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In this paper we are concerned with the following stabilily problem for a
system of inequalities: given a solution of such a system, when can one bhe
sure that a «small» perturbation of the data will give rise to only a « small »
variation of the solution? The importance of this problem for practical applica-
tions is obvious, since everyone is aware of the serious difficulties which may
arise when the system we are solving fails to be stable.

In recent years stability properties for convex minimization problems have
been investigated in connection with duality theory by a number of authors
(1], [2]. [6], and others). As for the slability problem we are considering, here,
it seems to have received up 'to now little attention from mathematicians
although it is certainly not novel. .

The purpose of the present paper is to dévelop some general criteria for
the stability of a system of inequalities and/or equalities, ln section 1, after a
definition of the precise notion of stability we are dealing with, we shall state
the main result for convex systems. Then, in section 2 a proof of this result
will be provided which is hased essentially on the same technique as that used
in {3} and [4]. In section 3 the result will be specialized to the case where the
system under consideration contains explicit equalities. In section 4 the present
notion of stablity will be related to the standard notion of regularity in convex
programming and also to the notion of stability of convex minimization problems
that has been studied by some authors. The last section is devoted to nonconvex
inequalities : here, using the method of convex approximation, we shall extend
the main result to general non-convex systems.

Some of the results that follow are very near to those obtained recently
by S.M. Robinson [5], who treated only the linear and finitedimensional case.
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Although the present paper could be a natural development of our carlier paper
[4], it is this work of S.N Rehinson which has lirst slimuolated our inlerest in
the subject.

1. DEFINTIONS AND MAIN RESULT

Let us consider the sysiem
€ D, G)YEN (1)

where D is a given subset of a locally convex Hausdorfl space X, N a given
closed convex cone in a locally convex Hausdorff space ¥, & a given mapping
from D into Y.

Throughout the paper we shall assume ¥ = Y, X ¥, with ¥, == R¥,
M = M, X M, with M, a closed convex cone inY, { =12, and int M, + ¢.
Accordingly, for any mapping I : D — ¥ we shall denote by H,;: D — ¥, (i=1,2)
the components of H defined by H(x) = (H, (x), H, (x)). Also, for the sake of
convenience we shall write Dy, = D~ W for any neighbourhood W in X.

Definition 1. A solution x to system (1) is said to be stable if to every nei-
ghbourhood W of x one can associate a neighbourhood V of O €Y such that for
any continnous mapping A: D — Y satisfying

A(D) 2V - M ' (2)
the system

x € Dy, G@) + Ay €M ®)

has at least one solution.
.

“The system (1) is said to be stable if-every its solution is stable.
Definition 2. A solution z to system (1) is said to be critical if for some

neighbourhood W of @ we have
0.€a (G(Dy) — M) 4
where 9F denotes the set E | int E.
The system (1) is said to be critical if
0 € 8(GD) — My (5)
It turned out that for convex systems the two just defined nolions are
svmmetric. Namely, the two following propositions hold:
THEOREM 1. Assume that the system(1)is convex, i.e. D is a convex set and G
an M-convex mapping. Then a solulion  to this system is stable if and only if it is
non-critical.
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We recall that a mapping : D—Y is M-convex if for all ', 2? € D and
all ¢, 0\ t <7 1, we have

G(txt + (1--Da%) € 16(2") + (1—)G(a?) + M 6)

THEQREM 2. Under the same assumptions as in Theorem 1, the system (1)
is stable if and onh] if it is non-critical.

- Since every solulion to a critical system is necessarily critical, it follows
from the previous theorems:’ :

COROLLARY. Under the above specified assumptions, if any one of the solu-
ions 1o (1) is.stable (critical), so are all others and the syslem Is stable (critical,
resp.).

2. PROOF OF THE MAIN RESULT

We shall need the following

LEMMA 1. Let € be a suhset of Y. Assume there ave a k- simplex § in ¥, =
a neighbourhood ¥V of the origin in each Y, (i = 1,2), and a set-valued mapplng

P from § into C such thal:

BV, — V8, P(s) = Py(s) X Pg(s) with P (s) " Y, Pi(s) being a 'non-empty
convex set and the set-valued mapping P, from S into Y, being upper semi-
continuouns

2) For every s € S we have

Pys) n (s + Vl) (6)
Vo T2 Pys) . | N (7)

Then € contains O in its interior.

Proof of Lemma 1. Consider an albltr'ir\f element p; € Vi and deflne a set-
valued mapping 7 from ¥ into itseif by

_ . T(s) =S N (5 4+ v, — Pys)). 7 ,
Then T(s) is non-empty for every s since by virtue of (6) there is an elemsent

v; € Vy such that s + v} € Py(s) and, consequently, z € s + v, — (s} with

U=0 v €V~ V, S Further, T(s) is a convex set, since § and Py(s) are
convex. Finally, il is easy fo see that T is upper semi-continuous. Indeed,

if a" € T(s"), u"— u°,s'—s°, then s" L p, — e P )(s") and so, by the upper
semi-continuily of Py, s° - D, — e P1(.s ), which means that u®< T (s°). The-
refore, by Kakutani's fixed point themem there ex1sts an element s € § such
thats—|—v — s & Py (s), le.

v € P (s).



On the other hand, from (7) we have for this s and for any v, € V,:

v, € Py(s).
This shows that (v, v,) € P(s) = C and since v,, v, are arbitrary elements of
V,V,wehave Vi x V, C €. Q.E.D.

Proof of Theorems 1 and 2. Clearly these theorems follow from the next
two proposifions ;

I. Every stable solution of (1) is non-critical.

11. If system (1) is non-critical, it is stable.

To prove I, consider a stable solution ‘z of (1) and let W be any neighbou-
rhood of z. Then therc exists a neighbonrhood V of 0 &€ Y such that for every
v € V the system ~
.T,‘EDW, Gx)—y &€ M (8)
will have at least one solution. This implies V < G(Dy,) — M, hence x is not

critical.
Turning to the proof of II, suppose the system (1) non-critical and consider

any solution x of (1) (if such exists). Then, evidently,

- 0 & int (G(D) — M). &)
Let W be any convex neighbourhood of x. In view of (9) one can find a
k-simplex § in ¥, such that § is a neighbourhood of 0 € Y; and § x {0}

int (G(D)—M).If s4,..., s*T1 denote the vertices of S, then for each i we have
(s, 0) € int (G(D)—M) and the set {s{} X int M, must intersect G(D) — M. In other
words there exists an y'& int M, and an 2'€ D such that (54, yY) € G(z!) — M, ie.
s' € Gi(@) — My, (10)
gl € Gy () — M,. (1)
Noting that G(x) € N, we have from (10), (11), for 0 <{ £ 1:

Gt - (1 — D) €16, (2)) + (1 — 1) G, (@) + M, € tsT + My;

Go(trl + (1 — DZ) € 16, (2D - A — ) Gy - Mg € tyt + M, .
Thus, relations (10), (11) still hold when we replace s', g, 2! by s, tyl, izt 4
+ (1— ),z resp. Since txi + (I — Hz € W for i > 0 sufficiently small, we can
assume, by performing if necessary the just described replacement, that all
xl € W. Let Vi bea neighbourhood of 0 € Y, and V, a neighbourhood of 0 € Y
small enough to ensure V, — Vl =S, V,—V, + gi M, foralli=1,.., k+1.

From (11) we have that '

Gy (@) + Vo V, i+ Vo Vb My, © Mo, (12)
Let now G =G + 4, where A: DY is any continuous mapping satisfying
condition (2) with V=V, X V,. For each s € § of the form s = Z Y st with t the

1
barycentric coordinates of s in S, let us set

Prs) =;tiG(d:i)+A($ ta) — MG () — M
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‘Then, obviously, Prs) = P, (s) x P, (s) with Pj(s) = Z.fi Gj(a:i) + Aj(Z t a:i) —
l H

— M; (j =1, 2). From (2), (10), (11), (12) we can write for each s & S:
" B, G @Y 4 A (Sta ) C My s 4 Vo

- St6s () + Ao (S42Y - Vo St (Gy(ad) 4 Vs — V) - My M,
Therefore : ‘
Pi(s)y N (s + V) 4 (13)
V, = Pu(s).- (14
But Pi(s) is clearly a non-empty convex set and P; is an upper semi-continuous
mapping from § into Y. Indeed, let u" & P, (), - u°, s? - 5, If we denote
by i{‘, s {Z-H and f,..,, fz_H the barycentric coordinates of s”and s°resp, then
w2 G, (&) — 4, (2 tr 2 € — M,
=, hence 1

0— t: Gy () — 4, (2 t';xf) €M,
I

i. e. u° € Py (s°), proving the hpper semi-continuity of P;. In view of (13) and (14)
all conditions specified in the Lemma are fulfilled for the set C — Z}"(DW) — M.

Consequently, by the Lemma, 0 < int (@"(DW) — M), which implies that the
system (3) is consistent. Q. E. D.

Remark. From the proof of proposition I above it is clear that if io every
neighbourhood W of z there. cofresponds a neighbourhood V of 0 € Y such that

the system (8) is consistent for every g €V, then z is a non-critical solution
of (1) and hence, a stable solution. In other words, if in Definition 1 we consi-
der only constant mappings A(z) = ¥, then the corresponding notion of stahili-

ty is equivalent to the above notion, as far as we are concerned with convex
systems.

3. IMPORTANT SPECIAL CASES

The previous result shows that for consistent convex systems, stability
holds if and only if condition (9) holds. we now proceed to specialize the latter
condition, in order to obtain more convenient stability criteria for the most
usual cases.

THEOREM 3. Assume that the system (1) is convex and consistent. Then il is
stable if and only if the partial system, :

€D, G@) e M, (15)



is stable and there exists an element-x° verifying

x* & D, G(x®) & My, Gy(a®) € int M2 (16)
Proof. Consider a stable system (1) (which is supposed convex and Consmtent)
Then (9) holds and so 0 &€ int (G(D) — M,) and the sets G(D) — and

{0} % inl M, must have a common element, say (0,4,). Since (0, y,) € G(D)-HM an
x° & D can be foand such that .

1(?:0) 6 ‘G'Il’ Go(.ro) e yz + ﬂ]z C inl J}In, .
proving the first part of Lhe Theorem. Note thal the proof makes no use of

convexity assumplions, so that this part of the Theorem is true for arbitrary
systems, not ncccssaul\ convex.

To prove the converse part, assume that (13) is stable and (16) is consistent.
Since (15) is consistent, we have 0 € int (G(D) — M,;). It is. not hard to see
that 0-in Y is an internal peint of the set Q = G(D) — M, i.e. an” interior point
in the finest locally convex topology of Y.

Indeed, consider an ‘ubnrar\ element y = (yi, y=) € Y, XY, Since 0 €
int (G,(D) — M,), we have — ty, € Gy(D)— M, for some ¢ > 0. Let v € D be an
element salisfying — ty, € 01(x) — M; and lel 27 = sz + (1—s)2° 0 T s < 1.
Then x E D and

Gi@) € sG:() + (1=9)Gy(2®) + My © — sty + M, - an
On fhe othér hand, as s approaches 0 we have ' B '
sty b sGo(X)—+ (1—8)Ge(x®) — Gx(2?) € int Mz,
so that, provided s > 0 be small enough, .
o ostys + sGo(z) + (1—5)Go(x®) & M.
' Nol:mcr that Gq(a ) E sGy(2) + (1—s)Gao(z°) + Mz, we then deduce -
Gof@) € — stys + Mo . L@y

lh;s together with (17) ahows that for every g there emsts an € = st >0
such- that ‘

— ey € GD) — M.

Therefore, 0 is an internal point of (), as asserted.
Let now ¥V, be a neighbourhood of 0 & ¥; such that

V. x {0} =0 (19)

(Y, being -finite-dimensional, the iopolorfv of Y,is the finest locally. convex
one). I‘mthm, since Gy(®°) € int M,, a neigbbourhood Voof O € ¥, can be
found satisfying

7 Go(@®) — Vo & M,
Remembering that {r{x"°) € M;, we have

{U} x V, < Q,



which together with (19) yields, in view ol the convexity of (J:
1 1 1
—2"‘(‘/1 X V) = (Vi x {0}) + E({O} X V) < Q.

That is, O is an interior point of G(D) M in the given topology of Y, and
hence, the system (1) is stable. Q.E.D.

Remark. From the above proof it is scen thal Theorem 3 holds cven if Y,
is infinite-dimensional, provided its topology he the finest locally convex one.

Let us now apply the preceding Theorem to some important special cases.

I. Case where M, — {0}.

If the cone M, is the singleion {0}, svstemn (1) becomes

r e Db, i(x) =0, Gox) € M, (20)

we have for (his syslem the following simple stabilily criterion.

THEOREM 4. Assume thal the sysiem (20) is convex, i. ¢. D is a convex set, G,
an affine mapping and G, an M, - convex mapping. Assume ‘firthérmore that

this system is consistent. Then it is stable {f and only if G, maps D onto a neighbour-
hood of O € Y, and there exisis an x° salisfying

2 €D, G*) =0, Gy=°) € int My 21

Proof. This proposilion follows from the previous results and the fact
that the partial system (which is consistent)
xe€eD, "G)=20
is stable if and only if 0 € int Gy(D).

II. Finite-dimensional case.

IfD=X=R", M, = {0}, Y,=R", M, = R™ (the non-positive orthant),
we have the ordinary system of egnalities and inequalities :

¥ €RY, G@) =0, Gy2) <O (22)

i

e . n m . .
where (7, : R" — R* is an affine mapping, G,: R* — R is a convex (in the
usual sense) mapping.

As applied to this case, the notion of stability introduced above may be
defined in the following way.

A system (22) is called stable if for every ils solution x and for every posi-
tive number e there exisis a positive number 8 such that, whenever the mappings
Ay, A, are continuous and satisfy the conditions

e —7l<e = | Ai@) 1 < B, Asa) € O

(é denotes a vector whose every component is equal to 8; || .| is the usual
enclidean normy), then the system



lz =z || <& G(a) + Ax) =0,  Glx)+ Aya) << 0
has at least one solution.

Noting that a linear mapping from R" to R* is surjective if and only if
the corresponding matrix has rank &, we get from Theorem 4 :

COROLLARY. The systemn (22) is stable if and only if the matrix associated with
the linear mapping G,(x) — G,(0) has runk k and there exists an x° salisfying

a2 € R,  Gy(x°) =0, Gya*) < 0. (23)

For linear systems (G, affine) resulis very near to these have been obtained
earlier by S. M. Robinson [5], as we have said in the introduction. The reader
who is familiar with the theory of mathematical programming could notice the
similarity between the stability condition described here and the well known
regularity condition in convex programming. As we shall show in the next
seclion, it lurned ont that the relationship between the two notions is far
deeper than it seems. '

4. APPLICATIONS TO CONVEX PROGRAMMING

In this section we shall relate the present notion of stability with the
notion of regularily in convex programming and also with the notion of
stability developed for convex minimization problems in some previously
published works.

Definition 3. We shall say that system (1) is regular if there exists a subspace
¥’ of Y containing G(D) such that:

1) The system _

x & D, G(x) € M’
is stable, where M' = M A ¥’ and G is to be regarded as a mapping from
Dinto Y~;

2) Every continuous linear functional on ¥’ which is non-negative on M’
can be extended to a continuous linear functional on Y, non - negative on M.

Observe that condition 2) amounts to

M* =M+ Y (24)

(for every cone E in Y we denote by B* the cone formed by all continuous
linear functionals on ¥ which take on only non-negative values on E), it is
necessarily fulfilled in each of the following situations

a) M _ Y’, so that M = M’ (Hahn-Banach theorem) ;

b) (int M) N Y’ 4= ¢ (Krein’s theorem);

¢) M is a polyhedral cone, i.e. is defined by an inequality of the form
Cy < 0, where C is a linear mapping from Y into a finite-dimensional space
(Farkas-Minkowski theorem).
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On the other hand, from Theorem 3 we can easily deduce thal system (1)
will be regular, if the partial system (15) is regular and lhere is an 2° satisfying
(16). Thus, the just defined regularity condition contains as special cases most
ol the regularily condilions introduced in convex programiming lilerature.

Let now F: D->R' be a given function and consider the mathematical
programming prohlem:
F(ax)—inf, subjecl to constraints (1) (P)

Assume Lhat the problem is convex, j.e. the system of constraints (1) and the
objective function F are convex. Then we have the next proposilion which
extends a classical result.

THEOREM 5. If the system of constraints (1) is reqular, there exist for every
eplimal solution x of problem {P) a continuous lincar functional L. € M~ such that
L(Gz)=0 (25)

F(x) — L(G(x)) = min {F(x) — L(G(z)): x € D} (26)

Proof. Consider first the case where the space ¥’ mentioned in Definilion 3
coincides with Y. Let ¢ be an arbitrary positive number and

F(x) = F(z) — K@), P (@) = F@) — F@) — ¢

Since system (1) is stable, it follows from Theorem 3 that the partial system
(15) is stable and there exists an 2° satisfying (16). Then for ¢ > 0 small enough

the element @ = fa° + (1—1) x satisfies

Py

TeED G@eM, G@EcintM, F, (@ <0
30 that by the same theorem the system
xc D, G(x) € M, Fe(x) <0 (27)
is stable. By Theorem 2 the origin in Y X R! is an interior point of the set
(6 X Fe) (D) — M x R', where G X F_denotes the mapping @ |— (G(x), F ().
Hence, (0, ) € ¥ X R!is an interior point of the set E=(G X F ) (D)~ MXR™ .

But 2 being optimal for (P), the origin in ¥ X R! cannot be an interior point
of E. Therefore, by the separation theorem, we can find a continuous func
tional L on Y and a number u, not both zero, such that for all yeY, t€R
we have

(. ) € E = L(y) — ut < 0. (28)
This implies, by a standard argument, « >> 0, L € M* and '
(W z € D) L(GE)) — u(Fz) — Fx)) < 0. (29)

If u =0, then from (28) we have L{y) < 0 for all y € G(D) — M. But the sys-
tem (1) being stable and consistent, the set G(IJ) — M contains 0 € ¥ in its
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interior, and so L = 0 identically, contradicting the fact that L and 1 are nol
both zero. Consequently, z > 0 and we may assume u = 1, so that (29) becomes

(+ z € D) LG@) — F@) < — F@)

‘which yields relalion (26) if we nole thal L(G(Z)) > 0 because G(x) € M. Since
we have from (29) L(G(z)) < 0, relation (25) follows.

So Theorem 5 holds if ¥ = Y. In the general case, the above argument
shows thal a conlinuous linear functional L on ¥’ can be found such thai I, € M*
and properlies (23), (26) bold. Then, by using condition 2) in Definilion 3, one
can extend L over the whole Y. Q.E.D. .

Thus, the regularity of the syslem of constraints (1) ensures lhe existence of
Kuhn-Tucker multipliers for any optimal solution of any convex problem .(P) with
constraints (1). The above results shed a new light on the nature of the regularily
condifion in convex programming: indeed, regularity means, essentially, siabi-
lity of the system of constrainis, which is a very natural condition to impese upon
the data of a practical problem, a! least at the first stage of invesligation.

Let us now say a few words aboul the relationship between the stability

of a problem (P), as has been considered by some authors ([6], [1]) and the
stability defined here for the syslem of constraints (1)..

For every u € Y let (P,) denote the problem that differs from (P) only
in that G(z) is replaced by G(x)—u, and let f(z) be the optimal value of F(x) for
problem (P,). Then f(u) can take infinite values, but if we assume, as previ-
ously, the convexity of (P), it can be easily shown that f(u) is a convex function.

Definition 4. We shall say that problem (P) is stable if f(0) is finite and
f(u) is continuous at u = 0.

THEOREM 6. A problem (P) with finite f(0) is stable if and ohly if the system
of constraints (1) is stable.

_ Proof. Suppose the system (1) stable. Since f(0) is finite, for every ¢ > 0 there
is a solution @ of (P) such that F(@) << f(0) + —21— ¢. Then, as has been showne
in the proof of Theorem 5, the system

r€hD, G)eM, F—E/Z(a:) <0 (30)
is stable. Hence there is a neighbourhood V of 0 € Y such that for every uc v
the system
x< D, G —ueM, szq(a:) <0
Is consistent. This means f(z) < £(0) + =. But by virtue of a well known property

of convex funclions, the latter inequality implies the continuity of f on the set V.

Conversely, suppose the problem (P) stable. Then there is a neighbourhood
Vof 0 €Y such that f(0) — 1 < f(u) < f(0) + 1 for all # € V. Since f(0) is

finite, so is f(u) for u < V. But this means in particular that for every u € ¥
the system

x&€ D, G@a)—ueM

12
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is consistent, and hence, that the system (1) is stable (see remark al the eng of
section 2). Q. E. D.

COROLLARY. If a problem (P) is slable, then for every ¢ = 0 lheve exislg
a neighbourhood V¥V of 0 < Y such that for any conlinuous mapping A(x)
salisfying (D) = V 4+ M the optimal value of Lhe perturbed problem

) —inf: xeD, G + Alxy e M

differs from the inilial optimal value by no more than .

ndeed, using the conlinuity of f(u) and the stability of (30), we can take v
to be such that [f(u) — f(0)| < ¢ for all # € V and such that the svsiem

r &€ D, G) - AR) € M, }?ei.n(a:) <0

is consistent for all conlinuons mappings .4 satislying (D) 72 V 4+ M,

5. EXTENSION TO NON-CONVEX SYSTEMS

So far we have assumed the syslem (1) to be convex. In the general case
the procedure of convex approximation can be used o reduce (he slahilily pro-
blem lo the convex case, as we now show.

Lel us consider an arbitrary system (1) and let = be a solution of il.

Definition 5. A convexs ubsel IV of X is said to be k- coniingent to D at
z if for every triple (, U, 8), where X is lhe convex hull of any k 4 1 points
of I, U is aneighbourhood of 0 € X, & a positive number, there exist a conlinvous
mapping v: X — I} and a number ¢ € (0, 8) such that

(¢ x € ) ox) €+ e(x + O).

Definition 6. An M-convex mapping 6’: 'Y (where 1)’ is a convex subse
of X) is said to be an M-differential of G: D - Y al 7 if for every pair (x, ¥),
where v € I, V is a neighbourhood of 0 € Y, there exist a neighbourhood U
of 0 € X and a number & > 0 such that

Gz + 22) — G@)

£

_ @ eV LM (31)
whenever
z€x+U,x_+sz€D,0<s<5. (32)

LEMMA 2. Let G': I’ - Y be an M-differential of G: D — Y al =, & a com-
pact subset of D', If &’ is continuous then for every neighbourhood Vol 0 €Y
there exist a neighbourhood U of 0 € X and a number & > 0 such that for
every & € X we have (31) whenever (32) holds,

_ Proof. Denote by V' a neighbourhood of 0 € Y such that V’ + Vv
For every x € X one can choose a neighbourhood U, and a number o, >0
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such that G{Tzc + ez} — Glw) € «(G(x) + V° + M) whenever z &€ x - U,
r+eze D 0T e < 6;1:‘ Since G’ is continuous, one can find a neighbourhood
Uy ol 0 € X such that U}, + U} U and G'(g) — G’(x) € V' wheneverx —q &€ U .
Let {g + U’q: g € O} be alinite famiy covering the compacl set £, and let

3

O=~n U;, & = min 8, . Thenforevery x & Sthere is ¢ € Qsuch thatx € ¢ + U
g€l qe)
and hence, G'(q) — G'(@) &€ V. Soil s €ax 4+ U, x +e2 € D, 0 < ¢ < §, then
zeEq - U; +UC g+ U, 0<<e << B, and we have G(z) + ex) — G(@) € (G(g) +
+V+M)ce(P@)+V +V + M) € () + V- M)
' THEOREM 7. Assume that G, is continuous and there exists « consisient
convex syslem

4

e D, G €M, (33)

such that 1Y is k-contingeni to D at x and & is continuous and is an M-differential
of G at x. If the system (33) is stable, then x is a stable solution of system (1).
Proof. Let W be any neighbourhood of x. We shall show that
0 int G(Dy,) — M) (34)
for every map‘ping’f}w = G + 4, wher: A: D — Y is a continuous, sufficiently
a«small » perturbation. :

From the consistency and stability of system (33) we have by Theorem 2:
0 € int (G’(D’) — M), and so there exists a k-simplex §’ in Y, such that S’ is a
neighbourhood of 0 € Y, and & X {0} < int (&(D’) — M). By a simple
argument (similar to that used in the proof of Theorems 1 and 2), we can find

for each vertex s! of §" two elements 2! € 17, y' € inl M, such that
se 6 @) — M, ey —~ M, (35)

(i = 1,.., k+1). Then Gy(xh) yi + M, C int M, and we can select a convex
neighbourhood V} of 0 € Y, such that

Gy + 3V My (i = 1,..., k+1) (36)
Denote by  the convex hull of 2',...,2%+!, From (36) it follows that
(v x €3) Gi(x) + 3V < M, 37

Let V] be a convex neighbourhood of 0 € ¥, such that 2(V} — Vi) & §’ and let
V' = Vi X V;. Since Z is compact and coniained in I, there corresponds to V7,
according to the previous Lemma, a neighbourhood U of 0 € X and a number
8 > 0 such that for every x € = we have

Glx + ez) — G(@) € e(G'(x) + V' + M) (38)

whenever
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r€x+U ZT4szeD 0<c<<8d (39)

On the other hand, the sel ! being k-contingent to D at z, we can {ind a
continuous mapping v: Z—D and a number ¢ & (0, 8) such that

(V€3 v €x + @@ + D). (40)
It can of course be arranged that v(x) € I;,, because we can always take v to
be the mapping that corresponds in Definition 5 to (2, U7, &) where

U =Un % (W-—a)and & is such that & Z ¢ —é(W——-E), W being assumed

to be convex. Thus p: £—D,,and we have {rom (40) and (38)

W
(¢ x€) G €@ +V) -+ M (41
Nowlet G = G -+ A, where 4: D~Y is any continuous mapping satislying
L ADy) SV 4+ M (42)

Then we can write, according to (41}, (42), (37):
Gi(o(@) € £(Gi(@) + 2V9) + Iy

T Go(0(x)) + eV3 T e(Gi(x) + 3V + My) T M,
So if we put § = &8, V, == 2V}, V, = ¢V} and deline the mapping
s =2t sl (s) = P() =G (u(Zt,2) — M,
i i

then we have (see (35)):
Co(st, ) € <Gl Ve + M C o(SL GiE@) + Vi + iy
= ¢ zzl_si LV AEM=(6+V) + M,

Go (B4, 3)) — Vo C My .
Therefore, relations (6) and (7) hold for every s & S. Since V; — V, C § and Py -

is obviously upper semi-continuous (hecause Ev‘vland v are confinuous), it follows
from Lemma 1 that (34) must hold.  Q.E.D.

As an application, let us again consider the system (22)-, where the mappings
G,, G, are Fréchet differentiable at x, with derivalives G}, G}. Then R"is obviously
k-contingent to itself at x and &’ = 6} X G} is an M-differential of G = G, X G,
for every convex cone M in Y, so that:

COROLLARY 1. If G} has rank k and if there exists an z° verifying

e R GiE) =0, G <O
then x is a stable solution of (22).

Finally, let us notice that a necessary condition for a system (1) to be stable
is that it is non-critical (the proof of this fact given in section 2 for convex
systems is valid for the general case). Hence we gel from Theorem?7:

v
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- COROLLARY 2, Under the same assumpiions as in Theorem 7, if the system (1)
is crilical, then so is the approximale sysiem (33) and hence there exisis a non-
zero confinuous linear funciional L & M* such thai

(MreD) LGE) <0
As was shown in [3], this proposition could be given a basic role in the
theory of extremal problems.
) Received August 18, 1975
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