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‘The problem of computing Brouwer fixed points, which arise in many
fields of applied mathematics (such as mathematical economics, games theory,
control systems theory, ete...), has received in recent years an intensive develSp-
ment. Among the methods now available for solving this problem, a particularly
important class of algorithms is constituted by the so-called pivotal algorithms.

The first and fundamental variant of these algorithms was proposed in
1967 by H. Secarf ([5]; see also {1), or [3] for a complete bibliography). Since
then, the basic ideas of H. Scarf have been extended and developed further by a
number of other miathematicians and economists. '

-However, as have observed many authors, Scarf’s algorithm suffered
from the serious defect that it did not allow to take advantage of prior informa-
tion and information progressively accumulated in the course of computation
about the location of the fixed point to be sought. Because of this defect, Scarf’s
algorithm has appeared to be not enough effective when a high level of accuracy
was required.

In order to overcome this difficultiz, several approaches have been pro-
posed, among which the most interesting and the best known are the sandwich
method (Merrill, MacKinnon, Kuhn ;  see [4]) and the homotopy method (Eaves
(3], [41).



The purpose of the present paper is to show that Scarf’s algorithm can be
iodified and extended in a natural way, so as to overcome its mentioned defect
ad to solve a wider class of problenis.

First, in §1, we shall introduce a géneral problem of «fair sharing ?» which
sntains Brouwer fixed point problem’as a special' case. Then, in §2, we shall
vesent a method for finding such a ¢ fair sharing». This method extend¥ Scarf's
Igorithm and is more flexible than the .;latter,"in as much as it allows the computa-
'on procedure to start from any point one likes near to where the fixed point is
xpected to be. Finally, in §3, as an illustration, we shall apply our method to
ariational inequalities and convex programming problems.

§ 1. FIXED POINTS AS FAIR SHARINGS

Brouwer fixed point theorem and its generalization by Kakutani are now
f frequent use in monlinear optimization theory (necessary conditions, stability

juestions), games-theory (saddle-poirit theorems) and mathematical. economics -

theory of general economic eq_uilibrium)._

We shall show in this section that these fixed point theorems can be
riewed as special caseé$ of a more general proposition which can be interpreted as
» theorem on «fair sharing ». Hopefully this will shed some new light on the logi-
.al structure that underlies various equilibrium situations and préblems.

1. Fermulation of the main theorem

Let S= lal,...,a"] be a closed (n—1) - simplex in R*~1, with vertices
AP 8 For every x € S we shall denote by ;. the barycentric i- coordinate

. E

of z in this simplex (s0 z; >0, 2 ;= 1). Let f; =4z € S:x, =0} be the
i=1 A

i - face of S (the face opposite to-vertex a?) and let F; = bzeS:2;=0,z;> 0 for
alt 744,
Consider now a symmetric #-ary predicate L over S, ie. a mapping

from the set of all unordered systems of n distinct elements of S to the set jtrue,

false}. A.unordered system U ==(d41,..., u") of n distinct elements of S is said to
be a L - system if L(U)=L\,..., u")==true. A subset E of S is said to be a
L -set if it contains a L - system. A point z* € S i called a fixed point of the
predicate L if every neighbourhood of z* in S isa L - set,

We shall be concerned with the conditions under which a given predicate
L has a fixed point. Before stating these conditions, let us infroduce a convenient:
terminology and notation. For any two sets of same cardinality, if U”= (U~
fu}) U |}, we shall say that U’ obtains from U by the pivoting ufw .and shal]
write U” = U (#/u), or U 2% U, or simply U U’ if there is no need
to precise the pivoting. Here it is not excluded that #’ =u, in which case U’ =U.
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The conditions we had in view can be formulated as follows :

(¢) For every L-system U and for every w’€ S \ U there exists a
unique % € U such that U’ = U(u/w) is also a L - system. . :

(#) The vertex set of S={(al,..., a"} is a L -system, but no proper
face of Sisa L - se:. : : S

(i") Every system U= (u),..., u*) with o' € F; is a L - system, but no .
system U= (ul,..., u*) with IU n F; I.> 1 (for'some )isa L - system.

The predicate L is said to be proper if it satisfies: () and (zz) or (i)
and ().

THEOREM 1. Every proper predicate L has a fixed point, which can be
computed with any prescribed accuracy. More precisely, given any £€>0 one can
find by a finite procedure a L - set U with diam U < ¢,

Proof. The- first statement follows from the second one. Tndeed, if the

second statement is true, one can find for every positive integer k2 a L - system

= (uh!,..., ub") with diam U, <’¢,, where £, ¥ 0. Using the compactness of

S one can assume, by taking subsequences if necessary, that #%! — z* € S. Since

diam U, — 0, we then have b — 2 for all i =1,..., n. This means that z* is
a fixed point of L.

" Thus, it is enough to prove the second statement of the Theorem. We
shall do it by pointing out in § 2 an algorxthm for computing the ~desired
L - system.

Note 1. In many apphcatxon's the predicate L of concern is not proper,
but one can easily find a proper predicate L’ implying L (i. e. such that every

L - system is a L - system) In these cases, Theorem 1 obviously remains
valid.

Note 2. If. cond1t1on () holds, then condition (#7") is equivalent to the
following one : :

‘. Q . .
(i* )Every system U=(,. u") withw' e F;isa L-system; if U

is a L — system, if u eF n Uand W EF \ U, then U= U(u/u) is also a
L - system.

Indeecl, assuming () and (") to hold, let Ube a L - system and u € 1; :n U,
= I?‘,- N\ U. Then there is an element v € U such that U (v/#’) is a L - system.

One must have v = u, other wise U (viv’) would contain two elements uu' € F,
+ contrary to (i"). Therefore (i#*) holds. Conversely, assuming (i) and (ii*) to hold,
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let U = (u1 ) be a L — system such that U n F; contains two distinet

elements #,v. Then for any «' € F N, U both U (u/w) and U(v/u) are L~systems._

contrary to (3).

2. Corollaries : The Brouwer’s fixed point theorem

We shall see later (§ 3) that Theorem 1 can be used to derive easily
Kakutani’s fixed point theorem. Here let us derive from Theorem 1 two proposi-

tions which are known to be equivalent forms of Brouwer’s fixed point theorem.

COROLLARY 1. Let S=1[al,..., a"] be a closed (n— 1) - simplex,
whose i - face is denoted by F,. If the sets Ly, ..., L, are such that:

I)SC UL,; 2) a"EL,-,F,- an=@(Vt),
i==1 .

" -

then there exists in S a point ' € N L.

=]

- Here i,- denotes the closure of L,

) H
Proof. Using the hiypotheses: S ¢ U L;, a € L;, we can define a mapping
i=1

1:8 —141,..., n} such that I (¢*) =1, and I[(z) =¢ only if z € L, Let L denote

the symmetnc n-ary predicate over S, such that a set U of » distinct elements
of S is a L —system if and only if I(U) = {1,..., n{. Then it can be easily veri-

fied that L fulfils conditions (£) apd (#). Hence, by Theorem 1, there exists in

S a point x*, every neighbourhood of which contains # points # € L; (i = 1,..., n).
This implies 2*€ L; (;==1,..., n), as reqmred.'

COROLLARY 2. Let S=1a,...,a%] be a closed (n— 1) - simplez,

whose i-face is denoted by F;. If the sets Ly, ..., L, are such that :

l)SC ULi, . Z)F,CL;(V;):
i=1 .

n -
then there exists in S a point ¥ € ( L,

==l
. .
Proof. Using the hypothesis S < Ulr L; we can define a mapping
. .

1:S-+1{1,...,n} cuchthat I(x)} =1 implies z € L;. Let L dénote the symmetric
n-ary predicate over S, such that a set U of » distinct elemeénts of S is a L - sys-
tem if and only if (U) =41,...,n} Then it is readily seen that L fulfils condi-
tions (§) and (ii’). The proof can be completed just in the same way as in the

previous cage.
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Browwer's fized point theorem. follows easily from any of the preceding
corollaries. Indeed, assume for example that Corollary 2 holds and consider a conti-
nous mapping f: S — S. Setting L, =}z € 81 z; < fi{x)} (fi{z) denotes the bary.
centric i-coordinate of f(z) in S), one can verify that Ly, ..., L, are closed sets

n
satisfying conditions 1) and 2) of Corollary 2. Hence, there is in S a point z* € Dl L;,

' n n
ie. such that'zf < f{z*) for every i==1,..., n. Since % z; = Zlf,-(x*)= 1,
) i—1 =1 "
this implies z* = f(z*).
"3, « Economic* interpretation

Assume that some utility (which may. be positive, like a profit, or negative,
like a lass) is to be shared among a group of n persons 1, 2,..., m, and we are
looking for a ¢ fair sharing?, ie. a sharing acceptable’ for everybody (in some
sense to be made precise). '

Let us represent every sharing by a point x of the simplex S == ..., a",
such that the barycentric i-coordinate z; of z is equal to the share of person 7 in
this sharing.

4 Imagine that the same utility is to be shared not just once, but n times
successively. Then each sequence U= (& ,...,u") of n such sharings may be
fair or not, and we can describe the family of all fair systems U by giving a
symmetric n-ary predicate L over S, such that a (unordered) set U = ..., u")
of n sharings w* ,..., W', is fair if and only if Uis a L-system. Having thus °
defined the notion of fairness for systems of » sharings, we can accept as fair any
sharing z*, in every neighbourhood of . which, as small as we like, there are =
sharings @ ..., u" forming a fair system. In other words, a fair sharing is a fixed
point of the predicate L, in the sense defined above.

THEOREM 1: can thus be interpreted as poigting out the conditions
.under which a fair sharing exists.

Condition () expresses a rather common feature of many real situations.
Assume, for example, that each person : has chosen a set L; < S, which represents
the set of all sharings good for him, and that a set U of n sharings is regarded as
fair if and only if for each 7= 1,..., n the set U contains just one’ % € L;. Inthat
case condition () reduces to ‘ ) g

1

) UL, =S, L n L;=@ fori +j, | .

i=1

~ which means that: every sharing is good for exactly one person in the group.
Indeed, if (i*) holds then for evéry fair system U={(4!,..,u"*) and

every v & S~ U, we have # € L; (i=1,.., n) and v € L, for just one o,
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rence u'o is the only element of U for which U (w's/v) is again a fair system.
Cherefore (#*) implies (i). Conversely, if (i) holds, then it is easily seen that each
» € S belongs to exactly one L, i.e. (#*) holds.

So, in this particular case, condition (i) amounts to requiring simply that
'ach possible sharing is good for just one person. Perhaps the requirement

n
LN Li=o (i % 7)is a too stringent one: however, if U L;=035, one can always

i=1

ind subsets L; < L, such that «U L;=Sand L’;n L j = @G and by this
i=1 '

vay it is possible to define a proper predicate L’ implying L. As was pointed out

n Note 1, this will suffice to ensure the existence of a fair sharing.

Conditions (4} and (i’ ) concern the cases- when the utility to be shared is
. positive or a negative one, respectively.

If the utility is. positive, then af = (0,.., 1,..., 0) represents for person 7 the

. 4

est sharing, while every x € F; represéats for him the worst ofie, so it is natural
hat the system (a!,..., a7) is fair, and that any system U contained in a face
*; cannot be fair: this is just what is stated in condition (iz). On the other hand,
 the utility is negative, then a' represents for person ¢ the worst sharing, while
very & € F; represents for him the best one, so it is reasonable to assue, as was

" .
xpressed in condition (i), that any system (4!, ..., 4" ) with « € F, is fair, but
ny system (u!,..., u*) having more than one element in some face F. (i.e.
ach that some person 7 gets the best sharing at least twice) is not fair.

Thus, the conditions under which there is a fair sharing according to
"heorem 1, appear to be quite natural.

It is worth while noticing also that, in the context of the interpretatiof
iven above. Corollaries 1 and 2 could be restated as follows. Assume that each
erson 1 has chosen a closed set L; c S representing the collection of all sharings
>ceptable for him. Then, for the case of a positive utility, Corollary 1 says that
fair sharing always exists, provided every possible sharing is acceptable for at
ast someone in the group (condition 1) and every sharing in which a person §
as whole part is acceptable for him, while every sharing in which he has no part
not acceptable (condition 2). For the case of a hegative utility. Corollary 2 says
at a fair sharing always exists, provided every possible sharing is acceptable
r at least someone in the group (condition 1) and every sharing in which a
xrson ¢ has no part is acceptable for him (condition 2).

As we see, a common sense underlies Brouwer fixed point theorem.
erhaps it is this common sense that makes fixed point methods so useful in the
udy of various equilibrium models.

-
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§2. AN ALGORITHM FOR FINDING
THE “FAIR SHARING”

To complete the proof of Theorem 1, we proceed now t6 describe a finite
algorithm for finding, for a ‘given proper predicate L and 4 given number £ > 0,
a L-set U with diam U <&.

We may restrict ourselves to the case where the predicate L satisfies con-
ditions (£) and (i7"), because the case where L satisfies (1) and (¢} can be reduced
to the previous one. '

The main idea of the method is to take a finite grid O, fine enough, of
the set int S and to define two families of subsets of cardinality n + 1 of the set
Q=Qui01i,..., n}, where 0, 1,..., n are arbitrary elements not belonging to
Q. These subsets will be called « primitive sets? and ¢ complete sets », respectively.

To each subset V of Q is associated a simplex A(V) c 8, which will be a L-set

if V is complete, and will have a diameter less than ¢ if, moreover, V is primitive.
Then the problem reduces to finding a set V which is both primitive and complete
(so that & (V) will be the desired L-set). This can be done by a so-called ¢pivotal?
procedure, consisting of a finite number of operations similar to the pivot steps in
the simplex method for solving linear program-s.

1. Primitive sets

Consider # -+ 1 arbitrary orderings & (G=0,1,...,n) on the set Q, and

define, additionnally, for every :=0, 1,..., 7 and for every x € Q:

Tca<(FI) <. <r<0< 1< <G=1) (1)

i i

In this way we obtain # + 1 ordérings (denoted also by <) on the set
. 1

O0=0U %(_),i-,-...,n}

A set V of n+ 1 distinct elements of Q is said to be primitive if
(Vze Q) @) (Voe V) 2L, or, equivalently, if there isnoz € Q such that

i) z> V)

where ¢ V) == i-min V, the minimal element of V in the i-ordering.

For example, the set Vy=1(g, 1....,n), with g=0maz Q, the maximal
elément of Q in the 0-ordering, is obviously prinitive.

For our purpose the most important property of primitive sets is the
following.
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LEMMA 1. Let V be a primitive set and let v be an element of V. If
(VN iod) n Q= @, there is exactly one u € Q such that V(v/u) is again primi-
- tive.; otherwise, there is no such u.

Proof. We first observe that if Vis a primitive set, then fpr eachve V
there is exactly one : such that v = c'(V). Indeed, if ¢* (V)= ¢ (V) for k==,
there would exist an element v € V such that v > ¢ (V) for every i; this would

imply, in view of (1), v € Q, and would contradict the definition of primitive sets.

Consider .now any primitive set V and any ve V. Let v.= ¢ (V). If there
is # € O such that V' = V(v/u) is again primitive, let u = ¢ (V*). Wel must have
7 ¥ 5, because 7 = s would imply for all i 5= 5: :

V)= imin (V. (V) = min (V' N\ ¢ (V) = ¢t (V7), (2)
and hence, ¢ { V") > ¢ (V) for all 7 (if c"(V)Ig ¢ (V*)), or ¢ ( V)>i ¢ (V) for
all ¢ GGif 7 (V?) < ct': {V)), contradicting the primitiveness of V and V. Further-

more, by {(2), ¢/ (V) = ¢i (V") for all i ¢ 7, st, so

| (V) = ¢ (V) | (3

If e (V) & Q, then by (1), ¢" (V) =7, and hence, ¢’ (V) = r-min V’ — e ( V),

ie r==s which is not true. Therefore, ¢" (V} € Q. Thus, if there is « such that
V' = V(vfu) is primitive, then, necessarily : '

(VN9 n Qo

To complete the proof of the Lemma, it remains to show that if the above condi;.

tion is fulfilled, then there is exactly one # such that V' = V (v/u) is primitive.

Let v* = smin (V N 15 (V){). Since V" N\ e (V)i= VN {es (V)

(with 7 5 5), we deduce v* = s-min (V' \ {¢" (V) =¢*(V), and hence, by (3),

v* =" (V). This completely determines 7, since ¢* (V) is given. Define now the set

Rzi.’reé: x> v, 2> (V) for all i # 7, si.

This set is not empty (at least it contains ;) and it follows from the above that
AV Y = g R,

which completely determines i« = ¢"( V'), because R and » are known. F inally, it

is easy to see that the set V' = V (v/n), with u= ¢ (V '), is actually primitive.

Indeed, if there was » € Q with z > ¢t (V') for all 4, then, since ¢ (V) =¢i (V)

forall i @ {7, si, (V') = ¢ (V). &' (V") = r-max R, we would have x € R and

z > r - max R. which is absurd.

Q.E. D

. The previous argument parallels the proof of the replacement theorem .in
Scarf’s theory ({1} or [6]). The only difference is that we consider here arbitrary



orderings on Q. This some what simplifies the reasoning and substantially widens ;
the range of applicability of the model. As will be seen later, lemma 1 is crucial
for the extension and the improvement of Scarf’s algorithm.

" We shall assume in the sequel that the » orderingsi =1,..., n satisfy,

Cforalla, £ €Q: X :

L = oL (4)
i X

For example, one might defihe, as did Scarf in [6]

f

2 2 2.
< o (@, ., 20 10 <o, 0,2, 2iea)
in the lexicographic semnse.

Let us associate to each subset V of é a simplex A (V) defined as being
the smallest 51mplex, positively homothet:c to .S, contammg all elements of Vn@,

and meeting every F such that : >0, i€ V. If V is primitive, then A(V) is just
the simplex, positively homothetic to S, with the i-face passing through ¢ (V)
if ¢ (V) € Q or contained in the i-fice of S if ¢/ (V) = (note that if ¢/ (V) & O
ieifd(V)el0, 1,..., nl, then, in view of (1), necessarily ¢ (V) =i ).

LEMMA 2. If V is a primitive set containing 0 and if Q is an-net of

S, then diam A (V) < N . n, where: N is some positive constant (depending only
upon S).

(By a n-net of S we mean a set () such that every ball-of radius n around
any point of S contains at least one point of Q; since § is compact, such a ri'net
exists for any given n > 0). ‘

Proof. If V is a primitive set containing 6, then it is easily seen that the
simplex A (V) contains no point of Q in its interior. Therefore, the greatest ball
contained in A (V) contains no point of Q and hence, must have a radius less
than n. Let N denote the ratio of the diameter of S to the radius of the greatest
ball contained in S. Then, obviously, diam A (V) < N. n.

2, Completc sets

A set Vof n 4 1 distinct elements of Q is said to be complete it V contains
the element 0 and if every set obtained from V \ ‘0 by replacing each ve V of .

form v = (i = l,...,n) by an arbitrary element of F is a L-system. Clearly, if
V is complete, then A (V) is a L-set.

For example, the set Vi = 0,1,..., 1) is obviously complete (see¢ condi-
tion _(ii*)).- This complete set and the primitive set V, = (g, 1,..., n), with
¢ == O-max (), will play a special role in the algorithm to be described below.
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LEMMA 8. For every complete set V and for every element v’ & g~V

there is exactly one v € V such that V (vjv’) is again complele.
Proof. Denote by Y: Q—3 an_ arbitrary injective mapping such that
Y(z)==x for every 1€ Q and Y (z) = F for every i =1,..., n. It is easy to see
that a set V containing 0(VecQ, |Vi=n+1) is complete if and onmly if
U=v{(V~10})isa L-system. Indeed, suppose U to be a L-systern and consider
‘an arbitrary set U obtalned from VN % 0!} by replacmg eachve Vol form v=1

by an element 7 € F For each v e V of form v = ¢ we have Y (v) € F and so,

by (51), the pivoting Y (v)/7 performed on U yields again a L - system. Since U |
obtains from {J by a finite sequence of pivotings of the form just described, we

see that U is a L - system. Hence, if U is a.L - system, then V is complete. The
~ converse being obvious, our assertion is established.

~ Let now ¥ be any complete set, and let v’ € Q . V. Then v’ 0 (because
0eV), v =v(@)e S\ U, where U=y (V~\1{0}). Since U is a L - system,
there is, by virtue of property (), just one v € U such that U(u/u’} is a L - system.
Hence, v= Y~ (%) is the only element of V such that V (v/v') is complete. This
proves the Lemma.

3. The algorithm

. We shall say that (V,V*) is a p.c. couple if V is primitive, V* is complete
and V* = V{(1/0) for some z € V- If for two p.c. couples (V,V*), (V’, V’*) such
that V° o« V, V* 5« V* we have.

v 010 —
then we shall say that (V*, V'*) follows (V,V*).:

LEMMA 4. For every p.c. couple (V,V*) such that V is not complete and
V == V,or V* = V§ there is exactly one p.c. couple following it.

Proof. Assume that (V, V*)is a p.c. couple and V is not complete. We
have ‘V* = V(u/O) with # == 0, so # & V* and hence, by Lemma 3, there is a
uniquely determmed v & V* such that V'* = V*(vfu) is complete. We can not
have v == 0, since then V = V* (0/v) = V*, ie. V would be complete. Thus
v Oend hence v € V. Since V* = V(v'0) and' v:#O, fVNivlic ;0,
1,..,7}, then necessarily V\iv}=1{1,..,n},and so V’*=V5 {hence V*=V;)and,
by Lemma 1, V== V. Therefore, if V¥ Vyor V*=Vy , then(V \ oD N Q=+
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and by Lemma 1 there is a uniquely determined #’ such that V' = Vi{v/«') is
primitive. Obviously, V*=V" (@/0) and V' 5= V, V'* = V¥, so the Lemma
is proved. )

THEOREM 2. There exists a uniquely determined sequence of distinct
p.c. couples ' '
(VO’ V:): (VJ_, —‘V;e) yrrey (Vm: V:;) (*)
such that (Vi1 V) follows (V, V) (i =0,1,..., m—1) and V,, is complete,
while no V; G = 0,1,..., m — 1) is complete. '

Proof. Since (Vy, V3) is a p.c. couple and V, is not complete {because
0 & V), it follows from Lemma 4 that there exists a uniquely determined p.c.
couple (V, V) following (Vy, V§). We now observe that in any sequence of suc-
cessive p.c. couples of form (¥)}all V; are distinct. Indeed, assuming the
contrary, let %2 denote the smallest integer such fhat V, = V, for some
h <k Since Vi=.V, («*/0), Vi = V,(«*/0) we have Vi = V5 (u* /u?). But
Vi, = V3, (0¥t 1) for some v*1, hence, by Lemma 3, ut = v+l V¥ =V} .y
The latter equality implies A+ 1<k—1, sinceV} V:-";l_1 for every 7. On the
other hand, Vi, = V, (oM u*t1), whereas Vi, = V, (#v¥), and since
Vi=V,, ut=ot1 it follows from Lemma 1 that V,_; = V., This con-
tradicts the definition of 4, because & + 1 < k— 1. Therefore, all V; are distinct. In
particular, V; +« V for every ¢ > 0, and so, by Lenma 4, if the sequence (*) has
been constructed up to (V;, V¥) and if V. is not complete, then the sequence can
be continued in a unique way till (V;4 5, V¥ ;). Since there are only finitely many
primitive sets (Q being finite), the sequence must terminate at some (V,, V¥
with V,, complete, -

| Theorem 2 provides the following algorithm for solving our problem :

ALGORITHM. Teke a grid Q c int S, which is a n - net of S, with
N < “18\7 (N being the constant mentioned in Lemma 2). Start from the p.c. couple

(Vo, V), where V=g, 1,...,n) withg =0-maz Q, V5=(0, 1,...,n). At step
%, cne has a p.c. couple (V,, V¥), such that V¥ =V, («*/0). If V is not complete,
determine the following p.c. couple (V1;, Vi, ;) by the rule: Vi, = Vi (vhuf),
where v* is determined by #* according to Lemma 8 ; then Vs = V(ohut+1),,
where «*+1is determined by v* according to Lemma 1. Otherwise, V, is complete
and the procedure terminates : since V, is complete, the set U == A (V) is a L-set;
since V is primitive, diam U < diam V, < N. n <& (Lemma 2).

+ Note 3. The effectiveness of the algorithm highly depends upon the choice
of. the O-ordering, in particular, upon the choice ofithe maximal element of Q in
this ordering. In practice, prior information may suggest to seek the L-set in the
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proximity of some point z° € int S. In this case 2% should be included in the grid
Q and the O-ordering should be defined such that z°= ¢ = Q-maz Q, and &’ % z

only if |27 — 2°] > |x — 2%}, So the starting: primitive set should be
VO == (.T 1 ) .
Note 4. If the O-ordering on Q is taken to be the same as one of the
i-orderings (i =1,..., 1), i.e. such that x’ < = implies x} <z, then the above

algorithm, as apphed to the Brouwer fixed pomt problem, will coincide with the
algorithm of Scarf{[1]or [6]). In this respect the above algorithm can be considered
as an extension of the algorithm of Scarf. There is, however, an essential difference
between the two approaches whereas in Scarf’s one the procedure always begins
near to a vertex of the simplex S (which constitutes, as is well known, a serious
difficulty of this method), our approach allows the procedure to start from any
point one likes in the region where the fixed point is expected to be. This improve-
ment is possible owing to the generalization of the replacement theorem in Scarf’s
theory, provided by Lemma 1. On the basis of this crucial Lemma, a O-ordering
has been introduced on the set Q, allowing a large freedom in the choice of the
starting primitive set V.

§3. APPLICATIONS TO VARIATIONAL INEQUALITIES
AND CONYEX PROGRAMMING

As an illustration, we shall consider in this section some applications of the
previous results.
1A particular class of proper predicates

Let us first prove a lemma pointing out an important class of proper
predicates. .

As before, S=1[al,..., a*] denotes a closed {(n— 1) - simplex, with

verticesal,..., a" F denotes the relative mterxor of the face of S opposite to @i .

LEMMA 5. Let b be an interior point of S, B: S — R*™! a mapping such

that B(z) = a’ for every z € fgf‘f.*Let L be a symmetric n-ary predicate over S, such
_ that a set U of n distinct elements of S is a L-system if and only if the vectors
1B(u), ue Ul span a (n — 1)-simplex containing b. Then L is implied by a pro-
per predicate over S {and hence, by Theorem 1, has a fized point).

Proof. To each x € R"1 associate 2’ = ( 2 ) € R*. Then we have a vec--

tof b’ € R” and a mapping B’ : S — R”, such that {B(u), ue Ul spana(n - 1)
simplex containing & if and only if the system

TitW)B W)=V, t(x) 20(ue U) (5)
vl :
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has a unique ‘solution. Define a predicate L’ over S such that a set U ot n distinct
clements of S is a L'-system if and only if for all & > 0 small enough the system

H
éUt (@) B(u)="0"+ _21 g (at ), t)>0(uel) (6)
u = .
has 4 unique solution. Then L’ obviously implies L and it is 1easy to see that L’
is proper. b ‘
. .
Indeed, if wi € F; (i=1,..., n), then U=(ul,..., u?)is a L’-set, since
B(u )=a and b is by hypothesis an interior point of S. Moreover, iflU n I?‘,- I>1,
then B (U) has at least two equal elements and so B'(U') cannot be a set of n

independent vectors in R”, i.e. U cannot be a L™system. Thus L’satisfies condition
(i"). On the other hand, if U is a L’-system and v ¢ U, then the system

$4(0) B )+ t) B@) = + 3 & (@)

=38 _
tW>0(uelU), t(v)=20 (7)

admits § B’ («), u € U} as a non-degenerate feasible basis (i.e. (7) has a unique
solution, suth that ¢(v) =0, £(x) > 0 for all « € U). Since (7) implies

T+t =1+ S &,
vy f==1

the set of solutions to (7) is bounded ; hence, by a known result of linear program-
ming theory, there is a unique w € U such that § B (), u e-U(wlv)} will bea
non-degenerate feasible basis for (7), i.e. such that U(w/v) is a L’-system (note
the fact, established in linear programming theory, that for all £ > 0 small enough
the polytope (7) is non-degenerate). Thus L’ satisfies also condition (i), and the
Lemma is proved. '

2. Fixed points and variational inequalities
Consider the following problem, the interest of which in many fields
of applied mathematics, is well known.

Given a set C in X ==R" and a set-valued mapping f: C — 27, find a
point z* € C for which there exists y* satisfying

: Yef(a®), (Yzel) (z—a*y*) >0 (8)
where, as usually, (... ) denotes the inner product.
Such a point z* is called a solution of the variational inequality (8).

For each 2 € X let T'(x) denote the normal cone of C, ie. the set of all
y € X such that (v2’ € C) (' —z, ) < 0. Then solving the variational inequality
- (8) amounts to finding a point £* & C satisfying the inclusion

0efa + T(). ©
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We shall assume that: 1) Cis a compact convex set ; 2) for every z € C
the set f(«) is nonempty, compact and convex : 3) f is an upper semi-continuous

-set-valued mapping. Under these assumptions it is known that a solution #* to

(8) always exists. We shall provide here a new proof of this fact, based upon the
method presented in the previous section. The proof is thus constructive and yields
a new algorithm for computing the solution z*.

Clearly, without loss of generality, we may assume, additiondally, that
C has a nonempty interior and is contained in the interior of the simplex

S=lalal,...,atl witha®=0c R* o' = the {-unit vector in R*. Let Fi=izeS:

Z;=0, 2;>0for j#i}, where z; (=1, 2,... %) is the i-coordinate of z and

k .
Z=l— 2 z. Lete=(/VE IVE,...,1/VE) e R,
J= -

Consider now a mapping B: S—X satisfying: |

1) B{z) = — &' for ze F,(i=1,...,k,B(z)=¢ for z€ Fy;

2) B(x) € f() for z € C;B(z)e T(x)and | B(zx) |=1for z € S\C.

Since —a‘e T(z) forz € F; (i=1,...,k) and e € T (2) forz € Fy,
conditions 1) and 2) are consistent. Furthermore, the simplex generated by
{—al,—a?..., —a* e} contains O in its interior, and so by Lemma 5 one can
associate with B a proper predicate L such that a set U of # + 1 distinct elements

of SisaL-system if and only if the vectors { B (1), » € U} span a n-simplex
containing 0, -

THEOREM 3. Every fixed point of the predicate L just defined is a
solution of the variational inequality (8).

_ Thus, in order to solve the variational inequality (6) it suffices to compute
a fixed point of the predicate L (for example, by the method described previously).

Proof. Let 2* be any fixed point of L (such a point exists, by Lemma 5).

Then there is a sequence of L-systems Uy = (&%, w!%,..., 4*") = S such that
W s zasy s (i =0,1,..., A Denote by Ny the set of all 7 for which #”e C.

By definition of L-systems, there exist, for each v, numbers 1y satisfying

‘ . & . ok
bv20, Lity=1l I t7B(&")=0.
=0 i=0

Since C is compact and f is upper semi-continuous, F(C) is compact and hence,
the set B(S) is bounded, We may then assume, by taking subsequences if necessary,

. " Ny=N forallv

t:"Y - tg‘;r- H B(uﬂ") - ’Ui* as ¥ -~ ca,

18
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Obviously,
. k k k . y
t.z'-x-> 0, 2 t:‘* = :F’ z'#zo t"-x-vz* =0 ' (10)

e
=

We contend that g == 'ethi* > 0. Indeed, if-§ = 0 then we have from (10):

Z t; 'Ui* =0
&N
and hence, ©  (yxe C) 692 tiw (T — ¥, vi*) =0
* iEN

On the other hand, the set-valued mapping x — T(z) being closed (as can be
easily proved) it follows that v* € T (2*) for all ¢ eé N, i.e.

(vzeC) (z—a" vi*) L (i& N).
Hence, for every i & N, , A
(vzeC) (z—2* fyo*)=0.

But, the set C having a nonempty interior can be contained in none of the mani-
folds (r— 2", t,,01*) =0, unless #; v'* =0 for all i & N. Since the numbers
ix G & N) sum up to one, there must be at least one ig& N such that £, > 0.

Then pio¥ = (), which conflicts with the fact vio¥ = 11m B{uio") IB {(ufo” )l“‘“

Thus we have proved that § > 0. Let now
2 (g /0)vi, 2% = 5 (4,/8)v,
iEN
so that, from (]O) 0 = y* + 2% Since, for i € N, 4" € C, " — 1" B(u"")E
f @), B@u")— vi*, it follows from the closédness of the set C and the mapping:
fthat * € C, vi* € f (™) for i € N and hence, y* € f (2¥), by the convexity of
F{2*). Furthermore, for i & N, the relations ™ — 2%, B (#")}— vi*, B(#i") €
. T (") imply, in view of the closedness of 7, that v'* € T (z*). Hence,
L Pe T (z*), because 7' (z*) is a convex cone. Therefore,

0eflz")+ T(a"),
as was to be proved.

Note 5. The implementation of the procedure described above requires an
effective method for constructing at each point . € S\ C a vector B (u) e T {u),
i.e. a vector satisfying

(vzeC) (z—u, B(w)) L

But this is an easy task, at least in usual cases. Indeed assume C to be g1ven by
a system of inequalities of the form

g(@®<0 i=12,...,m, (11)
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where each g; is a continuous convex function. Then « ¢ C implies g; (&) > 0 for
some 7. Let dg; (1) be the subdifferential of g; at point % (as it is known, »g; ()
is nonempty) and let B (#) be an arbitrary element of the set og; («). Since & C
only if g; (z) <0, we have, forall ze C:

(z—u, B(x)) ~-<..8'i(-17)'—8','(u) < 0.

Note 6. The previous theorem can be used to derive easily Kakutani's
fized point theorem. Indeed, if F: C— 2C is a set-valued mapping satisfying all
conditions in Kakutani’s theorem, then the mapping f(z) =z — F(z) will satisfy
all conditions in Theorem 3. Applying the latter theorem yields a point z* eC
such that, for some z* e F(«%), (vze C) (z—z* 2*—2*)>0 hence, in
particular, (2* — 2*, 2* — 2*) > 0, which implies z* = 2* € F (2*).

3. Fixed points and convex programming

To conclude the paper, let us consider the convex programming problem
‘min F(z) : zeC (12)

wheére C is a compact convéx set in R*¥, F(z) is a continuous convex function
defined in some open set C’ > C. '

Under these hypotheses the subdifferential o F(z) of F at every ze C is
a nonempty convex set and, as can be easily shown, the set-valued mapping
x +> 3F(x) is upper semi-continuous. Therefore, the previous algorithm can be
applied to find a point z* € C solving the variational inequality

y* €dF ("), (Vz e C) (z—z*, v* ) > 0. ' -

Since F(x) — F(2*) > (x— 2%, y* ) > 0 for every z € C, it follows that z* is
an optimal solution of (12).

It should be pointed out that, in the. case where C is given by a system of
inequalities of the form (11), this algorithm does not require the functiéns F and
&; to be differentiable.

Received 15 August 1976



ST g o it 4

REFERENCES

[1]1 K. J. Arrow, H. H. Hahn. General Competitive Analysis. Oliver and
Boyd. Edinburgh. 1971,

(2] B. C. Eaves. Homotopies for Computation e:;f Fized Points. Mathe-
matical Programming. Vol. 3, 1-22, 1972.

(3] B. C. Eaves. A Short Course in Solving Equations with PL Homotopies.
SIAM - AMS Proceedings. Vol. 9,73-143, 1976.

(4] H. W. Kuhn, J. G. MacKinnon. Sandwich Methods for Finding Fized
Points. Journal of Optimization Theory and Applications. Vol. 17,
189-204, 1975.

(5] H. E. Scarf. The Approximation of Fized Points of a Continuous

Mapping. SIAM Journal on Appl. Math, Vol. 15, 1323-1343, 1967.

(6] H. E. Scarf, with the collaboration of T. Hansen. The Computation of
Economic Equilibrium. Yale University Press. New Haven, 1973.

21



