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1. INTRODUCTION

Many questions in different fields of mathemahcs can be reduced to the
solvability of an equation of the form : )

[(x) =y M
where f is a mapping from an open subsel of a linear topologlcal space X into
a linear topologlcal 'space Y and y is an element of Y,

_ Suppose 2° is a solution of the equation. It is often of inferest to know
whether this solution is siable in the following sense: for every neighbourhood
W of x° one can find a neighbourhood V of y such that for every v € V the
equation

' Cf@=v
still has a solution in W. This condition amounts {o requiring that V — f (W),
i. e. f maps every neighbourhood of x° onto a neighbourhood of 7 (x9).

We may say in this case that the mapping f is surjective ai 20, The problem
of stability of x° may then be fermulated as the question of under which
conditions the mapping f will be surjective at this poiut.

In the simplest cases, when [ is linear, along known answer to this question
is furnished by the Banach classmal open mapping theorem which asserts that
if X,Y are Banach spaces and il a linear mapping f: X — Y is continuous and
surjective then if is open (and hence, surjective) at every point x.

When f is nonlinear, a familiar method in classical analysis is to linearize
f. i.e. to approximate it, in a certain sense, by means of a linear mapping

(9]
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g : X — Y. Bul then a second problem naturally avises: suppose that the

linearization of f at a® is surjective at 1%; can one be sure that the mapping

f itself is surjective al this point? . i . '
For the case of DBanach spaces il can be shown that the answer will be

positive, provided f is-conlinuously Fréchet differentiable in a neighbourhood

of 29 and the lincarization is f (2% + [ (# — 2%, where f* is the dcrn ative of -

[ at @ This fact is related {o a theorem of Ljuslernik [ 5] asserting that, under-

the indicaled conditions, the linear manifold f* (v — 2% = 0 is fangent af x° to
the manifold f (x) = [ (z°

In Couvesx Analysis, molivaled mainly by the applicalions lo cconomics and
opiimization theory, we have often to consider equations ¢i a more general form ~

than (1). Mumely we are frequenlly interesied in the solvability of an equation
of the type :

whereas in elassical analysis the mapping fis generally assumed to enjoy very,

nice dillTerenliability pmpq[id %, the-specific nature of many ploblems in econo--

fayey i | @

where M is a closed convex come given in the range spaee Y of if. Moreover,

mics and conlrol ihcor}r make it necessary to abandon or ‘at least to relax this

assumption.

v

It is the aim of this paper lo study the two problems formulated above for -
equations (2), or, morve generally, for equations of the form 0 &€ F(x), where /¥’
is a'multivelued mapping {rom X inlo Y. The presence of the cone M and the
lack of diffcrentiability properties give rise to technical difficulties which have -

to be overcomé. However, it larned out thal several meaningful results can
be obtained in this genneral selling which aré reminiscent of lamllmr facts in
classical analysis and can be [ruitfully exploited for the'purpose ol applications.

~ The resulis that follow are velaled to ealier works ol S.3. Robinson ([7],
[8]) and Heang Tuy (113] [14]) [15]). In particular, problems of the same kind as
those we are cOusidering heve have been discussed in [15}; ondy, there, the
mapping / was defined on a non i.ccessarily open subsel D .of X, while. the
space Y was more specialized.-

2. SURJECTIVE MULTIVALUED MAPPING THEOREM!
We begin with the first problem.

Consider a multivalued mipping F fromXinlo V. Weadopt Lhe conventional
notaiions.

dom [I? - fr e X () 4= @}, graph. F = { (v,y): y:€ F(z)}. It is convenient:

to recall the following definitions.

Defipition 1, We say that ' is convex if ifs graplisis a convex sct in X X ¥.
As can be easily seen, this amountis torrequiring that for cvery palr.L X 6 dom
1" and for every real numher « £ [0, 1]z '

]*"(_c. x4 (1 — a2 :_i‘ci F (@) + (1 —a) F(x) - (4.

Noet
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Befinition 2. We say thal F s closed i fis wraph iv o elosed setin 5w ¥
The key for an answer io the question of whon a soluiion

1. of Her mguaiion
(2) is stable is furnished by the following resull,

Theovem §. Assume fthai X, Y are Fréchet spaces und el 7 be g convex
closed multivalued mapping [rom X inlo Y, whose runge KXy is « scf of ihe

second calegory inY. Then for every v € int dom F anl jor every aciyhborihoosd
U of x contained in (!om I' we have

Floy mint. F Uy + ¢ (5)

(As usua}h‘ int A and 1 denoie the interior and the clagure of the et

Pfoof. The nrool is along the lines of 'L‘lc standard prool of Banach's epen
mapping theorem, although several tec h fcal deiails mymst he adijusted to the
nonlinearity of 77,

It suffices lo preve (a) u,l the case where o = 0 and Iy, sinee ibe general
case can he reduced to this one by ira ‘Iatinn' the orivin in X io o and the
origin in Y to an arbiirary poinly & Fa x). Also, without loss of generaliiy,
we may assume U to bd a closed bail around (.i.

Observe Tirst that for every positive integer n:

F'(n Uy c nf () {6)
Indeed, if v & F(n U), then o € F (u) for some i & i U and irom (), where

e

weseter =, =0, ¢ :i , it i'o]lows thai
. . I
——14 ) - (1 — —\ FOY . F ('—~ i \
2] /
and hencei 7 J—[I m——\ GeF k— u : F Uy i.c.0 € n 7 ()
n v/ . ,

urther, since the set

F(X)= v F (n )

IZ—-

is by hypothesis of the second category, iherce is a positive inleger n I
int F(nl) =;= & lhen, by (6)

inl F (U) += &, ' (7
so that one can find a poinl b & int I/ (U) such that b & F {a) for some « € U,

. Noting that — a-&€ U < dom F, one can nexi take a point & < F (— a}, and
1131*1g (), one cnn write

 which

. 5‘
far]

1- i 1 ) .
i {— — _ = = F .
(a) 5 ay o F ( > a 5 a/ Fo{
. " !
which implies thal Lhe poml ¢ = — (b + b) belongs to F- (0). Furihermore,

¢ €int'F (), became b<int ¥ ([ F{I'y and the set | F (N (i' ) is convex, Thng we have
tounu a pom[

¢ €F(0) nint F{O) - o ®



We now show that, actually, , : :
¢ & int.F ({U) ’ ¢)}
which will conclude the proof ‘
Let ¢ > 0 be the radius of U, and Iet U; denote the closed ball of radius ‘
-—»E;,-— aronnd 0 € X (i =0, 1, 2,...; so Uy = U). By (8) there is a ball ,Vo around
2 . ' . : '

0 '€ Y such that ¢ 4 Vo < F(Up). Let V; = % Vo, Then, by (6), F (Uy)

o F (—é—! UO), so that

Vi = ; C—(F(U)—c)cF(%UG) ¢ (10)

Consider an arbitrary point » € V,. We shall construct by induction & sequence
zl, z2%,..., such that

A eFU)—c (1)
A ooy )
b — (? bt 21) € Vipr L a2
Since v € V,, we have 2v € V, — F (Uy) — ¢ and hence there is 2 € F (UO) —c
1
satisfying 2v — 2t € Vy, L. e. v — z? €« % V=V, Assume now that 2%, 22, ..

zl have been consiructed, From (12) we have

, ' 1 ) i .
pi+1 [u _ (-‘;,- + et -;-[-) ] €ty =V, FT)—oc
so we can {ind zit! € F (U,) — ¢ satisfying
i1, (FE 2 - _Z[_) — it ey
2441 o .(2+22‘+---+\2i At vy

~

Then . -

From (11) it follows that zi € F (2') — ¢ for some x! ¢ U, By the conve-
xity of F: .

ok ko i k -
Fz L)=p(z_ﬂ-‘___+(1_ 5 _3_).0) o
i=1 2! £ i=1 2" i=1 2!

1 1
32——r(a,)+(1_z—)F(0), )
: - i=t 2! i=1 2

and since 0 ¢ F (0), we deduce
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ko1 . A' kEoogd
s 2 (z‘-{-c)—%-OGF(ZM-_'—). (19)
i=1 2 i=1 2 _ .
kg _
Setting s, = 2 —» We sec that {s.} is. a
i i:1 2 - 1y

Cauchy sequence, because

-k :
K FSIiQBZ—l_——+Oask,l-—>oo.
k i=l 2!

Therefore, since X is complete, {s, } converges to some s* € U, On the other
hand, by (12), ‘ ‘
ki
‘ i=1 21
" Nothing that F is closed by hypothesis, we then conclude from (14):
: v4+ceF(sHCF,),
. and hence, since this is true for any v € V,: .
| VidcC F Uy -
The proof of Theorem 1 js complete.
- ' 1t is obvious that Theorem 1 yields as a corollary the classical Banach
! open mapping theorem when F is single — valued, since in that case F is
: convex in the sense of Definition 1 if and only if it is an affine mapping in the
" ausual  sense. Furthermore, one can derive from Theorem 1 the following
proposition which provides a satisfactory answer {o the first question ‘put in
‘the Introduction.

Definition 3. We say that a multivalued mapping F from X into Y, is surjec-
iveif F(X) =Y. . . :

Definition 4. We say that a multivalued mapping F from X into Y is
urjeclive at a poinl ax° € int dom F if it carries every neighbourhood U of 2°
nto a neighbourhood F (U) of F (x°. F is locally surjective if it is surjective
it every point z &€ int dom F.
- Clearly a mapping F is locally surjective if and only if il carries every open
et contained in int dom F onto an open set. -

Theorem 2. Assume-lhat X, Y are Fréchet spaces. Then every convex and
sed multivalued mapping from X info Y which is surjeciive is locally sur jeclive.

- Proof. Since F (X) = Y is a Fréchet space, it is a sel of the second cate-

ry and by Theorem 1 property (5) holds, for every x € int dom F and every

en set U containing x. To prove the local surjeclivity of F it is enough to

ow that, actually,
' : ‘ E (x) C int F (U). :

¢ € F (x) n int F (U) and let u & ¢ be any element of F (z). Consider any

‘¢ 4+ A (u— c) with A > 1. Then v € F (z) for some z. For o > 0 small
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enough, @' = a z -+ (1 — a) 2 € U and by the convexity of F we shall have
aF@) + (1 —a)F@cF@)CF@),sothtw=ev+ (1 — o) u € F ).
Butu= it ¢ + (1 — ). w for some § € (0,1) and since ¢ € int F (U), this
shows, in view of the convexity of the set F (U), that u € int F (U), which
completes the proof.

Let M be a closed convex cone in V.

" Definition 5. We say that a (single — valued) mapping {: X — ¥ is M —
convex (M — closed, M — sur jective, resp) if the associated mullivalued mapping
P (2) = f (x) — M is convex (closed, surjeclive, resp).

As an immediate consequence of Theorem 2 we obtain

Corollary 1. Every mapping f: X — Y which is M — convex, M — closed and
M — surjective Is locally M ~ sur jeclive. '

3. LOCAL INVERSION THEOREM

Turning to the second problem, we now consider an arbitrary mapping f:
U — Y {rom ap open subset U of a Banach space X inlo a Banach space Y. Let
the space Y be equipped with a closed convex cone M and 'suppose that at some
point x0 the mapping / can be approximated (in a sense io be made precise) by
a M — surjective mapping. What can be said about the M — surjectivity of f
itself at the given point? -

If the approximation is taken to be the ordinary linearization by means of
“the Fréchet derivative, then an answer to this question has been provided by a
~ result of S.M. Robinson in [8]. Another answer, for the case where M = {0},

the approximation being understood in 2 more relaxed sense, has been furnished
by a result established by A.E. Ioffe and V.M. Tikhomirov [3] in connection
with a generalization of Ljusterniks’ theorem.

In many applications, however, the mapping fis not differentiable, while
K < {0} (this sitnation is often encountered, for example, ii optimal conirol
theory). It seems therefore to be of interest.to investigate the problem in the
general case, as we are intended to do in this section.

Before.we try to prove any precise answer to the question, we must, of
course, specify two things: ’

. 1. the operation of «approximating»: what we mean precisely when we
say that some mapping is an «approximation» of another one; in other words,
what we propose to substitute for the usual notion of tangent mappings that is
involved in the classical operation of dilferentiating?

2, the ¢lass of mappings to be used as « approximating mappings », i.e. what '
_ we propose to substitute for the ordinary linear transformations? :

The results of the previous section suggest to use the class of M — convex -
mappings as a substitute for linear transformations. In faet, in order to obtain
meaningful results, we shall use an intermediate class, namely the class of M—
convex mappings that are positively homogeneous. On one hand this class is
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sufliciently large to covef virtually all cases of intevest in practice. On the olhcy
hand, the mappings in this class have many propertics near to those of lincar
* transformalions and, consequenlly, they are relatively easy to handle.
As a sgbshtuLe for the classical nolion of tangent mappings, we iniroduce
the following

Pefinition 6. Let /|, fo: U — ¥ be Lwo mappings from an open subset ¢/
of X into Y. We shall say tlnL fz is in the (U, @) — Lipschilz proxvimily of
fi (or f1 isinlhe (U, a) — Lipschitz proximity of f;} if the dilfercnce fi(ry — fi@)
satisfies in U the o — Lipschitz condition, i. e.

(7 @ 2 € U) @) — fo@) — (@) — ful@P] < afr—2) (15)

As will be seen later (Lemma 3), if f; is continuously Fréchet diffeventiable
in U, then the linearizalion of f -al any point «* &€ U, ic. ihe mapping
fulx) = f(x® -+ £ (x==z"), with f the derivative of [, at 2", is in the (W, o) —
— Lipschitz proximity of f; for some « > 0. Thus the previous notion of
approximation covers most usual cases of tangent mappings in the classical
sense.

Remark, The terminology used above is motivated by the following faect.

Let Yif_ denote the linear space of all mappings from U/ into 1 that are Lips-

ips
chitzian in U. If for each f € YU wedefinethenorm ||/ ¥ io be the smal-
_ Lips Lips
lest of all numbers a 2> 0 such that - -
Vel (@) < e (16)
| Vo, @ €U\ (@)~ f @) <ale— 2] - (17)
then YU  becomes a normed space. '
Lips .

Now, before stating our main theorem in this section, we recall some
pertinent notions and results aboul convex processes. Those are by definition
([10]) multivalued mappings from X into ¥, whose graphs are convex cones
containing the origin in X X Y. ‘

In what follows, given a mapping f: X — ¥ we shall try to approximate it
(in the sense of Definition 6) by a mapping f (z°) + g (x — z°), where gis a
M — convex and positively homogeneous mapping. Then the associated multi-
valued mapping G (x) = g (x) — M is obviously a convex process.

The norm of a convex process G, written | & | ,is defined to be the smallest -
of all numbers v >> 0 such that for every x &€ dom G there is an y € G ()
satisfying

, Tyl <vyix]
(if no such v exists we set | G| = <4 =)

The inverse of a convex process & is the convex process G—' that carries
every yinto G () = {x: y &€ G (L)} Clearly | G| is the smallest of all
numbers v > o such that for every y in the range of ( there is an @ € G (y)
satisfying

| & | < 'v}y]



Lemma 1. If a convex proccess G.is surjective, then | G='] s finite and for

. every pair y, ' € Y we have.

_, ARG @ G @) < 167, g~y (18)°
where h (4,B) denotes the I ausdorff distance belween sels A and B.. g
Proof. This proposition follows casily from the results in [7]. For the sake
of completeness, we give here a direct proof, which is very simple.
By Theorem 2 G is locally surjective, and so the unit ball U = {x:
| & | < 1}is mapped by G onto a set G () containing a ball V| around ¢ &
¥. et v denote the radius of V. Then for every y& ¥ there is u & V such that

v —11"—l € G (u). Setling x = Ly ] u, we have y € G (x), and [x| =
4 Y
AN | u | < AN , which shows that | G'| < v < e Let now g,
Y Y .
y €Y and & € G~ (). By the definition of | G—* | there is anu € G (¥ —
y) satisfying |u | << |G 1§ — yl.Setting &’ = x +uwegety € gy G
e G @)+ 6w O G (&), i.e. x” € G (). Since | —x|=]ui<|
G1l.1y — Yy, (18) follows. '

Let us recall also a lemma on multivalued contraction mappings, which is
essentially due to S. B. Nadler (60] (see also [8], or [3]; thé following variant is
taken from [8]. We shall need this lemma in the proof of our Theorem 3.

Lemma 2. Let S = S (x° r) denote the closed ball of radius r around a point
x° € X, and let P be a multivalued mapping from S into X such that for every x
the set P (x) is nonempty and closed. If .there exists a number § such thal
0 < 0<C1 and.

, -h(.P (x), P(x) ) <<blx—a| v i <RV
p(x0, P(z°) )<< (Q—8)r,
then for every & > 0 there exisis a point & €-P (x) such that | ® —x® | <

LE2 o @ P @) o :

(here p (x*, B) = inl | & — & | ). '
, r & B
" We are nmow in a position to state the main result of this section.

¥ Theorem 3. Let f: U — Y be a mapping defined in an open subset U of X,
and lel x° € U. Assume there is-in a (U, o) — Lipschitz proximity of f «a
M—-surjective mappingx—f (x°) + ¢ (x— x°) such that g: X —Y Is conlinuous,
M -- convex, posilively homogeneous, and a | G—1| = 8 <1, where G denotes the
convex process G (x) = g (x) — . )

Then f is M — surjective at x°

More precisely, if r=p (x% X \ U), then for every v such that{v — |

(x°) ] < _I_l(lz;—:*lﬂ_) and for every number & > o the equation.
| - f(x)€v+M . (19

“
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has al Ieasf.one solution x salisfying

. l$—$°i\<‘c‘ll’~—f(£°){ (20)
1:

with ¢ = 1—]—_5 ]G-‘;

" Proof. Dénote by V" the open hall of radiusf;r(l—-;le— around f (x°). Let »

pe an arbitrary element of V and define a multivalued mapping P from 5 inlo
Xsuchthat P@) =2+ G (v — f(x) + g (x — 2.
Since g is M — suI_]ectwe and continuous by hy pothes1s, the set P () is non-
empty and ‘closed. Further, since f (2°) + g (x — 29 is in.the (U o)— Lipschitz
proximity of f, we have forall z, v € U:

1 f@—f@)—@gE—2)—g@ -2 <alr—a] (21)
1t then follows from Lemma 1 that for all @, @ '€ S - .
B(P @) P @) <162 |f@)—~f@)— (=) —g@—)l

LalGt| . jlzo—wj=0]x—a | (22)

On the other hand, using the definition of | G~* |, we can write
o P @) =inf {|ao —a°|:ax €a®+ G (v — @D}

<167 o=@ | 3)
and, therefore, since v € V :
p (@, P << —8r (24)

This, together with (22), shows that Lemma 2 applies to the mapping P, Hence
~ there exists a point x &€ S such that

YaxeP@,ie U—-f(x)+q($—W°)Gg(&—$°)—i1ﬂ0rf(fb)év+f'f

2w — a1 <A Lpn, P @) < TEL 1671 fo—ran1-

Thus for every v € V the equation (19) has a solution x satislying (20).
This implies that, given an arbitrary neighbourhood U’ of x?, one can choose a
neighbourhood V of f (2% so that V. F (U") for F (x) = [ (x) — M.
Therefore, the mapping f is M — surjective at x?

The proof is complete.

Corbllary 2. Assume, in addilion to all the conditions specified in Theo-
rem 3, lhat g is linear. Then for everyu € U, for every v such lhal | v—[ (u) |

y -
W<IGli

o (u, X\U) and for every 8 > o the equaiion

flxyev+ M

has at least one solution x salisfying
[z —u] < CiU--f(H)!

where ¢ is the same constant as in Theorem 3. Hence f is M — surjeclive at every

point of U and the mapping F (x) = f () — M carries every open subset of U

- onto an open subset of F (U).

Proof. Let u be an arbitrary element of U. From (21), usma the linearity
of g, we have.
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Vaorel|f@ —f@-@gec—n—g@-—m)|<alz—2]
which shows that  — f (1) + ¢ (x — u) — is also in the (U, «) — Lipschiiz
proximily of f. Thereforc, all the conclusions of Theorem 3 apply for 2° = u.
This proves the first assertion of the Corollary. The second assertion follows
easily. ' ‘

-

4. Applicalions

The first application of Theorem 3 that 'suggests itself is a genercalization of
Ljusternik's tangent space theorem. -

‘Before stating this generalization let us point out the basis for the applica-
tion of Theorem 3 to situations where the mapping f is differentiable in the
classical sense. ’ ' : )

Lemma 3. Lel fbe a mapping from an open subsel of X into Y. If‘f is Fréchet
differentiable in a neighbourhood U of x* and if

sup{If, — P liw e €U} (25)

then the mapping x — f (x%) —]—f;o (x— x%) isinthe (U,) Lipschiiz proximily of f.

(here f;: denotes the derivalive of f at point x;] . || is the norm in the space of
linear operators from X into Y).

Proof. By the mean value theorem (see for ex. [4]) we have for all x, & € U;

1@ = [ @) = (& = 29 = [y @ ~a%) | = | f@ ] @)= [u@ =)<

< supllf von—F sl —wiKalz—a .
0<.,t~§,1 .T+f(:r .‘1':) x

Remark. If the derivalive [ is continuous with respectto x in a neighbour-
x .

hood of a2, then (25) necessarily holds, provided U is small enough.

This Lemma shows that Theorem 3 contains as special cases both the .men-
tioned results of S. M. Robinson [8] and of A. D, loffe and V. M. Tikhomirov [3].

Let us recall the following i

Definition' 7. Let K be a subset of X. We say that a vector z € X is langent .
to K at a point 2 € K if for some 8 > O there exists a mapping x: [0,9) — K
such that x () = x° - tz -+ ¢ (D).

The set of all tangent vectors to K at x% is a closed. nonempty cone writien
Tmu (K) and called the langent cone to K at a®.

Theorem 4. T he notations beingthe same as in Theorem 3, assume thal f: U~
Y is conlinuously differentiable in U and lhal lhe derivalive f;c" at a point x* € U

is M — surjective. Then the tangent cone at x° to lhe set

E={xelU:f@)ef @)+ M} (26)
is the solulion set of the equation f* oz & M, i.e. - )

T o(K) = {z: f'o. € M}, ‘ 27)
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Proof. We have only {o prove T o (K) Di{z:f oz M} since the converse
inclusion is trivial. Let z satisly f* o. z & M. Using the confinuily of f;c, we may
assume U7 (o be small enough to ensure that

Vo, wellf —f I<wal G <1,
where & is the convex i)rocess x = fra(x — x% — M. Then by Lemma 3,/ (x%) +
f’xo (x —av) is in the (U,a) — Lipschitz proximity of f, so Corollary 2 applies with
g = [0 For I &€ [0, 9], with 8 0 sufficiently small, we hav

x4tz €U, and | f(2° 4 iz) — f(@) — [ o (I2) | < IG 1|
Then by Corollary 2, where u = x° +- iz, I == = [ (2% - f% (iz), there exists a
vector x (!) salisfying

fat) €v+ M =7@a)+p U2+ M (27)
| 2@ — (@ ) [ <ol f @ +12) — @) — [ )| (28)
Since by hypothesis [o (f z) € M, it follows from (27) thai f (x (D) € f (2 + M,

ie. « () € K. Furthermore (28) implies, obviously, | x ({) — (2° + 2) | = o (&)
and hence z & Tm0 (K), as was to be shown.

p (1 z, INU).

Remark. Ljusternik’s theorem corresponds to the special case M = {0} of
{he previous proposition. In an earlier paper (13] one of us has proved a propo-
sition (Theorem 4) which was essentially the same as the present result, except
that, instead of assuming the M — surjectivity of the derivative /7, we assumed
there a_condition which in the present conlext may be formulated as: (3 vy =0

Yy yel)
BP0 [0 @) < v ly—yl

From Lemma 1 we know that the M — surjectivily of f;co always implieé

the just formualed condition. In fact the two conditions are equivalent, as ean
be easily shown. Thus the present Theorem 4 is essenlially equivalent to
Theorem 4 in [13]. The two methods of proof are different, however.

As the second applicalion of Theorem 3 we shall prove some stabilily pro-
perties of equations (2). -

Theorem 5. Under the same assumpiions as in Theorem 3, lef f(x*) < M.
Then for every e >0 there exists an m >0 such fhat for every mapping A :
U—Y satisfying.

Vel | A@)| <m (29)
Ve, r el | Ax)—Ax) | <n|x— a2 (30)

the equation -
@) + Ayl (31)

has at least one solution x such Lhat | x — 2| <Ts.
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More precisely, if

r 1—a] Gt (32)
14+r LG '
“with r = p(x®, X \_U), then for each mapping A salisfying (29), (30) and for
each &~ 0 the equalion (31) has at least one solution x such that

n<<

0 (14+8) 6| A(x® © (33
2t <DL sy (33)

Remark. The set of mappings A satisfying (29), (30) is nothing else than

the 1 — ball around O in the space Ygips introduced in the Remark following -
Definition 6 Thus one can restate. Theorem 5 as follows:

It f(x) €M, if f(xr) — f(z*) is in the — a — neighbourhood of some
M — convex, positively homogeneous and M — surjective mapping g such that
& ] G- | '<C 1, then for every ¢ > 0 thereexists an 1 > o such thai for every?

in the 1 — neighbourhood of f the equation f(x) € M has at least one solution
in the ¢ — neighbourhood of 2°.

Therefore the solution x® of the eguation ftz) €M is stable under small

perturbalions in Y (1 e. small perturbations preserving the local Lipschitz-

property of f).

Proof of Theorem 5. Let a satisfy (32). Then upon simple computations, we
deduce (a+m) |G| <<1 (34)
- P -1

pe Tl =+ 16 35)
PG
Consider now an arbitrary mapping 4: U — Y satisfying (29), (80), We have,
for all z; a:’%U: ; -
| (@) + A@@) = f(@) — A@@) — (gle — 2%) — gl —~ 2 | <
< @) — (@) — (gl — 20) — gl — 2%9) | + | Ax) — Ax) |
: K@t+nlz—2]|.
since f is in the (U, «) — proxmnly of f(x%) 4~ g(x — x°. Thus f(x) 4+ A(x) is in
the (U, 1) — Lipschitz proximity of f(x° + A(z®) 4 g(x — x°). Since (34)
holds, it follows from Theorem 3 that for every 6 > 0 and for every v such that

1— (e G-1 '
o —f) — Ay | < HE=LEDIED) (36)
. the equation ' ' i
f@) + A@)€v + M
. has at least one solution @ satisfying | .
- -1 5 -
o S (_1(“:?1]')‘f e o=~ | @
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But from (29) and (35) we see that (36) holds for v = f(x"). Henee the
equation
f@@) + Alx) € f(&) - M ‘
is solved by at least one x satisfying (37). Since f(x") € M by hypothesis, w¢
have [(z) + A(x) € M, which completes the second assertion in the Theorem.
The lirst assertion follows readily, because one can ensure jr — a% <[« by
choosing 7 so as to satisfy (32) and . '
216G a
1— () iG]
An immediate consequence of Theorem 5 is the following propositien which
reduces to a known result on operator equations when M = 10} (see [3]).

< e

Denote by Yg)l the space of continuously differentiable mappings /: U —Y

defined on an open set U C X and bounded iogether with their derivatives. As
it is known ([12], chapter III), this is a Banach space with the norm

Wl = sup (3 /@1, 1F2 1)

x€ll .
Corollary 3 Lel x° be a solution of the equalion
flxy e M

where f € YD; i and M si a closed convex cone in Y Iff;:o is M — surjective, then
Clry !
for every s > 0 there exisls 1 = 0 such thal, for every [ & ng satisfying
. - . 11

|1|? —f I < mthe equation’f(x) < M has atleast one solulion x with |z—x%<Te

Proof. It suffices to observe that [+ || < n implies sup | w; I < 1, so that
xelU

forallz,z e U, |p(@)—yp@E)I<<nlz—2 | , and therefore ([ Wil < | | EipS-

_ Some times it may be convenient to formulate Theorem b in the form of an
« implicit function theorem ».

Let X, Y be Banach spaces and let U be an open set in X. Recall that l’g, .
: ips

is a normed space, the norm W Eip being the smallest number o. > 0 satisfying
5
Yo elUlf@]<e (38)
Va, €U 1f(@) — @) <elz—27| (39)
Theorem 6. Lef YW be an arbitrary set and tet
f: X X W—Y be a mapping suth thal, for some (x°, w*) € U X W [0, w?) € M.

where M is, as before, a closed convex cone inY. Assume that f(,w) € YE_ . for
! . ip

which is M-convex, positively

every w < \V and there exists a mapping g € Yllf -
1

homogeneous, M — surjective and such that:
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VNG w) = oY, <oy where fo(e) = f(29, w0) + g(@ — a%),

200, w) — f(., w) gipsg 1 i:'or Al w e W

1 I (—elG]) *
3/(m+n)lG_j<1,n<1+r G| (40)
where r = p(z°, X\U), G(x) = g(x) — M,
Then for every w € W and every 8§ ~ 0 the equalion _
fe, wye M (41)
has at least one solulion x € U such that
a0 | < LEOLOFL e ) pan, u)) ()

1= (et 677
Proof. The mapping f(., w") satisfies all the assumptions of Theorem 3,
whereas for every w &€ W the mapping Ay (Y =71 (s w) — f(., w° satisfies
conditions (29) and (30) of Theorem 5. Thérefore Theorem 5 applies. :
Remark., Assume, in addition to all the conditions already specified in
Theorem 6, that ¢ is linear and that for every (v, w) € U x W
o (f @ w), M) < o . (43)
Then the conclusion can be sharpened in the following way.
For every u € U, for every w € W and for every & > 0 the equation

@ w)yeHt (49

has at least one solution x such Lhat . '
e (1-+8). | 62| i 5
[ x u| < 1_‘(05_}__“)[(;_»1[ P(f(u:z)s ) . (45)

(Obviously, this implies (42) when u = 29; because (z°, w € M)

Proof. As seen in the proof of Theorem 5, each f(.» w) is in the (o 4+ 9) —
Lipschitz proximity of f(z° w) + g (x + x°%. If now g is linear, then, by Corol-
lary 2, for every u € U, every w & W, every &> 0 and every v such that

— (a -1 .
o) | < =D G o
the equation ’ '
f,wyev+ M (47)
has-at least one solution x satislying : , '
_ '(1+6)|Gm1[ . '48
ey R A O (48)

-Since 7 satisfies (40), it follows from (43)-and the closedness of M that an element
- ¥ € M may be found such that *

- r{l—(a LG
[o—f{u,w) | =o(f (1, w), M) <a<< ( (l-l}(;i)ll 2 :
Therefore, with this v the equation (47) (which implies (44) since v € M)
_bas at least one solution x satisfying (48), and hence, (45).

-
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For the case of classical differentiability we have the following

Corollary 4. Lel X, Y, Z be Banach spaces, let M be a closed cone in Y.
Consider a mapping f: U X W — Y from an open subset U x W of X % Z info
Y, such that f(x°, w®) € M for some point (2% w’) € U X W. Assume thal §

has at every poinl (x, w) € U X W a pa riial Fréchel derevative fﬂ’: (x> w), Lhal |
and f° are continuous in some neighbourhood of (x°, w) and finally, thal f° (x°,
xT T

wO) is M — sur jective. _

Then for every ¢ >> 0there exisls a neighbourhood U* x W' of (x° w’) such
that for every {u, w) € U’ X W’ the equation

fweM (43)
has at least one solution x salisfying
e —u| <A+ |G p(f @ w), M) (44)

where G is the convex process x — G (x) = f::: (z° W — M

Proof. We apply Theorem 6, and the remark following it, with g = f~ (2"
w®). For ¢ >> given, we can choose & > 0, 1 > 0, & > 0 so that

o 148 )
@+ D167 <1 g < (45)

Next, using the continuaity of / and f at (2% w®), we can find a neighbourhood
[ of x° such that
v € U | f(z, w’) — f@a® w’) — g (@ — )1 <o

v, €U f (@ w)—f @, )l <a
which, by Lemma 3, will ensure condition 1) in Theorem 6 (with U’ replacing U).
Further, since

L ) — f (@ w?) — (F @ w) — @, w) | <

L sup || fp @+ 0 — ), w) _f;: (x o —x)w)l.lx—a1,
0<30<C1 ]

it follows from the continuity of / and f that condition 2) in Theorem 6 (with

W replacing W) is fulfilled, provided U’ X W is small enough. Since p (f (29,

w%), M) = 0 we may also assume (43) to hold for all (x, w) € U’ X W,
Finally, we can choose 1 so as to have (40), with 7 = p (x% X\ U).

Thus, all the conditions required in Theorem 6 are satisfied. This concludes
the proof. '

Addendum. All the essential results.in this paper have been presented on
the seminars on Convex Analysis and the Scientific sessions of the Institute of
Mathematics.in Hanoi at the end of 1975 and ihe beginning of 1976. At thal time
the authors were unaware of the paper [7] wich contained, among other things,
a result intermediate between-the Banach -open mapping theorem and our
Corollary 1. ‘
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Some times after the present work had heen achieved, we learned from
professor S,M. Robinson (August 1976) thal many results close to ours had just
been published in his two recent papers [9] and [10]. It turned out that our Theo-
rem 2 here is included in Theoem 1 of [9]. On the other hand, Lemma 1 .and
Theorem 1 of {10] overlap with our Corollary 4 and Theorem 6 respectively :
in the case of differentiable mappings our above mentioned results are properly
contained in the corresponding results of [10], whereas in the case where the
mappings are considered in an open set (L = Z in Lemma 1 of (10jor C =X in
Theorem 1 of [10]), the latter results are properly included in ours. Apparently,
a slight extension of our Theorem 3 would allow it to include all these results
together. _

In any case, it should be noted once more that all the results established
in the present paper concern mappings which are assumed only to be locally
Lipschitz. In a subsequent paper we shall demonstrate how lfhey can be applied
to the theory of Lipschiizian oplimization that has been recently injtiated by
F.H. CGlarke ({1}), [2)). This will provide one more motivation for the approach
taken here. ' '

In conclusion we should like to thank professor S. M. Robinsomn for having
kindly sent to us the reprints of his recent papers on this subject.

Received May 15, 1976
(Revised manuscript received June 16, 1977).
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