutes les majorations, il en résulte que, pour $0 < \epsilon \le 1$ et $0 < \delta \le \frac{1}{2}$, on a, d'après (3.3):

$$N(\lambda, A) \leqslant \Upsilon (1 + \varepsilon)^{n/2m} \int (\lambda (1 + 3\delta) - V(x))_{+}^{n/2m} dx + C \lambda^{n/2m} \sigma(t_0, V) + (C(\varepsilon) \delta^{1/2m} + C \delta^{n/2m}) \Phi(\lambda, V)$$

pour $\lambda \geqslant \frac{1}{\delta}$ et C des constantes indépendantes de ϵ , δ et λ

En utilisant le lemme 1.3, nous obtenons:

$$N(\lambda, A) \leq \Upsilon (1 + \varepsilon)^{n/2m} (1 + C\delta^{1/2})^{n/2m} \, \Phi(\lambda, V) + C\lambda^{n/2m} \, \sigma(t_0, V) + \left(C(\varepsilon) \delta^{1/2m} + C\delta^{n/2m} \right) \, \Phi(\lambda, V).$$

Comme $x^{n/2m} = 0$ ($\Phi(x, V)$) lorsque $x \to +\infty$, nous obtenons, en prenant la limite supérieure, lorsque $x \to +\infty$, du quotient $N(x, A)/\gamma\Phi(x, V)$, puis

en faisant tendre d'abord $\delta \to 0$, ensuite $\epsilon \to 0$ dans le second membre de l'inégalité précédente :

$$\overline{\lim_{\lambda \to +\infty}} \frac{N(\lambda, A)}{\Upsilon \Phi(\lambda, V)} \leqslant 1.$$

Un calcul analogue, en utilisant les premières inégalités de (2.4) et de (3.3), permet de prouver aussi :

$$\lim_{\lambda \to +\infty} \frac{N(\lambda, A)}{Y\Phi(\lambda, V)} \geq 1.$$

Ceci termine la preuve du théorème 3.1.

§4. DOMAINE DE L'OPERATEUR A

Nous allons, dans ce paragraphe, caractériser le domaine $\mathfrak{D}(A)$ de l'opérateur A. Cette caractérisation sera utilisée dans l'étude de la perturbation asymptotique en approximant un potentiel satisfaisant (1.8) par un potentiel satisfaisant (3.1).

Dans tout ce paragraphe, nous supposons que V est un potentiel ≥ 1 , vérifiant seulement l'hypothèse (1.7).

Le lemme suivant est essentiel:

LEMME 4.1. Soit Q un cube unité et \widetilde{Q} le cube concentrique à Q de côté 2. Soit $u \in \mathcal{D}(A)$ telle que Au est nulle sur \widetilde{Q} .

Alors, pour tout $h \ge 0$, il existe une constante $C_h > 0$ (indépendante de u et de la position de Q) telle que :

(4.1)
$$\int_{Q} V^{h} |u|^{2}, dx \leq C_{h} (|u|_{H^{m}(Q)}^{2} + ||V^{1/2}u||_{L_{2}(Q)}^{2}).$$

Preuve. Nous allons montrer que pour tout entier $k \ge 0$, il existe $C_k > 0$ telle que:

(4.1)'
$$\int_{Q} V^{1+(k/2m)} |u|^{2} dx \leq C_{k} (|u|_{H^{m}(\widetilde{Q})}^{2} + ||V^{1/2}u||_{L_{2}(Q)}^{2}).$$

Il est alors clair que (4.1)' prouve (4.1).

Nous montrons (4.1)' par la méthode de « contours successifs ». Soient $Q_0 = Q$, Q_1 , ..., Q_{k-1} , $Q_k = Q$ des cubes concentriques à Q tels que Q_j est relativement compact dans l'intérieur de Q_{j+1} .

Alors nous obtenons (4.1)' si nous montrons:

(4.2)
$$\int_{Q_j} V^{1+((K-j)/2m)} |u|^2 dx + \sum_{|\alpha|=m} \frac{m!}{\alpha!} \int_{Q_j} V^{(k-j)/2m} |D^{\alpha}u|^2 dx$$

$$\leq C_{k} \left(\int_{\mathbf{Q_{j+1}}} V^{1+((k-j-1)/2m)} |u|^{2} dx + \sum_{|\alpha|=m} \frac{m!}{\alpha!} \int_{\mathbf{Q_{j+1}}} V^{(k-j-1)/2m} |D^{\alpha}u|^{2} dx \right)$$

pour tout j = 0, ..., k-1.

Soit donc j fixé. Soit $\xi \in \mathcal{C}_0^{\infty}$, positive, égale à 1 sur Q_j , à support dans \widetilde{Q}_j .

Comme Au est nulle sur \widetilde{Q} , on a:

$$\langle \xi u, Au \rangle_{L_2} = 0.$$

Comme $\mathfrak{D}(A) \subset H_V^m$, on a $\xi u \in H_V^m$ et l'égalité précédente donne

(4.3)
$$f V \xi |u|^2 dx + \sum_{\substack{\alpha \mid \leq m \\ \beta \mid \leq m}} \int a_{\alpha\beta} D^{\alpha}(\xi u) \overline{D^{\beta} u} dx = 0.$$

Il est facile de voir, en utilisant la règle de Leibnitz, que l'on a

(4.4)
$$\sum_{\substack{|\alpha| \leq m \\ |\beta| \leq m}} \int a_{\alpha\beta} D^{\alpha}(\xi u) \overline{D^{\beta} u} dx = \sum_{\substack{|\alpha| = m \\ |\beta| = m}} \int a_{\alpha\beta} \xi D^{\alpha} u \overline{D^{\beta} u} dx + R$$

avec :

$$|R| \leqslant C \qquad \sum_{\substack{p \leqslant m \\ q \leqslant m \\ p+q \leqslant 2m-1}} |u|_{H^{p}(Q_{j+1})} |u|_{H^{q}(Q_{j+1})}.$$

En utilisant l'hypothèse (1.1)', nous obtenons, puisque $\xi \geqslant 0$ et égale à 1 sur Q_j :

(4.6)
$$\sum_{\substack{|\alpha| = m \\ |\beta| = m}} f \, a_{\alpha\beta} \, \xi \, D^{\alpha} u \, \overline{D^{\beta} u} \, dx \geqslant \mathbb{E} \, |u|_{H^{m}(Q_{j})}^{2}$$

De (4.3), (4.4), (4.5) et (4,6), nous obtenons:

$$(4.7) \int_{Q_{j}} V|u|^{2} dx + E|u|_{H^{m}(Q_{j})}^{2} \leq C \sum_{\substack{p \leq m \\ q \leq m \\ p+q \leq 2m-1}} |u|_{H^{p}(Q_{j+1})} |u|_{H^{q}(Q_{j+1})}$$

Notons V_j^+ , V_j^- les bornes sup et inf essentielles de V sur Q_j . Nous avons de (4.7):

$$(4.8) \qquad \int_{Q_{j}} V^{1+((k-j)/2m)} |u|^{2} dx \leq (V_{j}^{+})^{(k-j)/2m} \int_{Q_{j}} V|u|^{2} dx$$

$$\leq C(V_{j}^{+})^{(k-j)/2m} \sum_{\substack{p \leq m \\ q \leq m \\ p+q \leq 2m-1}} |u|_{H^{p}(Q_{j+1})} |u|_{H^{q}(Q_{j+1})}.$$

En utilisant l'inégalité de Young et des inégalités classiques d'interpolation dans les espaces de Sobolev, il existe C telle que :

$$\sum_{\substack{\mathbf{p} \leq \mathbf{m} \\ \mathbf{q} \leq \mathbf{m} \\ \mathbf{p} + \mathbf{q} \leq 2\mathbf{m} - 1}} |u|_{H^{p}(Q_{j+1})} |u|_{H^{q}(Q_{j+1})}
\mathbf{p} + \mathbf{q} \leq 2\mathbf{m} - 1
\leq C(\varepsilon |u|_{H^{m}(Q_{j+1})}^{2} + \varepsilon^{1-2m} ||u||_{L_{2}(Q_{j+1})}^{2})$$

pour tout $\varepsilon > 0$.

En prenant $\varepsilon = (V_j^+)^{-1/2m}$ dans l'inégalité précédente, nous obtenons de (4.8):

$$\int_{Q_{j}} V^{1+((k-j)/2m)} |u|^{2} dx$$

$$\leq C(V_{j}^{+})^{(k-j-1)/2m} (|u|_{H^{m}(Q_{j+1})}^{2} + \frac{V_{j}^{+}}{V_{j+1}^{-}} \int_{Q_{j+1}} V|u|^{2} dx)$$

$$\leq C\left(\frac{V_{j}^{+}}{V_{j+1}^{-}}\right)^{(k-j-1)/2m} \left(\sum_{|\alpha|=m} \frac{m!}{\alpha!} \int_{Q_{j+1}} V^{(k-j-1)/2m} |D^{\alpha}u|^{2} dx\right)$$

$$+ \frac{V_{j}^{+}}{V_{j+1}^{-}} \int_{Q_{j+1}} V^{1+((k-j-1)/2m)} |u|^{2} dx.$$

L'hypothèse (1.7) sur le potentiel V prouve donc :

$$\int_{Q_{j}} V^{1+((k-j)/2m)} |u|^{2} dx$$

$$\leq C \left(\sum_{|\alpha|=m} \frac{m!}{\alpha!} \int_{Q_{j+1}} V^{(k-j-1)/2m} |D^{\alpha}u|^{2} dx + \int_{Q_{j+1}} V^{1+((k-j-1)/2m)} |u|^{2} dx \right).$$

De la même manière, en utilisant encore (4.7), nous avons aussi :

$$\sum_{|\alpha|=m} \frac{m!}{\alpha!} \int_{Q_{j}} V^{(k-j)/2m} |D^{\alpha}u|^{2} dx$$

$$\leq C \left(\sum_{|\alpha|=m} \frac{m!}{\alpha!} \int_{Q_{j+1}} V^{(k-j-1)/2m} |D^{\alpha}u|^{2} dx + \int_{Q_{j+1}} V^{1+((k-j-1)/2m)} |u|^{2} dx \right).$$

Les deux dernières estimations prouvent (4.2), ce qui achève la preuve du lemme 4.1.

A l'aide du lemme précédent, nous pouvons, comme dans (5), prouver le:

THEOREME 4.2. Nous avons:

$$\mathfrak{D}(A) = \{ u \in H^{2m}; \quad Vu \in L_2 \}.$$

Il existe une constante C > 0 telle que:

$$\|Vu\|_{L_{2}}^{2} + \|\mathcal{A}_{0}(D)u\|_{L_{2}}^{2} \leq C(\|Au\|_{L_{2}}^{2} + \|u\|_{L_{2}}^{2}) \qquad u \in \mathcal{D}(A).$$

§ 5. PERTURBATION ASYMPTOTIQUE

Nous donnons ici brièvement une idée de la preuve du théorème 1.2; les détails apparaîtront dans un autre travail à paraître.

5.1. REDUCTION AU CAS HOMOGENE

Avec les notations introduites au § 2, il est bien connu que l'on a:

(5.1)
$$N(\lambda, A) = N(\lambda; a_V, || \cdot ||_{L_2}; H_V^m)$$

avec a_V définie par (1.4).

Considérons la forme a_V associée à la partie homogène de \mathcal{A}_0 :

$$a_V'(u, v) = \sum_{|\alpha| = |\beta| = m} \int a_{\alpha\beta} D^{\alpha} u \ \overline{D^{\beta} u} \ dx + \int V u v dx.$$

L'hypothèse d'ellipticité (1.1) prouve a_V est fortement coercive sur H_V^m . Soit A' l'opérateur non borné dans L_2 , auto-adjoint strictement positif, engendré par le triplet (a_V', H_V^m, L_2) .

Alors nous avons aussi:

(5.2)
$$N(\lambda, A') = N(\lambda; a'_{V}, \| \|_{L_{\alpha}}; H_{V}^{m}).$$

Voici le résultat de réduction :

PROPOSITION 5.1. Si le théorème 1.2 est vrai pour A', il est vrai aussi pour A.

5.2. PERTURBATION DU POTENTIEL

Grâce à la proposition 5.1, on peut désormais supposer A homogène.

En suivant les idées de $^{(5)}$, nous allons approcher V par des potentiels de la classe \mathcal{W}_1 et appliquer le résultat du modèle.

Soit R un réseau laticiel de cubes unités.

Pour $h \in]0, 1[$ et t > 0, définissons $\rho = \rho(t, h)$ par l'égalité :

$$\rho^{\beta} t^{\beta/2m} \eta(\rho_{\eta}^{1/2}) = h.$$

Pour t fixé, on a $\lim_{h\to 0} \rho(t, h) = 0$.

Pour $Q \in \Xi$, notons $\rho_Q = \rho(V_Q^-, h)$, $Q_\rho(x)$ le cube de centre x et de rayon ρ_Q et définissons une fonction V_h par :

$$(5.3) V_h(x) = \rho_Q^{-n} \int_{Q \cap Q_Q(x)} V(y) dy \quad x \in Q.$$

Les lemmes suivants sont analogues à ceux établis dans (5) auquel nous renvoyons par la preuve.

LEMME 5.2. Pour tout $h \in]0,1[$, le potentiel $V_h \in W_1(\Xi)$ et V_h vérifie les hypothèses (1.6), (1.7), (1.8) et (5.7) avec des constantes C indépendantes de h.

LEMME 5.3. Notions $\delta(h) = h + \rho(1, h)$.

Il existe une constante C > 0 telle que:

$$(5.4) f_{Q} |V - V_{h}| \leqslant C \delta(h) V_{Q}^{-}$$

pour tout $h \in]0,1[$ et $Q \in \Xi$.

LEMME 5.4. Nous avons:

(5.5)
$$\lim_{h \to 0} \lim_{\lambda \to \infty} \frac{\Phi(\lambda; V_h)}{\Phi(\lambda; V)} = 1 \text{ et } \lim_{h \to 0} \lim_{\lambda \to \infty} \frac{\Phi(\lambda; V_h)}{\Phi(\lambda; V)} = 1$$

Pour $h \in]0, 1[$, soit A_h l'opérateur essocié au triplet $(a_{V_k}, H_{V_k}^m, L_2)$.

Voici le résultat principal de la perturbation de V par V_h :

PROPOSITION 5.5. Soit
$$\sigma = \inf\left(\frac{1}{2}, \frac{n}{4m}\right)$$
 et $\delta(h) = h + \rho(1+h)$.

Pour tout $\varepsilon > 0$, il existe $C(\varepsilon)$ tel que:

(5.6)
$$N\left(\frac{\lambda}{1+\varepsilon}; A_h\right) - C(\varepsilon) \delta(h)^{\sigma} \Phi(\lambda; V)$$

$$\leq N(\lambda; A) \leq N\left(\lambda(1+\varepsilon); A_h\right) + C(\varepsilon) \delta(h)^{\sigma} \Phi(\lambda; V)$$
pour tout $\lambda > 0, h \in [0, 1]$ et $\varepsilon > 0$.

Remarque. Pour prouver (5.6), nous avons utilisé essentiellement le théorème 4.2 et des résultats de (1) et (2).

5.3. PREUVE DU THEOREME 1.2

Prouvons que l'on a, par exemple:

bour tout

(5.7)
$$\overline{\lim_{\lambda \to \infty}} \frac{N(\lambda; A)}{\lambda \Phi(\lambda; V)} \leq 1.$$

Pour cela, utilisons la deuxième majoration de (5.6) en divisant les termes par $\Phi(x; V)$ et prenons la limite supérieure lorsque $x \to +\infty$, en tenant compte du théorème 3.1 (modèle appliqué à V_h qui est de la classe \mathcal{W}_1 en vertu du lemme 5.6), nous obtenons:

(5.8)
$$\overline{\lim_{\lambda \to +\infty}} \frac{N(\lambda; A)}{\lambda \Phi(\lambda; V)} \leqslant \overline{\lim_{\lambda \to +\infty}} \frac{\Phi(\lambda(1+\varepsilon); V_h)}{\Phi(\lambda; V)} + \delta(h)^{\bullet} C(\varepsilon).$$

Faisons tendre h vers 0 dans le second membre de (5.8). La seconde égalité de (5.5) et le fait que $\lim_{h\to 0} \delta(h)^{\sigma} = 0$ montrent que nous avons :

(5.9)
$$\overline{\lim_{\lambda \to \infty} \frac{N(\lambda; A)}{\lambda \Phi(\lambda; V)}} \leqslant \overline{\lim_{\lambda \to \infty} \frac{\Phi(\lambda(1 + \varepsilon); V)}{\Phi(\lambda; V)}}$$

Comme il est facile de voir que:

(5.10)
$$\lim_{\epsilon \to 0} \frac{\overline{\lim}}{\lambda \to \infty} \frac{\Phi(\lambda(1+\epsilon); V)}{\Phi(\lambda; V)} = 1$$

alors (5.9) et (5.10) donnent (5.7) en faisant tendre $\varepsilon \rightarrow 0$.

On montre, toujours avec (5.6) que l'on a aussi :

$$\lim_{\lambda \to +\infty} \frac{N(\lambda; A)}{\lambda \Phi(\lambda; V)} \ge 1$$

ce qui achève la preuve du théorème 1.2.

BIBLIOGRAPHIE

- [1] M.S. BIRMAN M.Z. SOLOMJAK, Spectral asymptotics of non smooth elliptic operators, I. Trans. Moscou Math. Soc., 27 (1972), 1-52.
- [2] M. S. BIRMAN V. V. BORZOV, On the asymptotic formula for the discrete spectrum of certain singular differential operator, Topics in Maths. Phys., n° 5 (1972), 19—30.
- [3] C. GOULAOUIC, Valeurs propres de problèmes aux limites irrégulières : applications, Cours CIME, 1974.
- [4] G. METIVIER, Etude asymptotique des valeurs propres et de la sonction spectrale de problèmes aux limites, Thèse de l'Université de Nice. 1976.
- [5] G.V. ROZENBLUM, Asymptotics of the eigenvalues of the Schrödinger operator, Math. URSS Sbornik, 22 (1974), 349-371.

Recu Juillet 1977