ACTA MATHEMATICA VIETNAMICA
TOM 3 N° 1 (1978)

SCOME FIXED POINT THEOREMS FOR MAPPINGS
" OF CONTRACTIVE TYPE

R0 HONG TAN, | NGUYEN ANH MINH

Anstitute of Mathematics. ) . . FEconomical Institate. -

The purpose of this paper is to establish some new resulls on the existence
of fixed points for some classes of mappings of contractive type. The paper
eonsists of three sections. The first section extends the results of Banach,
Rakotch, Boyd — Wong, Meir — Keeler, Edelstem and Sehgal to smglevalued

mappings of coniractive type. The second section exiends an earlier result of
Smithson to muliivalued mappings of contractive lype. In the last section we
- extend some results of Wong, Assad — Kirk and the others to multivalued
generalized contraetions.

1. Fixed points for sirglevalued mappings of comtractive type.

In this seclion we’ shall use the following notations: (X, d) denotes a
metric space, T denotes a conlinuous mappmcf from X into X. F01 x, yin X let

r(x, y) = max { d (x, y), d (x,.Tx), d (y, Ty), ——[d (:r Ty) + d (y, TJ.)]}-

A mapping T is said o belong to the class o4 iff il o € [0, 1) such that
d(Tx, Ty)y < ar(r,y), (ryc& X).
The class -4 contains the class of contractions.

A mapping T is said to belong to the class 3 iff there exist monotone
nonincreasing functions @;: [0, ») — [0, 1] such that ¢; =1 (1) N (0, =) =
m@(i:1,2,3,4)and - ~

d (Tx, Ty) < max {¢, {d (v, g)) d (¥, ¥)» ¢ (d (2, Tx)y d (x, Ta),
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° . . d{x, Tt d (4, Tx) e, T ;
@ (d(y, T) d (Y, Ty), ¢a ( J); o l e i SEIRI f
fm 2, yin X. lhe class B contains the class of mappings ‘;Iuda&{ by Ralioich [10].

A mappmg T is said fo belong to the class @ ifl there exist upper semi-
continuous eon the right [unctlons Wit [0, 00) — 10, o) such thai V. () = 0,

() <<tforalll > 0,(i=1,23 4) and for z, y in X,
- d (Tx, Ty) < max {V, (d (x, g3, Vs (d (x, Ta)),
¥, (d.(y, Ty), 1}!4[ d (x, Ty) 42- d (y, Tvy } '
The class € contains the class of nonlinear contractions studied by Boyd -
Wong [3]. - = T
A mapping T is said to belong to the class < iff :
e >038>0suchthatr (z,y) ¢ d=d(Ta, Ty) < c. (1)

The class 9 contains the class of weakly uniformly contractive mappings

studied by Meir — Keeler [8]. To seethis, it suffices to show that the condition
of weak uniform contraction
Ye>>03 &> 0 such that ¢ L d (v, y) <<e+ d=dTr, Ty)y<: (2)
is equivalent to the following condition -
Ve 038> 0suchthat d(z, g) < e +0=d(Tr,Ty) < e @
Indeed, if T satislies (3) then it obviously also satisfies (2). Conversely, if T
satisfies (2), we consider all w, y in X such that d{r,y) <lse 0.1l d(x,y) = ¢
then by (2) we obtain d (T, Ty) <Te. I d (v, y) <T & then also by (2) we get
d(Tx, Ty) < d(x, ) <<s because T is contractive. Thus, in both cases we
“kave d (Tx, Tyy e ‘
Further, a mapping T is said to belong to the class & iff
\ d{Tz, Ty) << r (x, y), (x =+ y). .
The class & conlains the class:of conlractive mappings studied by Edelstein [4]
and the class of mappings studied by Sehgal [151
For the above defined classes of mappings we have the following relation
' ATBCTECTDTE. ]
It is easy to see that A~ B €. To show that @ & it su[flces toé nole that
the condition (1) is equivalent to the following condition
Ve >0 38 Osuchthate <{d (2, y) <<e+d = d(Tx, Ty) <ce.
To prove € T <p, let T € €. From the condition on ; in the definition of
the class € we have : if ¢ > 0 then w; (&) <C e and 36 > 0 such thal
: . e {F<<e 8=y (y<Te, ((i=1,23,4).
This implies P<le4 &=y (1) <s, (i==1, 2, 3, 4),
“for if 1 <C ¢ then we have also y; (f) < ¢ < e. Now, if 7 (z, y) < + O then
d (x, y) < ¢ 4 & and hence 1y (d (x, 1)) < =. Similarly, we have
d (xr, Ty) —; d(y, Tv) <

e (f (x, Tix)) << g, Py (d (g, Ty)) < e, Py
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Then we get d(Tx, Ty) << ¢ because T &€ €. This shows that € =D

For the class 9 (and hence, for classes ¢, 3, €) using the same method
as Meir — Keeler in [8], we have ihe following resull.

Theorem 1. 1, Let (X> d) be a complete metric space and T & D, Then T
has a unique fixed point x* and Tz — x* (Yr e X).

Proof. let xy€ X, x4 =Tx,(n =0, 1, 2500} I 2y, = @, for some

m then z_ is a fixed point of T and TMu, = 70+l = TM+2 ¢ — | o 3
m 4 0 .
Thus we may suppose v, 14 == 2, (. = 0, 1, 2,..).
Setey, =d (2, v,.4). Since T € & we have

Chtt =d (‘rn-{-i’ Epyg)=d (Tx,, T“tcn+1) <71 (xy, 1) =

1
= max { d (rn » 1) d_(rrl+i’ $n+2)izd (Tps Tpyo )}’ <

- d 4 , T d . , .
\<s.. max { d (-'rn’ $n+1), d (.’I.'n+1, a?n+2)’ ('Ln y \'Ln_[_l-) —g (:LH."{-‘I 'IH-!—,?,)
= max {d (¥p, Tpi1),-d(Tppq, Tpypo) b =

= d {x,, Tpat) = Cp(n =0, 1, 2,...)._

!

Thus {c,} is a decreasing sequence and hence

eaNe>0. 4
H ¢ > 0 then there exists > 0 such that
r{e, g <<e4 d=d(Tx, Ty) <. (5)

Due to (4) there is a natural number N such that cp < e+ 8 (% n>N).
Since ¢, = r (x,, X,41) We have

Cht1=d Tz, Txr}-f- 1) <&
contradicting (4). Thus ¢, — 0.

Now if {x,} is not a Cauchy sequence then an ¢ 0 exists such that
¥ N3m, on >N with d (z,, ) > 2 e. For this ¢, select 8 > 0 such that (5)

holds. Set 8 = min {e, 8}. Since ¢, \, 0, thére is A such that ¢, <—Zi (¥ n>N),

For this N, select n, m > N with-d (T Tp) > 26,
For each j € {m,..., n} we have

(T ) < d (T Tjgg) + d(Tpyg s ;) «

d (T Tjpq) < d (X, x5) + d (T xjpq)

-

and hence
- 6!
| d(:cm, ‘Tj) — d(xnj, :L'J_I__l) | < Cj<I-
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-

In view of ¢ = d(Tp, Tpuy) <<s d @y x>+ &, from the above
inequality it follows there is £ € {m,..., n} such that
3
€+ — <d(a’m’ 1Ic)<5+“"‘

We shall verify the fololwmg inequality
(X, X)) <&+ & : (6)
Indeed, we have

d (T s a:k)<s—|—§§—’—<'e—|-6’, :
: o )
A (T Tm1) = Cm < 7 + &,

d (T Tpy ) = Cp <% <& O,
1 j 1
"é‘{d (X xk-!-l) +d ('rm-|—1’ xp)} < d (X Tp ) + _2“ (cm+ ) <

>

5 . ‘
e+ 4=y
. Thus, we get (6). |
By (6) and (3) we obtain ‘ -
- d (xm-l-l’ Trt+ 1) =d(Txy, Teg)y e @

On the other hand we have
d(Tppgs Tpep) = d (Xpy Tp) — d (T ‘Lm-i—l) — d (@ Ppt1)

contradicting (7). Thus {x,} is a Cauchy sequence. Since X is complete,
xp, — x* € X. By the continuity of T, x4 = T”c — Ta*. Hence x* = Tx*.

To prove the uniqueness of x*, suppose there is y* = Ty°, y“ == x* Since
T' € & we obtain the {ollowing contradiction

d(x* y*) = d (Tx*, Ty*) << d (x*, g*).
Thus, the theorem is proved.

Remark 1. 1, The following example shows thal without the continuity of
T the above theorem does not hold,

1, i, 1

Set X = _—
172 2"
.1 1
"(3w) =

vy 0f with the usual mietric in R, 7 (0) = 1,
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(n=0,1, 2,..). Then T satisfies all conditions in the above theorem excepk
the continuity at 0, and T has no fixed point.

Remark 1. 2. The following example shows that the above thecorem does
not hold if in (1) r (x, y) is replaced by :

p (x, §) = max {d (v, y), d (x, T'x), d(y, Ty), d (v, Ty). d (g, TO)}.
Let X be the set of all integers with the usual metric, 7 (1) = n * 1{~n & X).
Then 7' satisfies the condition (1) with p (x, y) replacing r (x, y) and 7" has no
fixed point. ' o

By the argument of Sehgal in [13] we get the following result.

Theorem 1. 2. Let (X, d) be a metric space, T &€ ", If there evists a subse-

quence { T"ix,} of the iterale sequence {T"xy} for some x, € X, converging lo
x* € X then x* is a unique fived point of T and T"xy > x*.

Proof. With the given x,, we conslruet a sequence {r,} (o = 0, 1, 2,...) by

selting x, = Te = TR+l Put c, = dt&rn,;vn+1). As in the proof of-

Theorem 1. 1, we get ¢, ¢ “z 0. Especially, ¢;, “\ e.
' i
_- By bypothesis, z, = Tn";z:0 - a* Since T is conlinuos, we obtain -
I - .

: 1 ]
To.+1 =T"! 1y = T-"-'n[. - T,

Hence

n,

C : = (xni, xnir;l) —d (a* Tx*) = .

a

- If £ > 0 then

# i _ ok g
d (I'z*, T2¥) < max : d (2%, Ta%), d (Ta*, T2"), L& T + (T2, TP

2

It implies
d (Tx*, Tx*) < d (z*, Ta*) = ¢.
On the other hand, we have

e bINES SN ’ s — 15 . —
d (T'x*, T*x*) = lim d (Tx”f’ szni) = lim d (‘t”i'i‘l’ 1ni+2) =

= lim Cni-kl = lim ¢, =,

contracdicting the above inmequality, Thus e = 0 and 2% = Tx*. The unigue-
ness of x* is easy to prove as in the Theorem 1.1, We shall prove that
T2 — T*.

Since x, — z* and ¢, — 0, for every ¢ > 0 there is an inleger j such
3 i .
that %* i} j we have
max { d (xr , x%),c << e
n; n;
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Then ¢ n 2» n; we have
d(f” e &) =d{x_ , ) =d Tx _ . Te)<<

r ), d(.;c &p) +d (X" 2p. 1)

<max J d(x,_. ") d(xn__l, x, 5

< max { d (v, _ o T Cnﬁi} t
< max { dz, _, x*), Cn—é’ Cnh1} =
=max { d (¥, o a%hc, _ <. <
< max d (x, . X, ¢ <<=

: J J

The theorem is- proved.

Remark 1.3. The follovunﬂ example shows that the thcorem 1.2 does not

hold if r (w,y) is replaced by p(l,J)

Let Y =4 ) B ) C, \vhereAﬁ{a,J—12 } B={xi,i=12...

j=1L.,ihLC= {yi, i = 1,2,_...}. We construct a metric in ¥ as [ollows:

. 1 ,
In 4: - d(a‘j"rj+}.-)=2_'2?’(‘1">0;VJ)
In B: - - d(xj., a:;+k)32—21—k,(1c>0;¥\%j,ii’)
ik, 1 1 ‘ _
d@ x ) = =g~ omr - E>0 V)
InC: . d @yl yi) =2 (Vi1
Between A and B: -
i 1 .
d (.rj, atj) = -2—1-, o V(‘V J) |
N 1 . .
dr(;vj.x}_!_k)=2ﬂ5,—‘_, (k> 05 D)
Between A and C: _
; 1
d(l‘j,yl)zz—i‘— 2[+j
~ Belween B and C:
d(‘ " J)“‘2+ 91+] +_—'

d is a metric in X. Indeed, we must veufy only the following inequalily

Td (w,2) < d(@,y) + AY,2), @y, z € X).

8)
)
(10)

(11)

12).

(1)

(14)

(15)

(16)
29



Consider the following cases

axry, ze€ 4| B.
«) {(x) = j(y) = j(z), In this case the distances between &5 a:}, :rj-, o

are similar to the distances between

0,~,L . in R and (16) is obvious.

;] "
’ ®

2

B) J(x) + i) = j(2) 5= j(x). By(8), (9), (13) we have
LT d(x,2), d(xy), d(y,2) <2

from this we get (16).
©¥) J(x) = J(2) + j(y)- By (10), (12), (8), (9), (13) we have
d(r.2) < 1; d(@y), d(,2) > 1.
from this we get (16).

8) j(x) = i) + j(). By @, ©) (13) we obtain d(x,2) = d(y2).
Similarly, if j(y) = j(2) &= J (m) we get d(x, 2) =d(r, J) In both cases we
obtain (16). ‘ )

by {x,y.2} n C + . First, we observe th'éll; if u C and v -+ u then

by (11), (14), (15) we have 2 < d(u,v) << 3. It 2,z € 4 [J B then y € C and we

have d(x,z) << 2. d (z,y) > 2. from this it follows (16). If x, z € C, then

d(x,z) < d(x,y) and we have (16) Finally, if x € Cand y, z € A |/ B then

x =yl y= T, 2= (we may suppose y € A, z € B, the other cases are

similar to this). If j =;= J» we have d(y,z) > 1, d(a:,y) > 2and d(w,z) < 3, it
1

follows (16). IfJ = J’ then d{(xr,z) =2 4+ —— + sd(x,y) = 2 4 ey

2I+J

d(y, z) = —1— hy (15), (14), (12) and hence we also get (16). Thus d is amelric in X.

Now we coastruct a mapping 7 in X as follows:

Trj=a, (V) Tay =y (<D Ta; =g (¢ 0, Ty =" (v ) (17)

It is clear, that T is continuous, 77 zci — xy and T has no fixed point. Thus _

we must oniy show that T satisfies the condition ,
d (Tx, Tyy < max {d (z, y), d (2, Tx), d (y, Ty), d (z, Ty),d (y, Tx)} forx = y. (18)

Let us consider the following cases. Set
. o

A={x2 y Il = 1, 2,...} ‘
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a)xr,ye 4 [ B. _
a) x, y ¢ A. We may suppose v € 4, y € B o hencevr =1,y = xt LIE

j+k
. PN
k=0, by (17), (12), (13) we have d (Taj, Tal) = d (x4 > 2l )= + <
2 — % = d (x;, Txi). If k >0 then by (17), (13) we get
j
d ; .‘i == C . o = —_ 1 ¢ 1 ’ i
Tojo T2 ) = 4@ ¥ y) =2 '§?<:z'_§?“"ﬁ(i@~ » Iw)
Thus we always obtain d (Tx, Ty) << d (x, Ty) and hence (18).
ppré¢a,yca.lf redwehaver = x;, y= 2. Then
- I
d(Tx;, Taly =d (z,, ,y)=2+__ 1+ 1
( i) (2> y)=2+ pyer < 2 +'21+1

= d (xy, I'.:c: oo

We obtain the same inequality when & &€ B. Thus in this case we get
also (18).

YY) o,y € A. Since x € B, Ty € C we get

d (P, Ty) = d (4, yf’) = 2 <d (x, Ty), hence (18) also holds.
bz € C.
)y d A, Since. Tx € A, Ty € A B, weC we have
. d (Tx, TJ)<2 d(m,r)

hence (18) also holds.

By€n.Thenz =yl , y = .

IFo i then
. i+t —
d (T, T?) d(T 24 ) 2+2[+1+21'1 < +21+1 +21+1
=d @, It = d (x, T2).
- 1 1 .
If i* < ithen i=i'+ k(k>>0). It is easy to verify that st - s <
—— . Then
22l 2f -
Y 1 1 1 1
d(Tx, Ty) = d (x| 2 Yy= 2+ -+ <2 b =

9i +1 2i’+k+1_ . 9i 9

(dfcﬁu y')=d (Y, Ty).

Thus in both cases we obtain (18). The proof is complete.
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2. Fixed points for multivalued mappings of contractive type.

In the sequel we shall use the following notations: (X, d) denotes a meilric
space, CB (X) is the class of all nonemplty closed bounded subsets of X, K (X)
is the class of all nomemply compaci snubsets of X, I) is the Hansdorff metric
_ generated by d in CB (X), and finally,

d{x, ) =inl {d (x, y) |y € A},
(re X, A X)) .

Let T be a multivalued mapping of X into CB(X). O (x) denotes the set
fr In=0,12. ;x,=vx ., &lz (¥ n)} called the orbit of 7" at x. O (x)

is said to be normal if -

[d\ (“Tn’.‘rn—i-l) —d{x , Tx )] < eo,
o

il b8

n
and guasinormal if
St d (x, xn+1) - D{(Tx, _ T:cn)] < oo,

where %+ means that the sum consists only of positive terms.
It is clear thai every normal orbif is quasinormal and thal every regular
(in the sense of Smithson [14]) orbit is quasinormal.

Theorem 2. 1. Let (X, d) be a metric space, T be @« mapping of-X into CB(X),
continuous in the Hausdorff metric D and satisfying

D(Tx, Ty) << max {d(r, y), d(z, Tx), d(y, Ty),
1 3
5 ld(@ Ty) + d(y, T2)l}, (= ) M

7 Suppose there is a quasinormal orbit O (2,) salisfying the following condition
(S): O(x,) contains hwo successive convergenl subsequences:

* - ) . * . * £ /]
mni—;.r ,a,ni+1 >»y* . Then x* = y* € Tas.

Proof. Let O (v} = {x | n=0,1,2,..} be the quasinormal orbit given in h

the hypothesis, seta, = d (x,, x,, ) — D (Tv,_,, Ta ). For every n, we have

_ DTz, Tz )<<maxdx, , x ) dx

n—1*

-1 Txn"- 1)’
. . . 1 -
d(x , T;rrn), 5 d(.rn%]., Txn) ( ' max ; d(a:nml, :::n),
DT,y Tx,), [d(._zn_ o &)+ d@,, T ) ] g
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Hence
DTz, I,I”c)<d(:z, p Lo

From this :
d(z,, .:cn_l_l) =a,+D(Te, _,, Tz )<a + di@ _ ., ).
Settlng b,=d(x,, 1n+1) we have : '
0<d, <a, + b, _ 1
Zra, < oo,
This follows bn — b > 0. Indeed, set b = lim bn-. Then for every : > 0

there is an integer N such that =+ a, < -2— and sup b < b + ¢. On the other

n >N n>=N
hand, for every n > N there exists n’ > n su_ch that bn, ~ b — % . We have
- E )
bn, <bn,_1—{—aﬂ,< - .<bn—[;§Nam < bn +~§ .
Thus, for every n.>» N we get
b+s>b >b p— —>b—e,
i.e. b — b, Observe that |
dys T2 < d @' @, 4 ) + @, o To?)
<d @z, )+ DTz, , Tz).
t i
By the continuity of T we get y* € Tx*, hence
D(Tx*, Ty*) > d (y*, Ty*). . 2
Since O (x,) is quasinormal we have " '
d(z*, y*) — D(Tx*, Ty*) = lim d(a:ni, .x"i +¢) — lim 'D(Txni, Ta:ni +1)
= lim [d (scni_H, mni-i-2) — D(Ta:ni, T2  N<0
) i
Thus : ’
D(Tz* Ty™) > d (z*, y*) ' ’ @

'On the other hand if * < y* then we get
D(Tz*, Ty*) < max {d@*, §*), dx* Tx*); d(y*, T5"), -é-—d(x", Ty)h =

max {d(z", y*)s d(y*, Ty+)},
confradicting (2) and (3). Consequently, 2* = y* and the proof is complete.
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Remark 2. 1. The above theorem implies a result of Smithson in [14}

Remark 2. 2. If in addilion lo the hypotheses of Theorem 2.1 we assume T
is of X-into K (X) then the condition (S) can be replaced by a weaker one: lhere
is a convergenl subsequence x, — X%

‘Indeed, by the continuity of T we have

d@, ,Tx*) <D, a9 >0
iyl i
Since Ta* is compadct, there is a subsequence {x 1}- of {CL } such that
i

x — y* ¢ Tx* Applying the theorem. 2.1. we get the required result.
I'!I- +1 y ) ,p3 =4 g q
k

Proposition 2. 1. Lel (X, d) be a melric space, T be a mapping of X into
CB (X). Set ¢ (x) = d'(x, Tx) (VNx € X). Then

() If T is upper semicontinuous then o is lower semicontinuous.
(ii) 1 f' T is lower semicontinuous then ¢ Is upper semiconh‘nuous.

Proof. Since (i) has been proved in [7] we must only prove (ii). Set a ¢ R
andputd={z € X |g@<akt We shall show that A is open. Obviously
we may assume a > 0..Set &, € A, then ¢ (x,) = d (2o, Tao) << . Denote r =

¢ (xo), & = a —r. Then there exists x; &€ T, such that d (xg, x) < r +-%'
Let B (:r,'l; -—g—) be the open ball with radius —2— and cenlre x;. Then B (ml;
%) A Txy == . By the lower semicontinuity of T, there is a ball B (xy; p) such -
U | iy (S
that B (a:l; ?) A Ta + @ (vx € B (255 p) ). Sel 8, = min ;E"’ 0 i , then
Yo & B(xy; 8)dy € B (:cl; g) A Tz and hence
§ (1) = d (2, T2) < d (v, ) < d (@ a0) + d (@ w) + d (3 5) <
5 5 .8 s
= — e d = a.
<gtrtgtg=r+d=a

Thus B (z,; 8;) < A and Ais open. The proposition is proved.

Remark 2. 3. If (X, d) is-a compacl melric space, T is a upper semicontinu-
ous mapping of X into CB (X) salisfying (1} then T has a fixed poini. '
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Indeed, by Proposition 2. 1(i)¢ (x) = d (x, Tx}is lower semiconlinuous. Since
X is compact, there is x* & X such that
d{x* Tr*)=¢ (@*) = min ¢ (r) = min d (x, Tx) = o > 0.
) reX r€X .
If « =0 then x* € Ta* II o > 0, by the compact—ness of- T'x* there is
y* & Ta* such that
' d(x* g*y=d(x* Tr* = o.
Since &'* 4 y*, by (1) we obtain '
D (Txe*, Ty*) < max { d (x%, g*), d (x% Ta*), d (y*, Ty*), - d (x*, Ty .

Since d (x*, Ty™*) < d (r% *) + d (y¥, Ty*) and

we get d(x,y*)——d(x,TL")“a<d(y Tqi‘)
D (Tz*, Ty << d (y*, Ty*). )

On the other haud, since y* € Ta* then d (y*, Ty*) << D (Ta*, Ty*), contradic-
ling (4). Thus o == 0 and hence a* & Tx*. ‘

k]

Theorem 2. 2, Let (X,d! be a meiric space, T be a closed lower Semicontinuous
mapping of X into CB (X) salisfying (1). Suppose there is a normal orbit O ()
satisfying (S). Then the conclusion of Theorem 2.1 still holds.

Proof.Let O(”zo) ={r [n=012,.},setc =A@, T ) d(x, | ’T‘Un+1)’

Then, sumlarly to the proof of Theo1em 2. 1, we have

D(Te  Tx, )<< d C zcn‘_l_l)

and hence
d(x ¢ 4d(x < c,+ DT, T‘Fn.i.‘l)

n+1’ T‘Tn+1)
<ec, —}«([(T o)
Setting b = d(x, Xpag) we‘ get

n41’ xn+ﬂ)=

0 b, <c,+b, ¢ >0, e <o
from this b, b > 0. ’
_ Since T is closed, y* & Ta*. If x* == y* we have
d(x*, Ty*) < D(Tx*, Ty)<<max § d(z*, y*), d(x*, Tav), d(y*, Tg*),%'d(x*, Ty ("
Hence ‘

dx*, Ty*)y < d(x*, y) = Hm d(z_, X, ) =b (5)
[ i .
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On the other hand,

dzx Tx } = d(x

n*i-l’ n; 41 n;t+1, n+2) Cre

Le. d{x Tx ) — b. By Proposition 2. 1 (ii), ¢ is upper semicontinuous,

41 n.+41

we obtain
¢ y*) =dy*, Ty*) > b,
contradicting (5). Thus ©* = y* and the proof is complete. -

3. Rixed points for multivalued generalized contractions.

Combining the methods of Woncr in [16] and of Nadler.in [9] we can prove
the following result.

—

Theorem 3.1. Lef (X,d) be a complete melric space, S, T be fwo mappings
of X info CB(X), Suppose there exist nonnegative numbers a,, ,.., as with
Za, <1 and :

(az — ay) (ﬂ4 —a) >0 , e

such that ) .
D(Sx, Ty) < oy d(.’L, Sx) -+ a; d(y, Ty) + a; d(z, Tyy 4 ¢, d(y, Sx) —i—

a5 d(zy), (¥ » y € X) ’ 2

Then the fixed point set of each S, T is nonemply and these lwo sets coincide

Proof. Without loss of generality, we may assume ay > 0. Set o = a; +-

+ a3 4 as, B = @y a4 - @5,

=4
r=—2  s= P
1—ay—ay l—a—a,

Let 2, € X, o, € Sx,, there exists x, € Tz, such that

d(xy, x,) < D(Sx,, Tay) + o
By (2) we have

d (x4 %3) < ayd (@ Sg) + apd (@1, T21) + ag d (g Ty +
+ a5 d(xo, L) + o K @y d(wo, T,) F a5 AT, 1) -
"+ ag d(xe, 12) + a5 d(x,, o) o< g d(xus ;) +
~+ g d(xy, a3} +703 [d{xy, 1) 4 dzy, 25)] + 05(1(10, xy)
+ a = a d(x, ) + (az - @) d(xy, ) + o
From this
. d(zy, x3) < rd(wy, ) F 1.
Select x3 € Sz, such that ' _
d(xg, xy) < D(Tx,, Sx) 4 r B.
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Similarly, we have

d (X2, 3) < S P d (xy, q) —}— (w+a,) d (xg, x3) -+ 1.
So
d (s, x5} < 5d (wl, xy) + rs.
Generally, for aégn 41 & S:;:mI gelect Tontg e Ta:zl1 e such that
Aoy o Topyq) S D Sy Ty () + (r)r, (s1)7 1

then select Typesy & Sx2n+2 such that

d(@yni9 0 Tony 3) D(Txgy s 5Ty, 0) + ()7 1.

Repeating the above argument, we obtain, foreachn=20, 1, 2,...,

A @y, 140 Typpg) S T (@ops Typyy ) F 160

(@495 Tonyg) S SE(Top iy Topyg) (srytt:
From this,

d (w2n+2 , .r2n+3) <snd (a:zn, Tonty Yy + r(sr)"] + (sr)“'“ —
= srd (x2n’ x2n+1) 4 2 (sr)”‘“ g e

- K ()P d(ay, @) + 2n + 1) (sr)R L,
Similarly,

ATy, 13 Tyono) S TG0 d (% ) 4 (204-1) r(sr)™

Consequently,

P odx, v, ) <d@se) £ @ttt 12 £ (a4 1) )T

m=1 ‘ n=0 n=>0

-+ rd(ao, x) & (sr)® +r E (2n + 1) (sr)™.
n=0 n=y0

G}

Since by (1), sr <C 1. hence the right side of (3) converges. So 1z, }is

Cauchy By completeness of Xz —»>x € X. We shall prove that x* is a fixed

point of S. Indeed let nn be glven Thexn

d(z*, Sz*) < d(@s T, o) + d(xzn-;-z’ Sx¥) < d(@" 2y, o) +
ot 1) S d(z*, x, +2) + a, d{z*, Sz*) + ‘
ad(Ty, 1 4 T$2n+1 )+ agd(xe, Ty )+ agd(zy, . > Sx*¥) +

.+ D(Sz*, Tz,

+ as d(l‘ Toni1) S A" Ty o) 4 @ d@" Sz +
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oy dlry, L o )b asdt, o, o) Fad(@y, s SE) 4 g d@t a0

Letting n — o we obtain
diz*, Sx*)y < (a, -+ a,) d(z", Sx+).
Hence d(x°, Sx*) == 0, 1. e. x* & Sz

&
We shall prove that if y* is a fixed point of § then il is also a leed point
of 7. Indeed, by (2) for x = y = y* we get

d(y*, Ty*) < D (Sy*, Ty*) < (az+as) d(y*, Ty*).

Hence y* € Ty~ By the symmetry of S and T we conclude {hat two fixed
point sets of § and T coincide and the proof is complete.

Remark 3. I. The above theorem generalizes the [ollowing results: When

§ =T we obtain a proposition of Alesina — Massa — Roux [1]. If S and T are
.singlevalued, we have a theorem of Wong [16]. When § = T is singlevalued, -
this is a theorem of Hardy — Rogers [5]. If S=T, ¢3==a, == 0 we get a theorem
of Reich [12]. When a, = @y == a5 = 0 this is a theorem of Ray [11]. If S and T’
are singlevalued, a3 = @4 = a5 == 0 we have a théorem of Srivastava — Gupta
[15]. When S = T is singlevalued, a; = a, = a; = 0 we obtain a theorem of
Kannan [6]. Finally, if a, = @, == @, == a, = 0 we have a theorem of Nadler [3],
the singlevalued form of which is the well-known Banach contraction principle.

Definition 3. 1. A melricspace (X,d)is said to be (m'e'ztrically) convex (in the
sense of K, \f[endel) ifY &y € Xy x =y there exists z € X, 27,z Yy
such that

d{xrz) 4+ d(z, y) = d (z, y). : 4
" For each subset K of X we denote 3K the boundary of K. We shall use the

following fact [2]: If (X, d) is convex and complete, K — X, x € K, g G[ K then
there exists z € aK satisfying (4).

Following the argument of Assad — Kirk in [2], we obtain

—

Theorem 3. 2. Let (X,d} be a complele convex meiric spaces K be a closed
subsel of X, S, T be two mappings of K inlo CB(X) satisfying Lhe bouridary
condition: Sx . K, Ta C K (Yx € 8K). Suppose there exisl nonnegative

nimbers ..., t; Wilh " .
r . 1 b as . I .3 ° -
a, + aj<m,(z_1,2,1=3,4) ‘(o)

such that (2) holds. Then the conclusion of the theorem 3.1 still_holds.

Proof. First, by (5), Za, <_ 1and hence, similarly to the proof of Theorem
3. 1, the fixed point sets of S and T coincide. Thus, we have only to show
that § has at least one fixed point. Without loss of generality we may assume
a; > 0. Let o3 B, r, s as in"the proofl of Theorem 3. 1. It is easy to verily that
by () we have r <1, s <T 1. We construct a sequence of mappings

[N
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(7} (n = 1.23,..) with 7', = S il n is odd, and T =T il nis oven.

Let xp € X, &) € T2, o € Kput o, = o), if 2] ¢ K we denote by r, a
.point of 8k salisfying |

B d (wg, 2} + d (24, @) = d (xy 2}
Then select x}, € Tha,. such that _
d (23, @) < D (T1g Tox)) - o
If x, € K put v, = x,; otherwise let @, be a point of 8K such that d (ry, x3) -
-+ d{xy, xy) = d (21, ). Then select ¥} € T3 oy such that
dizy, ) <D (T xy, Ts x5) + P

(ienerally, for a given T owe select @’ w1 € Tn_*_ixn such thal

D(T T, qx,)+ " 1if nis odd,

nn—1" " n+1

d(‘L ? 'ln-f-l) <

DTz, _ T, %)+ s" 14l n is even.
Then put L= a:’n+1 if oy & K ; otherwise let Ty be a point of
9/ such that
d(x , xn+1) + d(a:n+1, ;L 1) =d (v, ln-i-l) (6)

In the result we obtain two sequences {x }, {& }. Denote
n n

. = {'Tn: Tp 7Ty
Observe that if x &€ (for some n, then x, € P

We shall consider three following cases:
1. x, < P, Ty & P. In this case, if nis odd we. have

d(z ;tlI;+1) < DS, ot Tx )+ r g g a d{x, _, S, _y+a,dx Tr )+
+ agd(x, ., x, 1) + 'as.d(scn_l, x )+ il g a d(_:rn_l, r) -+

T a d('r ¢ x +1) - Ay [d( 1 xn) + (?(xu’ xn-i-l)} + o d(x 1 'Tn) + i .

From this

n— n—

g . ~ e w W1
d(an, LLHJFI) < rd (‘rn—i’ x,) +



Similarly, for even n we hav_e
d (.rn, :rn_‘_l) << sd (:rn_l, :cn) 4+ st
7 2. r & P, z,. 4 € Q. {If n is odd, we bave

cf(xn, T, ) <d,, 2 )< rdx,_,x )+ " (7)
Similarly, for even n we obtain

d(z,, @, ) < d(@, @, D) S s,z + s, ®)
3.x, € Q,‘ x, € P Then x _, € Pandif nisedd we have
Ay ) < ey ) + @ o), ) < A ) + 0, [, @) +
@ B+ ayd@ T ) F @y (@ @)+ A B )

+ a,dx , x°) -}_' a, d(xn_:l, :r.n) + g,

it follows

, ., n 14- iy -} ay
d(:vn, xn+l) < td(a:n, .rn) + ra’(xn_l, a:n) -+ r”, where ¢ = ~m;—_—a—3~ .
Since > 1, r > 1, hy we obtain ' | 6)

dx .z, ) < (@, _ |, x) -+ ",
Observe that n— 1 is even, by (8) we get
—1
A, x,, ) <isd (v, _, 2, _ )+ Es"  +
Similarly, if n is even we have
. —1 ) -
A @,y ) < urd @, _ytg )+ ur" g ST,

1+az+d3

with 0= . ' -
.‘ 1 - (11 -_ a.; i

Put v = max {#s, ur }, we have

N yd{(x, {x,)+ y? or
d (xn’ xn—[—l) < " o n—1 n
| Yd (Tn—9s Ty 1) + ¥ -+ T
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From (5) it is easy to show that y < 1.

- Setting 6 = —]i_— max % d (T x,), d (z1, ) §, by induclion we can easily

) Vv
prove the inequality ‘
d (X Tptr) < ]/»‘, (& + n). (n=1,23..)
From this {x,} is Cauchy, and hence ¢, — 2* € K. We shall prove o* & Sa*.
Indeed, fix an even n, if xr, € P we have
d(x*, So7) < d (@' o) + d (X S77) < d (% ) + D (ITp—1 $27) <
< d (% x,) + od (@ S + ad (T,—1, Tp) T ad (5 )
+ ayd (@1, S2%) + asd (Tp—q, T°)

If there is an infinite sequence of x, in P with even n then lelling n tend to
infinity, we oblain

d (z*, Sx*) < (0, + ag) d (27 Sa:)
and hence x* & Sz*.

Otherwise; there exists an infinite sequence of ), in { with even n. Then,
for every n large enough we have x,_; € P and

“d (@, Sy < d @ ty_q) + d Xy )+ d (@ ST) <
< d (@, Taeq) + d (@p—12") + D T2y g 52 < d (2% Tp—y) +
F d (@p—p @) + G (3% 52 + @ (@1 @) + G [ @7 Tpog) F
+ d (Tpmps T ] + ad @p—1s ST + a5l (2n1; T) <
<A+ ay + a5) d (2% ap—)) + ad (&% Sx*) - ad (X1 Sx*y A=
+ (14 ay + ag) d (Tp—ys T)-
From this and (7) it follows *.
| d (2%, $3%) < (1 + a5 + a5) d @ ¥p—y) + ad (&, Sa) -
+ a‘d (;cn__l, Sx¥) + (I+a,4as) [ rd ()0 Tp—1) + rr—13,
Letting n tend to infinity, we obtain
d (x% Sz < (& -+ ap) d (x% Sz¥),
and hence x* &€ Sz*. The proof is complete. (-

Remark. 3. 2. When ¢y = ¢, =@ = ¢, = 0 and § == T we obtain a theo-
rem of Assad — Kirk [2].

* ’ : ) Received May 15, 1977.
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