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Let G be a separable locally compact group, Z a central subgroup of G.
An irreducible (unitary) répresentation & of G is said to be square integrable
mod Z (or a member of the discrete series of G) if there exist non null vectors
v, ¢ in the representation space ¥G{x) of = such that

S Hm(@e o) dg <oo
GiZ

where (¢, ) denotes the inner product in (1) and dg is the right Haar mea-
sure of G/Z.

In a previous article we have classified those Lie groups G with discrete
series in the case in which the radical of G is a connected simply connected
nilpotent Lie group. In this article we shall treat the problem in the more general
situation, namely when G is a unimodular algebraic group.

Thus let G be the neutral component of a real algebraic group. Then G
is the almost semi direct product of its greatest connected normal nilpotent sub:
group N-and a connected reductive subgroup R. Assume also that G is a unimo-
dular locally compact group with the Hausdorff topology, then aside from some
technical requirements, we show that the discrete series of G exist if and only if:

(A) the center of N is the neutral component of the center of G.
" (B) the discrete series of N and R exist, and the cénter of R is compact.

The important point here is the assumption that G is unimodular. Indeed
in [1] and [2] we gave examples of unimodular Lie groups (infact algebraic
rroups) with discrete series in which the conditions (A) and (B) are not satisfied
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However it turns out that those examples are false for, in neither cases, the

actions of SL (3, JR) on M as described have open orbits and hence Theorem 1,3
in [2] cannot be applied. The trouble is the groups in those examples are so cho-
sen to be unimodular. However as we have seen above under this further assump-
tion, the statements (A) and (B) hold. On the contrary simpler correct examples
- exist when G is not unimodular (cf § 2). :

In the following we shall continue to use the notations and results of 2]
In particular underlined small letters g, 7, 2, ... are reserved for the Lie algebras

. ~
of the Lie groups G, H, Z,... The subgroup of the dual H of an abelian locally
compact group H consisting of those characters of H trivial on a closed subgroup

Z of H is identified with (H/Z)A. Similarly the linear subspace of the dual v*
of a finite dimensional vector space V' consisting of those linear functionals
vanishing on a subspace W of V is identified with (Viwy~

1. PROOF . OF THE MAIN RESULTS

Let V bea vector space over B with complexification V°. A yeal alge-
braic subgroup of GL(V) is the set of -points rational over B of an algebraic

subgroup of GL(V°) defined over IR. Recall that ‘(c_f [7D) a real algebraic sub-
group of GL(V) is compact in the Hausdorff topology if and only if the corres-
ponding algebraic subgroup of GL(V°) is, _ﬂ-compact o

LEMMA 1. Let Vbea vector space over R, and G a reductive algebraic
subgroup of GL(V) with compact cenler. Assume that G has an open orbit in V.
Then the isotropy subgroup corresponding to each open orbit is not reductive.

Proof. Let G be the algebraic subgroup of GL(V °) defined over B sych
that G is the set of MR-rational points of G. Then G has an open orbit such
that O N V4 & is the union of open G-orbits in V. Assume that the isotropy
{ subgroup G, corresponding to © is reductive. Then it follows from [4] that ©
& Is an affine subvariety of V°. Therefore V° —O=2(P) is the nullset of a
polynomial Pe @ [V°]. Since O N ¥ + @, 0 is defined over R and hence P
4 may be chosen so that P€ RV ], Then it is clear that P isa semi invariant
i of G corresponding to a non’ trivial character of @ defined over R. This,
" however, contradicts t\he fact that the center of G is R-compact. )

QE.D.

LEMMA 2. Let 7 be a nilpotent Lie algebra with center z. Assume that
i there exists /& n* such that the antisymmetric bilinear form B(%&,5)= 1([E,])
| is non degenerate on n/z. Let T be an automorphism of # such that T is diagona-




-{:

lizable as an element of gl(n) and T = ak, Vi€ z. Then det,,,z(‘C) — where
. ¢ is the dimension of n/z.

Proof. Factoring out ker! N z if necessary, we may assume that dim
2= {. First of all, let us prove by induction on g that there is a base§, &, n;

(1 <iL —g—) of n consisting of eigen vectors of T such that [ &, o=t

(1 < zé -g—) . Let indeed £€ 2 be such that 1(£) = 1. Let & be an eigeﬁ vector

of T such that & 4z belongs to the center of n/z. Then the centralizer m of &
in n has codimension 1 since B; is non degenerate on n/z. It is clear that m is
T-invariant. Hence there exists an eigen vector n; of T such that I([ &, oD =1,
ie [ &, n;]=E&. Now the Lie algebra m/IR &, obviously satifies the conditions
of Lemma 2 and hence the existence of the base &, &, v; is proved by induction.

Let «;, B; (1.,<\ i< -92-) be the eigen values of T corresponding to &, v; respec-

" tively. We have
-C[E ')z] = [-C gl’ —C')f]

‘ = o8, [ & o]
ie. o , . al =api
| e o |
Therefore - det, (T) = 121 oB; = a’ Q.E.D.

Now let G be the neutral component of a real algebraic group. It follows
from’ Proposxtxon 5, §4.2 V of [5] that the Lie algebra g of G may be written
as the direct sum g =n + a + s where n is the greatest nilpotent ideal of g, s
is a maximal semi simple subalgebra, and a is a commutative algebraic subalge-
bra such that each ad (%), § € ais a diagonalizable linear transformation of
g, and the elements of 2 commute with those of s. Let N, A, S be the analytic
subgroups of G corresponding to z, a, s. Then G is the almost semi direct
product of N and R = AS, ie. G= NR and N n R is finite. On the other
‘hand N is the direct product of its unipotent radical U and a central connected
(algebraic) torus T since N is a nilpotent algebraic group. Moreover, since n
consists of those elements & in g such that ad (&) is nilpotent, we see that the
" neutral component of the center of G is the direct product of T" with a connected
subgroup Z lying in the center of U. Finally ZT has finite index in Cent (G)
since @ and s are algebraic Lie algebras.

‘ THEOREM 1. The notations being as above, assume also that G is
unimodular. Undér these condittons if G has a square integrable mod ZT irredu-
cible %-representation %, where % is a character of ZT, then
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(i) Z coincides with the center of U and hence ZT is precisely the cen-
ter of N. '

(i) N has a square integrable mod ZT irreducible X-representation and
thus U has a square integrable mod Z irreducible representation.

(iii) R has an atmost two sheeted covering with square integrable irredu-
cible representation in the ordinary sense In particular the center of R is compact.

Proof. First note that according to Lemma 2.3 of [3], each irreducible
representation of G has the form () x (nas) where » is a character of T and
% is an irreducible representation of the subgroup NAS such that x|, yas ™
mult » |7 nas- On the other hand it is clear that such a representation of G is
square integrable mod ZT if and only if x is square integrable mod Z. There-
fore we may assume T'={1} without loss of generality. We now prove the
Theorem by a double induction on dim R and dim N. Thus suppose that it holds
for those groups G such that dim R < p, dim N arbitrary, or dim R = p and
dim N < q. Let us prove it for the case dim R =p and dim N =gq. Let /; be

the unique element of z* such that x= expV/—1 11,. By factonng out ker
if necessary we may assume that dim = < 1. Assume that i) is false. Since
Ad (R) is the neutral component of a reductive real algebraic group, n contains
an R invariant subspace n complementmg 2. Let & be a minimal R-invariant

subspace of 7 lying in the center of » and H be the corresponding analytic sub-
group of G. Put H=ZH. According to Theorem 1. 3 in [2], there exists l2 in

* such that the G-orbit of x= %Yexp ¥— lz in I has the form %0 where™

@) is the (open) G-orbit of exp V—1 l, in H (here I, and I, are extended in
a natural manner to'the whole h so that ;(h) = {0} and L,(z) = §01). Moreo-

ver X is induced from a square mtegra‘ole mod H irreducible x-representatxon
G of the subgroup

G, = {ge G(ghg D =xMk), V he Hi
=ige Gghg ) =xh), Vhe H}
—{ge G/ AdEx(g) I =1}
= NR,
where R, ={r€ R/ Ad;»* (r) I, =L}

Note that Gy/H is unimodular since G/Z is (cf Corollary 1.5 in [2]).
Put %h = ker ({; + 1,) and let °H be the correspondmg analytic subgroup of -

G, Then Z= H/OH is a central subgroup of G = Gy’ H = (N/OH) R,. Moreo-
. ver Iet » and © be the character by Z and the representation of G determmed
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by » and o respectively by passing to quotient, then ¢ is square integrable mod

E Therefore by the induction hypothesis, the unipotent radical of G has a square
integrable mod Z irreducible representation. Since the unipotent radical of G is
clearly the semi direct product of Iﬁ\} == N/°H and the unipotent radical of Ry, it
follows from Proposition 4.2 of [2] -that the latter reduces to the identity, and

hence Iﬁ\} has a square integrable mod Z irreducible representation and R, is
reductive. Therefore the center of Adz«(R) and hence the center of Adj (R) is.
fion compact as indicated by Lemma 1. Let a be an element of the maximal
IR-spilit torus of A such that Adj (a) = a Id, « :i: 1 (recall that % is minimal).

By Theorem 1 of [8] there is a linear forml on n such that the antisymmetric
bilinear form By (.,.) = l([. ,-]) is non dggenerate on n/ z since N has square

 integrable mod Z irreducible representations. Therefore it follows from Lem-
ma 2 that

det: - (Ad a) = det,;(4d ) = o

where k== 0 if z:}:{O} and 'k = dim n/h if =z =1}0{. Hence det,(Ad a) =

= o . a5 = 1: this contradicts the fact that G is unimodular. Thus i) is
proved In particular dimz = 1.

nlz

 Next by applying Theorem 4.5 of [2] one see that iii) is a consequence of
i) and ii). Therefore it remains to prove ii). The case in which N is isomorphic to
some Heisenberg group is taken care by Lemma 3.1 of {2]. Thus assume that N
is not isomorphic to any Heisenberg group. Then 1t follows from Propposxtlon 2.3

of [2] that there is an R-invariant subspace % of n such that (2 + 2z is con-

tained in the center of nlz. Put k=% -+ 2. Let us use the same notation to indi-
cate the extension of I; to the whole % such that [, (&) = {0}. Since Ad(N)
reduces to the identity on z and A/z respectively, the N-orbit of 1, in " has
the form I, + V where V is a linear subspace of (#/z)". Let us prove that
V = (k/2)*. Assume indeed the contrary, then there exists £e& % such that
A (Ad(n)&) =10}, Yne N, ie. Ad(n) e ker I, Vne& N. Hence Ad(n) &—
—te kerl, Nz =.{0{, Yne N, ie Ad (n) E=E&, ¥Yne N, This contradicts:
the fact that z is the center of n. “Thus V = (%/z)*, This 1mphes in particular

that the N-orblt and hence- the G-orbit of 3= exp ¥— 1l1 in K har the form

Q(K/Z) Therefore the quasi invariant measure on K determined by =g is

concentrated in this orbit. By Theorem 1.3 of [2] % is induced from a square
integrable mod K irreducible -representation o of the subgroup
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-——-{gEG/Ad (B')ll—lxj ,

={ge G/ad(g) kck}
= N'R

where N’ == |n € N/Ad(mkck

Let ¥’ be the character of Z’ = Klexpk and p’ the representation of G'lexpk =
= (N expk) R uniquely determined by and p respectively by passing to quotient.
Then it follows from the induction hypothesis that N’/expk has a square inte-
grable mod Z’ irreducible \-representation. Composing it with the canonical
homomorphism N’— N'/expk we obtain a square integrable med K irreducible
\-repre:ightation of N'. Finally this representation together with the N-orbit
_(K/Z) define a square integrable mod Z irreducible %-representation of N as
indicated by Theorem 1.3 of [2].

QE.DD.

Remark. Theorem 4.5 of [2] may be viewed again as a converse of
Theorem 1. These two theorems together with the results in [6] and [8] give
the following algebraic characterization of unimodular algebraic groups with
discrete series '

THEORERM 2. Let G = NR being as above, then there exisfs a finite
covering of G with discrete series if and only if the following conditions hold

(A) the center of N has finite index in the center of G.

(B) the center of the universal envelopping- algebra of n coincides with
the symmetric algebra S(z) of =.

(C) R has a compact Cartan subgroup.

2. AN EXAMPLE

We conclude with the example of an algebraic group with square inte-
grable irreducible representation in the ordinary sense in which the conditions (A)
and (C) are not satisfied. Of course such a group can not be unimodular.

Let R= GL(n,R} and N = #(n,BR) — the additive group of
nxn-matrices with coefficiefts in IR, Then R acts naturally on N by left multi-
plication, and the semi direct product G= NR is a real algebraic group in which
the condition (A) does not hold since the center of G reduces to the identity
whlle N is abelian. On the other hand (C) does not hold. Fmally the action of R

on N has a umque open orbit, namely the sst of non smgular matrices such
that the corresponding isotropy subgroup reduces to the identity. Therefore an
. arbitrary charagter of N in this orbit will induce to an irreducible representation

&0



of G which is square integrable in the ordinary sense according to Theorem 1.3

of [2].
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ERRATA

CLASSIFICATION OF UNIMODULAR ALGEBRAIC GROUPS
WITH SQUARE INTEGRABLE REPRESENTATIONS

by
NGUYEN HU'U ANH

In the proof of Theorem 1, in addition to Lemma 2 we need also the following
Lemma 3. Moreover we include a shorter proof of Lemma 2 which is based on the same
principle as that of Lemma 3.

LEMMA 2. Let n be a Lie algebra with center z. Assume that there exists
1 in »* such that the antisymmetrir bilinear form BI( E,p)=1([E,p]) is non degene-
rate on n/z. Let T be an automorphism of n such that T is d:.‘gonahzabl\. as an element
of gi{n) and that “there is a T-invariant subspace # of » complementing z such that () =0.

Finally assume that T]z has just one eigenvalus . Then det T = a’, where ¢ = %
dim A/z + dim =. )

Proof. Let | E;} be a basis of u comsisting of eigen vectors of T corrésponding to
the eigenvalues §{o;§. We have T[ &, El=[TE TE]l=00[8,§ ). Hence
o; &; =a if Bz( g, §)"I— 0,ie. T B;=a B Here T B; is the result of the induced

1
— dim nfz
action of T on the 2-formm By, Thus det 'C1 n == Pf (CBD/Pf (B) = & 2 , where
Pf is the Pfaffian polynomial on 2-forms with respect to the-deﬁenninant on 7. 7
' Q.E.D.

LEMMA 3. Let N, Z, T be as above. Assume now T|z has exactly two eigenva-
Jues 1 and & ==+ 1. Then |det T| 3 1.

Proof. Let [T be the linear transformation on # such that | T} B, ={o1E;, v i

It is sufhclent tolprove that det|T| is not equal to any negative mtegral power of | a&].
Let ]'C! ¢ Tl ihen as in the proof of Lemma 2 we have
fail 1ol = lal™5 if B;(E; &) = 0, where
k"j == 0 or 1. -
Hence det I'C] = Pf(|T|* By)/Pf(By) is a polynomial in. lalt Therefore by

.the unique factorization of the polynomial ring in one variable with coefficients in R,

det }'C] is not equal to any negative mtegral power of 10:}
Q.E.D.
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