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1. BANACH SPACE VALUED BROWNIAN MOTIONS

Abstract. It is known ([1}, (3D that every real Brownian motion B(1),
¢ €0, 1], can be represented as

.
B(p) = Z 7, f g,(s) ds
. n 0

where % Z,} is a sequence of i.i.d symmetric Gaussian random variables, $g,ia
CONS in L2[0, 1] and the series’ is convergent with probability one uniformly
over [0, 1]. The aim of the present paper is to prove some complete analogues
of this fact for Banach space valued Brownian motions.

‘This paper is concerned with random variables defined on a fixed prob-
ability system (@, F, P). Let E denote a real separable Banach space with the
topological dual space F* In the sequel, if ¥ is a normed space then its.
norm will be denoted by Il -Yly. By an E-valued random variable we mean a measur-
able map X:0—~E (measurable in the weak sense). An E-valued stochastic
process X,, t € T, is ‘said to be Gaussian if for any 7 = 1, 2,:.,9p Y2s s ¥ € E*

n . ‘ ]
and ¢, tg, .o £, € T thé real random variable ¥ ;(X,) is Gaussian. In. part-

) . i=1- . .
icular, an E.valued random variable X is Gaussian if y(X) is Gaussian for each
y € E*. Further, for the characteristic functional of an E-_valuedsymmetnc{}axiss-
ian random variable X we have the formula :

Eexp i{y, XD = exp (-'—- -12~ v RyY) (yeE®).
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R being a covariance operator i.e. a compact operator from £* into £ such that
< Ry> >0 and <y, Ry,> = <3, Ryy> for all 3, y;, y, € E*. '

The following consequence of Jain-Kallianpur Theorem ([2], Theorem 3)
will be needed.

PROPOSITION 1. Let R be a covariance operator. Then there exists
a separable Hilbert space H with the inner product { .,. >, such that

R(EMYc Hc E
and for any ye E* and he H
y(h} = <Ry, byy,
Moreover, for every E-valued symmetric Gaussian random variable X with the
covariance R and for every CONS {e,,{, n==1, 2,..., in H there exists a
seéquence {U,,{ of independent real random variables with distribution N(0, 1)
such that

X=23%U,e,

where the series is convergent in the norm [-lz with probability one.

Let &, ¢t e [O, 1], be an E-valued stochastic process. Then it is called a
Brownian motion if :

(i) go =0 (P-l), . . . .
(ii) { g} is a symmetric homogeneous process with independent increments,

(iit) the realizations of { &, are continuous (in the norm topology of E)
with probability one. f

An equivalent definition of Banach-space-valued Brownian motions is
given by the following theorem :

THEOREM 1. An E-valued process &, ¢ € [0, 1], is a Brownian motion
if and only if it is Gaussian and for any ¢, se [0,1] and z, ye E*
1/ | Ez(E) 9 () =<y, R>(t A 5)
R being the covariance operator of §1-. |

To prove this Theorem we need the following lemma ;

LEMMA 1. Let X,, t € [0, 1], be an E-valued symmetric process with
independent increments. If for every y € E* the realizations of the process y(X,),
te [0, 1], are continuous with probability one then the realizations of X,
t € [0, 1], are continuous (in the norm topology of E) with probability one,
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Proof of the Lemma. Given ¢ & [0, 1] and a sequence }£,{ c [0, 1] such
that z, — t. Without loss of generality we may assume that ¢, <fp, <. <t,—t
or t;> 6> >t —~ L Consider the first case. Put Z; = X,l, 4, =

n

=X, —X, [(n>1andU,=X,—X, . Then for every n =1, 2,.. the random

variables Z,, Zy, ..., Z,, U, are independent. Moreover, X, = % Z,+ Un=1,2,.)

. i=1
By Theorem 2.2 [4] and Theorem 4.1 [1] the series ¥ Z, converges with prob-
=] :
ability one. Hence lim U, = U (P.1) exists. Further, for every y € E* we

[Lmbe ©2

have ¥ (X)) = 2z y(Z) + y(U) and y(U) = 0 (P.1) by the continuity of the
process y(X,) t € [0, 1]. Consequently, U = 0 {P.1) which shows that -
lim X, =X, (P.1)

n—-oa
The proof of this equality for # > t, > ..> ¢, -t is the same, The Lemma is
thus proved.

Proof of Theorem 1. Suppose that £, ¢ € [0, 1], is an E-valued Brownian motion.
Then for every y € E* y(&,) is a real Brownian motion. Consequently, every
£, tefo, 1], is an E-valued Gaussian random variable with E5,=0. Hence
and by the assumption that §&,1 is a process with independent inorements it
follows that it is a Gaussian process. Further, for any 0<{s <1< 1 and z,ye E*
we have : -

Ex(t)y( &)= Ez(£)y(§)
= % [E ((z+9) E,)z — E((z—») %,)2] '

- = s {3 Rz,

where R is the covariance operator of &;.

Conversely, suppose that &, ?€ 10, 1],is an E-valued Symmetric Gauss-
~ ian -process satisfying the condition /1/. It is easy to check that } &} is a homo-
geneous process with independent increments. Moreover, for every ¥ € E* (e}
is a real Brownian motion. Consequently, the realizations of fy( &)} are conti-
nuous with probability one. By Lemma 1 it follows that the realizations
of §¢,} are continuous in the norm topology of E with probability one. Conse-
quently, § &,} is a Brownian motion which completes the proof of the Theorem.

In the sequel we fix an E-valued Brownian motion &, ¢& [0, 1], and call
the covariance operator R of &, its associated covariance operator. Let H bea

7



real separable Hilbert space. By, L.%. ([0 1], H) we shall denote the Hilbert
space of measurable functlons f:[0,1] = H such that

‘ . | ,' fllf(s)lli,.ds < %o,

- Its inner product is defined in a natural way. In partxcular, 1f H is the real lme
then + we denote L2 ([0, 1], H) by the usual symbol L2

PROPOSITION 2. For every functlon Ffin L? the stochastic integra1

1) : = | £G) di
0 e

A

is defined ,s‘uch that for any z,y € E* and f, ge L;2
12/ E2(1) 3 16) = < Rz f f(s)g(s) ds -
, Proof, Let L denote the set of all simple functlons of the form

f-—- Z r; )(t,_lt)

where r;, 7y,..., 7, are some real 'numbers and 0 = ¢, <1, <..<t,=1. Define
an E valued stochastic mtegral for such functlons S as fo]lows

109 _ff(s)de _->:r(§ b))

By Proposition 1 it follows that for any z, y € E* and /. g€ L we have

Bl E2U() y(f(g))=<y.'Rx>{ £(5) g(s)ds -

Consequently, if the Brownian motion } §,} is ﬁon-zéro then for any £y, fo, .., /€L
the random variables J( f;) are independent (res. identically distributed) if and
only if the functions f;, i' =1, 2,..., n, are orthogonal (res. have the same norm
in Lz) : ' |

| Our further aim is to defme the stochastlc mtegral I(f): = f f (s)d t
for every f e L2 '

Let f be an arbxtrary functlon in L? and je.! be a CONS in L? such

\ “that {e,{ © L. By the Parseval identity we have

ja o Wflfe=Sched



Put S, = _21 (fiepzle), n=1,2,.. By the ahove remark the

i=

ramdom variables I(e;), i==1, 2,..., are independent and identically distributed.
Further, for every y€ E* we have

Ey2(S,) = <v, Ry> i§1<f, e>52 — < Ry> 17162
as n— . The;efore, '

15/ - lim E exp iy(S,) = exp z—% <y Ry>|f Hizi‘

n—- o

Since the last limit is a characteristic functional of ‘an‘ E-valued random variable
it follows, by Ito-Nisio theorems ([1], Theorems 3.1 and 4.1), that there exists
an E-valued Gaussian random variable S such that S, — S with probability one,

It is easy to prove that the limit S does not depend on any choice of the
CONS {e,{ © L. Thus we can define

. 1 : oo 7 ‘
16/ C IN=Sf@dg =S =3 Serplle)
From this definition it follows that for any f, g € L? and :c,' ye E"

. B
17/ Ez(I (f)yI(g)) = <y Rx> { f(s) g(s)ds.
which complets the proof' of the Proposition.

) COROLLARY 1. 1f the Brownian motion } &}is non-zero thenfor any
i S Ja € L? ‘the random variables I(f;), i =1, 2,.., n, are independent

(res. identically distributed) if and only if the functions foi=1 2,.,m, ‘are
.orthogonal (res. have the same norm) in L2 -

Proof. It is an easy consequence of the equality /2/.
Now we shall formulate the main results of this paper.

THEOREM 2. Let &, t € [0, 1], be an E-valued Brownian motion.

Then to every CONS %_eni in L? there corresponds a sequence of i.i.d E-valued
symmetric Gaussian random variables {Z,} such that

oo

1l —- = 3 Zﬂj g, (5)Ms ¢ e [0, 1]

n==1

where the series is convergent in the norm of E with probahility one uniformly
over [9,,1]. '
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Proof. For a trivial Brownian motion & =0(P.1), ¢ e [0, 1], the.
expansion [7/ holds for Z, = 0(P. 1), n =1, 2,...,. Suppose that } &} -is non
zero, Let {g,{ be a CONS in L% Putting Z,=1I(g,), n=1,2,.., and taking

into aceount Proposition 2 we infer that the E-valued symmetric Gaussian random
variables Z,, # == 1, 2, ..., are independent and identically destributed.

We shall prove that the series

/ se ¢

VT . 2 Z, [ g(s)ds - (efo,1])

n=1I 0

is convergent in the norm of E with probability one uniformly over [0,1]to &,

Let U denote the unit ball in E*. It is known that if U/ were endowed

with the E-topology then the product K=[0,1]x U isa comnpact metric space.
Further, define

St y) = y( &)

~and

S(t, ) = y(S,())

where S.(2) is the n-th sum of the séries’/8/ and (¢, ) € K. It is clear that the .
real Gaussian processes S(t,¥) and S,(#,5) on K have continuous realizations

with probability one. Our aim is to prove that S,(#, ») converges to S(z, y) with
probability one uniformly over K. -

By C(K)we shall denote the Banach space of all continuous real-valued
functions defined on the compact metric space K with the norm supremurm.

Let T he a signed measure on Borel subsets of K with the variation || T/l Then
we have ' '

E| /(50 = S6 0 d e )]

K

[ E18@9) — 8,(4,9) d1Tl(s )
. N ’i - . )
= S(ELSE 9 — S, 0P dlTi y)
K . . _ )

1

4 oo o "._1‘ - .
* = 0asn—o0. -

oD

because

1=n

1
+1( { £,(s) ds)> — 0 and also is bounded by +.
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Consequently, if we consider S(z, ¥) and S,(% v) as C(K) —valued
random variables then by Ito-Nisio Theorem ([1], Theorem 4.1), S,(z,y) — S(¢,5)
in the norm of C(K) with probability one. Hence it follows that the series 18/ is
convergent to &, in the norm of E with probability one uniformly over {o, 1].
The Theorem is thus proved.

THEOREM 3. Let t,. t e [0,1], be an E-valued Brownian motion and R
be its associated covariance operator. Let H be the Hilbert space corresponding
to R as described in Proposition 1. Then for every CONS {e,}, =1, 2,..., in
H there exists a sequence {B, ()}, €0, 1] andn=1, 2,..., of independent
identically distributed real Brownian motions such that ' '

9/ =3 B,(e, -~ (.1 0 elo1D

where the ‘series is convergent in the norm of E with probability one uniformly
overlo, 1.

Proof: By virtue of Theorem 2 the E-valued Brownian motion | &} can
be represented by the random series 7! where Z,, n =1, 2,..., aresome i.i. d
symmetric Gaussian E-valued random variables with a common covariance - oper-
ator R. Let H be the Hilbert space corresponding to R as described in Propos-
ition 1. Let }e,} be an arbitrary CONS in H. From Proposition 1 it follows that
for every n = 1, 2, ... there exists a sequence U, ,, m = 1, 2., of independent
real random variables with distribution N(0, 1) such that

110/  Z,=3 U, e  (n=12..)

where the series is convergent in the norm of E with probability one. It should
be noted that the family {U, ,,} is consisted of i.i.d real Gaussian random var-
iables. Putting

1

ny B,({)= S U,, 0f g, (s)ds - e [0, 1)

where }g,} is a CONS in L% we get, by Theorem 5.2[1], a sequence of i.i.d
real Brownian motions B, (£), m = 1, 2,... Further, from /7/ and /10/ it is easy
seen that :

., = I B,(t)e,
m
where the series is convergent in the norm of E with probability one for every
t & [0, 1]. Moreover, by the same technique as in the proof of Theorem 2 one

can prove that this series is convergent in the norm of E with probability one
uniformly over {0, 1]. Thus the Theorem is proved.

THEOREM 4. Let &, e {0, 1], be an E-valued Brownian motion and
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. R be its associated covariance operator. Let H be the Hilbert space corresponding

to R as described in Proposition 1.

Then for every CONS {f,}, n =1, 2...., in L?([0, 1], H). there exists
a sequence of independent real random variables {U,}, n =1, 2, ..., with distri-
bution N(0, 1) such that

S Of' £,(s) ds (ce [0, 1])

where the series is convergent in the norm of E with probability one uniformly
over [0, 1].

Proof. Given an E-valued Brownian motion let G denote the Hilbert
space spanned by all real Gaussian random variables and closed under the square
convergence. Then for any z,y € E* and ¢, se [0 1] we have the equations

Ez(%) y(&) =<3 Rz> (t A 9)
= (Ry, RzD>p(t A 5)

=Rz % Ry* %

©.1y ©, 97 L2((0, 1}, E)

which, by the fact that the random variables 2(8), z€ E” and te [0, 1], are
linearly dense in G and the simple functions Rz % iy € E* and te [0, 1],

are linearly dense in LZ([0, 1], H), imply that there exists an isometric isomor-
fism ¢ from L%([0, 1], H) into G such that ¢(Rx X0, o) = z(%,) for all

z€ E" and te [0, 1]. Let-{f,} be an arbitrary CONS in L%[0, 1], &). Then
using the isomorfism ¢ we put U, = ¢(f,), n =1, 2,... It is clear that U} is -
a CONS in G. In particular, it is a sequence of iid symmetric real Gaussian,
random variables. As Rz Lo, s) has an orthogonal expansion -

t
Rz Yo, 1) = %fn { {Rz, f,()>g ds
=3 f, j z(f,(s)) ds .. (Proposition 1)

- ol 504

where the integral is taken in the Bochner sense, we have an orthogonal expansion

/13/ _ z(§,) = Z U, x(ff(s))ds.

By Ito- Nisio Theorem ([1] Theorem 4.1) it follows that

oo mXUffma
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where the series is convergent in the norm of E with probability one for every
t € [0, 1]. Moreover, by (13), (14) and by the same technique as in the proof
of Theorem 2, one can prove that the series (14) is convergent in the norm of E
with probability one uniformly over [0, 1]. The Theorem is thus proved.

Theorems 2, 3 and 4 suggest that we can construct an E-valued Brownian
motion as follows. Let R be a covariance operator of an E-valued symmetric
Gaussian random variable, Let H be a Hilbert space corresponding to R as des-
cribed in Proposition 1. Let {U,}, n =1, 2,..., be a sequence of independent real
random variables with distribution N(0, 1} and }Z 4 n=12.,2a sequencglof
independent symmetric Gaussian E-valued random variables with the common
covariance operator R. Further, let fe } be a CONSin H, {f,} be a CONS in

L? ([0, 11, H) and {g,{ be a CONS in L%, Finally, let { B,(£){ be a sequence of
independent real Brownian motions with E Bf, (1) =1 for every n=1, 2,...

THEQOREM 5. The series

nsl s Z, 0} a(ds ¢e o 1])
/16/ T B(t) e, _ telo, 1D
nm . b U,,O‘ftf,,(s.) ds. ' | (te [0, 1])

converge in the norm of E with probability one uniformly over [0,1] to
E-valued Brownian motions whose the associated covariance operator is R.

Proof. Consider the series /15/. Put |
S = é_l Z O} g,.(Q) ds (n=1,2,..and te [0, 1;|).
Then for e;rery ye E* we .have ‘
Ey (5,()) = <, Ry ;21 ( 6; g{s) dsy’

— {y, Ry>t as n — o0

which, by virtue of Ito-Nisio Theorem’ ([1], Theorem 4.1), implies that the series
115/ converges in the norm of E with probability one for every ¢ € {0, 1]. Let
¢, te [0, 1], denote the limit process. Then for any f, s€ [0,1] and z,yc E*

we have 7
Ex( £)3( &) =<3 Rad(EA5s)

Consequently, by Theorem 1, it follows that { ¢} is a Brownian motion. More-
over, its associated covariance operator is R. Now, by the same technique as in
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the proof of Theorem 2, one can prove that the series /15/ converges to &,{ in
" the norm of E with probability one uniformly over [o, 1].

The proof of thé remainder parts of the Theorem is the same which
completes the proof of the Theorem.
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II. A STOCHASTIC INTEGRAL OF OPERATOR-VALUED FUNCTION _

Abstract. In this paper we define a stochastic integral for some class of
operator-valued functions based on a Banach space valued Brownian motion.

Throughout this paper we shall preserve the terminology and notation in

{2]. In particular, by E we shall denote a real separable Banach space with the

norm |-|; and the dual space E*. Let &, t'e [0, 1], be an E-valued Brownian

motion with the associated operator R. Further, let B(E) denote the space of all

bounded linear operators on E. Mordifying the technique developed in [3] by

‘Vahaniya and Kandelaki for the Hilbert space case we introduce a norm in B(E)
as follows: For every A € B(E) and for every number 1 < p < o we put

n lal, = (Ell4 &15) >
» ( 1 E) )
In the sequel we shall identify the operators A, B € B(E) for which
A — Bl, !
In'such a way we get a normed linear space (B (E) Il - ”) Let M denote the

completion of B(E) in the norm |- Hij It is evident that M isa separable Banach

space. Let us denote by L'([0, 1], M) the Banach space of all measurable M- “val-
ued functions f defined on [0, 1] such that

where || ||,, denotes the norm in M. It should be noted [1] that the set of all
simple functions of the form



/2f _ £ =i£1 A Key g 4
where A}, Ay.y 4, € B(E) and 0 =1¢, <t; < .. <t, £ 1, is dense in
L' (fo, 1}, M. ' |
We now proceed to define a stochastic integral for funetions f e
e L' ([0, 1], M). First for a simple function f of the form (2) we put
1 n )
/3/ J(): = (_{f(s)dﬁs = 'El A (E, — &)

Then we have

14/ E[J( l]’;i— < ;- (E"A.(E:i — &, ) h;;) -11'; ’*'-‘i:_él (¢ — M Al

i=1

1
= uf 17y ds =1l ”Ll(lﬂ. 1, M)’

Let f be an arbitrary function in L}([0, 1], M). Choose a sequence }f,}
of simple functions of the form j2/ such that f, — f in the norm of L([0, 1], M).
By /4/ it follows that the sequence of E-valued Gaussian random variable { J( £,

~ js fundamental in the L7 (0, &, P; E) norm. Since the last space is complete it
follows that there exists a' limit

Clim J(fn)

n— o3

in the L(a, &, P; E) norm. Define
!
/5/ J(f) =l=0ff(5)d§,

= lim J(f,)

n— oo

It is easy to check that J(f) does not depend on any choice of {f,{ Thus the |
stochastic integral J(£) is defined for every function f € L]0, 1], M).

) We remark that if £ is a function in L'([0, 1], M) with the property
that £([0, 1]) ¢ B(E) then by /3/ and /5/ it follows that the covariance oper-
ator of the E-valued Gaussian random variable J{f) is given by the formula

/6] | ofl FEIR £ ds
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where the integral is taken in such a way that for any z, y€ E"
1 ,
Ez(J() y (70 ={ < f*(s)y, Rf*(s)z> ds

Finally, if E is a Hilbert space and { &4 is a Hilbeﬁ space valued
Brownian motion then our definition of the stochastic integral coincides with
that given in [3] by Vahaniya and Kandelaki.
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