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This paper deals with the influence of nonlinear frictions to the para-
metric oscillations of dynamical systems described by the equation with the cubic
term at the modulation depth : '

4 o2z + 2(cz + d23)cosyt + saz® + eR(z, 2} =0, @1

where o, ¢, d, & are constants, € is a small positive parameter, Rz, 2)is a non-
linear function of z, Z characterized the frictions considered. Three forms of non-
linear frictions will be investigated herell, 2]: the Coulomb friction, the turbulent
one and their combination. :

As will be seen later in the analysis, the sign and value of parameter d
sharply change the motion picture and the stable regions.

It must be emphasized that the equation (0.1) describes the real physical
systems more precisely than the one in which d = 0[4,5,6]. The system of type
(0.1) with linear friction was studied qualitatively by Minorsky [3] but no attempt
has yet been made to investigate it with the Coulomb friction, turbulent one and
their combination. ' ‘

S STATIONARY OSCILLATIONS AND THEIR STABILITY

Let us consider the resonant case when there exists the following relation
between the frequencies - ‘
)
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‘where A is detuning. At first, we transform the equation (0.1) into standard form
- by means of the formulael7]

x = asinh, == -—ZY— acosh. : (1.2)

The transformed equations are

Yo e[ar + az® + (cx + d23) cosyt + Rz, z)] cose,

—g—- ab = e[Az + a2’ + (cx + dz®) cosyt + R{z, z)] sing,

where ¢ = 8 — —;— t and a, ¢ are slowly varying functions of ¢.

The asymptotic method of nonhnear oscxIlatlons gives in the first approx
imation the following equations

Y oo dady
> a S[S(a, Y) -I-— (._...,_ + —8—) smz':l:’],

Y A 3 .3 _(ta  ddd 2]
zaq’_ s[ a+ aa _-}-H(a,Y) (4+4)cos~i-,

(1.4)

received by averaging the nght hand sides of (1.3) over the t1me, where we

designate
2K

S(a, ¥) = -é!;;:_ f cosB . R (asing, —;— écosp) de,

:x | " (1.5)

H{a, Y)= -21? f sing R (asing, -;—( acoss) a’af N
LT - ' . . P!
The steady state harmonic solution corresponding to @ == 0; ¢ = 0 are
( CZ dg ) sin2 ¢, == — S(a,, Y),
' : (1.6)
ca, da A 3 3
( 4‘-+ -;1—) cos2 p, _—2—a + — 3 a a, + H(a, Y)
Eliﬁlinati'ng b, gives
" here -
‘ & aa, + = a ol + 2H)2 '
Wla, ¥) = — 225 + . —1 (1.8)

a2 +da®)* - af(c + da?)?

2 (1.3)



The subharmomc ‘response - given by equations (1 2) is obtamable only

" when it is physically stable. We study now the stability of stationary oscillations.

Let 3z and 3¢ be small perturbations and set a = a, + 33, ¥ = ¥, + &v. Sub-

stituting these expressions into equations (1.4), neglecting powers of sa, sv above
the first and also makmg use of the relationships (1.6} yields

.Y . d 72 '
_z_d —=—E z [S + dao) sm2%]6a +( 1 aa) e.z,,c:os2¢,,afv_ ; -

Yaa dﬁ‘l’ 3[ JAN 2 ' ( 4 3 2
o dr 9 ) H’ o 4 " d 0) ]
5 % &) 5 + 3 aa, + 7 + 7 a,} cos2¢, | 32 +

IE + (—;— + -z_ai) asin2¢,3% g

l ~ The characteristic equation of this system is given by

Yiyv: oo 3 2 ) ’ .
(%) aonir v @9+ oot (€ + D) 28+ D W o, (19)
2/ 7 7 2 e, 32 %, b
- where the following notation is introduced € = -t;g-, D == E%i

The stability condition is given by the Routh-Hurwitz criterion that is

-———(aS)>0 (e+ Cbaz)(2€+% °W

(1.10)

~ In the figures presented below the darkish areas correspond to the unstable regions
where the conditions (1.10) violated and the undarkish ones — to the stable
regions. Sometime the unstable branches of resonant curves are shown dotted to

" indicate that they are physically unobtainable. -

o ' As will be seen later the nonlinearity of the system under consider-
" ation/coefficient afstrongly influences to the maximum of amplitudes of stationary .
. oscillations and their stability.

§ 2, THE INFLUENCE OF COULOMB FRICTION -

Let us consider the Coulomb friction of type

b R(z, z) = h, signz {2.1)
‘where - - '
1if £> 0,
signf = { —1if x <0,
0 if & =0,



In this case we have

2h,
T oraz#O,

S(“,r Y) =
' 0 fora=0,
and the equations {1.4)} become
fora == 0: ' ' |
Y i [—2— 4 (2¢ + daz) sm2¢] | (2.2)‘
2 x ,8

| —;’— ay = [%a + % oad ——'%. (c + daz) t:osztl’].
and fora = 0:
—;— a=—¢ % {2¢ + dai)") sinZg, - (23]
Y oi =Lt g [A- + 3 -cxaz — L (¢ + da®) co;2:b].
-2 2 1 2
The expression (1.8) now takes form

16962 4(1 — o2 + 2%y .

- (24)

22 (2€ + Da2)* (€ + Da2y
and the equation W = 0 gives o N
s Tl T A
02==1+saﬁi—1—]'6+cj)a§ 1— 0 (2.5
2 - a2 (2€ + D) )

Y .3 s. 4 'éc t‘d

Figs. 1 — 3 are obtained by plottmg equation (2 5) for the posmve
= + 0.1/the resonant curves in the case of negative B are received by mirror
reflection/. Figs. 1, 2 correspond to the negative value of 4. For the fig. 1 we

have 0> D > — 26327762, namely, D=—0.1, €=0.15,and PG, = O/stralght
lines 1/, 6% = 10 */curve 2/, F62=6,25.10"curves 3/, 5 == 12,5 10 Ycur-
ves 4/. The parameters for the fig.2 are D < — 26127 F62<0: D =—0. 1,
€=0.1,and 6, =9.10" Yeurve 2/, F6, = 25.10" “eurve 3/,

For the posxtwe value of d we hdve the resonant curves in fig.3: D=0.1,
p=0.1, £=0.15 and 76, = 0/stra:ght lines 1/, F62 = 10—‘4/curve 2/, F: =

= ]6 10 4/curve 3/
6
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Fig.4 represents the resonant curves in the case d = 0 for the parameters
g =0.1, € =0.15 and F6, = Ofstraight lines 1/, 6. = 6,25.10 *curve 2/,

F62 = 12,5.10" “/curve 3/, %ﬁ == 25,10 */curve 4/.

§3. TURBULENT FRICTION

_R (z}z) = hya’signx A (3.1)

It is easily to show that in this case

1 .
S(d, Y) = g‘}c— h2Y2a2

H(d, Y) = Or
and therefore the averaging equations (1.4) take the form

Y [_,l_ 2 2 (_E_ _d_a) ] '
5 @ £ e koY% + 1 a+ g ¢ ,szfp" (3.2)
—Yéaai:-—_—s[—%a+—g—aa3—(%-a+—g—a3)cos2¢].

. Now the amplitude a, of stationary oscillation and the frequency Y/n= -2! /

are related by the equation

: 496"
=1+ 82+ 4 |G+ D \/-1— 2o - (3.3
_ 2 ! , ! (2€ + D%y’ | )

where 76, = '31’_?1:- ¢hy. Such relationship for d <0 are shown in fig5/8=0.1,

D = —0.15, €=0.15/. For T4, = 0 we have two crossing straight lines 1.
With the small values of F6,/P6, = 10~% the resonant curve consists of three
branches 2. The first branch lies _ab_ove straight line a’ = — 26/, the second
pne — between a2 = — €/ and @2 = — 2€/D and the thirdlower ‘straight line

a® = — C/D. The two last brancﬁes are tightened at the point a2 = — C/9D,
2

=1—8 5 Wllh the growth of %6, the second branch becomes lower and

lower, but the first moves up. For sufficiently large values of &5, the resonant
curves consist of two branches/see curves 3 for ¥6,==0.1/. One of which is above

the straight line a® = — 2€/9D and the other is lower a: = — C/D.
The resonant curves for the case d > 0 are shown in fig. 6. If 6/2€ >

> D > 0 the resonant curve consists of two & parabolic? branches/see curves 3/.
 With the growth of %6, these branches move away. For D > 963/2€ > 0 the

1



resonant curve has form represented by branches 2. The parameters of the curves
in fig. 6 are D =0.15, €=0.15, p = 0.1 and %6, = O/straight hnes 1/,
F6, = 0.15/curves 2/, F6, = 0. 22/curves 3/.

For comparison the resonant curves in the case d-= 0 are given in fig. 7.

The other parameters are: § = 0.1, € = 0.15 and ¥6, = O/straight lines 1/,
6, = 0.05/curve 2/, 76, = 0.1/curve 3/, F6, = 0.15/curve 4/.

§ 4. TURBULENT FRICTION TOGETHEER WITH THE COULOMB ONE

In this section the nonlinear friction of form (2] -
R(z, 2) = (B, + hyx?) signz (4.1)
* is investigated, where h,, k, are the positive. constants.

Now the equations (1.4) become

7 -g- G =—¢ 2k, 5’12_ y2a? + (_—:—a +“—§- a'3) sin2 'l’],
| - & L = 08 (4.2)
C en [herde(fer fo)uar)
and the equation (1.7) takes form | | :
4296, + Hp’al)’ 41 —v* + Bad) leo 43)

22C+ a2 T (€ + D

For d > 0'the resonant curves have farm presented in fig.8/ = 0.1, €= "

== D'=0.15/. Straight lines 1 correspond Z6, = 76, =0 and curves 2,3 corres-

pond to Fb¢ + Fb3 + 0+, = %2—5 10 %/curve 2/; 96, = %2—7 5.107%

_curve 3/.
If d < 0, then depending on the disposition of the curves

Y= 40296, + F6,AF, 2= AQC+ D4¢ = . (44

the resonant curves have forms shown in fig.9. The curve 2 corresponds to the

case when there exists only a point of intersection of the curves(4.4). Curve 3
and point 3 correspond to the points of intersection A;, A, Aj; of the curves -
- (44): A, > —26/D, Ay = A; = — C/D. If the curves (4.4) have three sepa- -
' rated points of intersection then the resonant curves have form. «4» in fig.9 if

A > = 2CD, A, < — €D, A; < — E[D, and form- G5 5f A >-—2@/9, |

—2C/D > A4,> — CID, 43 <— €[D.
The resonant curves in the case d == 0 are represented in fig.10 for

5=0.25, C=0.16, %6,=2.10~ and P, =0.16/point 2; F6, = i:f’- 1072

feurve 3/, Fb, = ——3—- 10 z/cutvedr/ 96 = 12.10 2/cun!"e 5/.



To compare with the linear friction in figs. 11, 12 and 13 the amplitude —
frequency responses in the system (0.1) with linear friction R(x, ) = hz are
plotted for the case d < 0/fig-11/, d > 0/fig.12/and d = 0/fig.13/. The curves in
these figures are presented for the case f==0.1, € =0.15. The other parameters
for fig.11 are D=--0.15 and F6="0/curve 1/F6=0.03/curve 2/, #6=0.21
Jourve 3/, 6= 0. 3/curve 4/..For fig.12 we have D =0.15 and 76 == 0/curve 1/,
Gl =0 .2/curve 2/, H=0.3/curve 3/, ¥6=0. 45/curve 4/and for fig.13:d =0,
J6 =0/curve 1/, 76=0.27/curve 2/, F6 = 0.28/curve 3/, 76 =0.297/curve 4/,

- where 6 = dehlo. '
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