ON AN APPROXIMATION THEOREM FOR SET-VALUED MAPPINGS

PHAN VĂN CHƯƠNG

Institute of Mathematics, Hanoi

In this paper we shall consider the problem of approximating a section of a set-valued mapping U (from a real interval I to \mathbb{R}^n) by sections whose values at almost every $t \in I$ belong to $\operatorname{exconv} U(t)$ (the set of extremal points of the convex hull of U(t)). Our result may be considered as an extension of the approximation lemma by Gamkrelidze and Kharatishvili in [1]. On the other hand it is known ([2], [3]) that under suitable assumptions the integral of a set-valued mapping is convex. As a consequence of our main theorem, we obtain that the set of all measurable sections of a set-valued mapping is quasiconvex in a sense.

Let L_1^m (I) be the linear space of all Lebesgue integrable m-dimensional vector-valued functions defined on an interval I (finite or infinite). We shall introduce in this space the norm

$$\|g\|_{s_I} = \max_{1 \leqslant j \leqslant m} \sup_{t',t'' \in I} \left| \int_{t'}^{t''} g_j(t)dt \right|$$

$$g = (g_1, g_2, \dots, g_m).$$

where

Consider n vector-valued functions

$$f^{(i)}: L \to \mathbb{R}^m$$
 $(i = 1, 2, \ldots, n)$

and a set-valued mapping

$$U: I \rightarrow 2^{\mathbb{R}^m}$$

THEOREM 1. Suppose that:

1) the functions $f^{(i)}(t)$ (i = 1, 2, ..., n) are measurable,

2) the graph of U is a Borel (mod 0) set ([4]), in $I \times \mathbb{R}^n$ and for almost all $t \in I$, U(t) is a compact set in \mathbb{R}^n contained in a ball around $0 \in \mathbb{R}^n$ of radius f(t) such that $f^{(i)}(t)f(t) \in L_1^m(I)$.

Then for every measurable section $\alpha(t) = (\alpha_1(t), \ldots, \alpha_n(t))$ of the mapping U and for every $\varepsilon > 0$ there exists a measurable section such that $v^{(\varepsilon)}(t) = \left(v_1^{(\varepsilon)}(t), \ldots, v_n^{(\varepsilon)}(t)\right) \in exconvU(t)$ a. e. and

$$\left\| \sum_{i=1}^n \left(\alpha_i - \nu_i^{(\varepsilon)} \right) f^{(i)} \right\|_{\mathcal{S}_I} < \varepsilon.$$

Proof. We first prove the theorem for the special case when I is a bounded interval and U is the constant mapping

$$U(t) \equiv S_n = \left\{ \lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{R}^n \mid \lambda_i = 1 \right\}.$$

From condition 2) it follows that each function $f^{(i)}(t)$ is integrable over I, so that there exists a piecewise constant function $\overline{f}^{(i)}(t)$ such that

$$\sum_{i=1}^{n} \int_{I} \left| f^{(i)}(t) - \overline{f}^{(i)}(t) \right| dt < \frac{\varepsilon}{4}$$
 (1)

where |.| denotes the euclidean norm in \mathbb{R}^{m} .

Let $\{I_p\}_{p=1}^k$ be a partition of I such that the functions $f^{(i)}(t)$ take constant values on every I_p and

$$\sum_{i=1}^{n} \int_{I_{p}} |f^{(i)}(t)| dt < \frac{\varepsilon}{4}.$$
 (2)

Since $\sum_{i=1}^{n} \int_{I_p} a_i$ (t) $dt = \int_{I_p} dt = \text{meas } I_p$ we can divide every interval

 I_p into n subintervals $\{I_{p,i}\}_{i=1}^n$ such that $(I_{p,i} \cap I_{p,j}) = \emptyset$ if $i \neq j$ and

meas $I_{p,i} = \int_{I_p} \alpha_i(t) dt$. Put

$$\hat{f}(t) = f^{(i)}(t) \quad \text{if} \quad t \in I$$

$$\hat{f}(t) = \bar{f}^{(i)}(t) \quad \text{if} \quad t \in I$$

$$\widehat{f}(t) = \sum_{i=1}^{n} \chi_{M_i^{(\varepsilon)}}(t) f^{(i)}(t)$$

$$\widehat{\widehat{f}}(t) = \sum_{i=1}^{n} \chi_{M_i^{(\varepsilon)}}(t) \overline{f}^{(i)}(t)$$

where $M_i^{(\epsilon)} = \bigcup_{(p)} I_{p,i}$, $\chi_M^{(t)}$ denotes the characteristic function of the set M.

Since the functions $f^{(i)}(t)$ take the constant vector values $f^{(i)}(t) = a_p^{(i)}$ on I_p we have:

$$\int_{I_p} \sum_{i=1}^n \alpha_i(t) \, \overline{f}^{(i)}(t) \, dt = \sum_{i=1}^n a_p^{(i)} \int_{I_p} \alpha_i(t) \, dt =$$

$$= \sum_{i=1}^n a_p^{(i)} \max_{p,i} I_{p,i} = \int_{I_p} \hat{\overline{f}}(t) \, dt,$$

Consequently

$$\left| \int_{I_{p}} \left(\sum_{i=1}^{n} \alpha_{i}^{(t)} f^{(i)}(t) - \hat{f}(t) \right) dt \right| \leq \left| \int_{I_{p}} \left(\sum_{i=1}^{n} \alpha_{i}^{(t)} f^{(i)}(t) - \hat{f}(t) \right) dt \right|$$

$$+ \left| \int_{I_{p}} \sum_{i=1}^{n} \alpha_{i}^{(t)} \left(f^{(i)}(t) - \hat{f}^{(i)}(t) \right) dt \right| + \left| \int_{I_{p}} \left(\hat{f}(t) - \hat{f}(t) \right) dt \right| \leq$$

$$\leq \sum_{i=1}^{n} \int_{I_{p}} \left| f^{(i)}(t) - \hat{f}^{(i)}(t) \right| dt + \sum_{i=1}^{n} \int_{I_{p,i}} \left| \hat{f}^{(i)}(t) - f^{(i)}(t) \right| dt \leq$$

$$\leq 2 \sum_{i=1}^{n} \int_{I_{p}} \left| f^{(i)}(t) - \hat{f}^{(i)}(t) \right| dt.$$

$$(3)$$

Let us now estimate $\Phi(t', t'') = \left| \int_{t'}^{t} \left(\sum_{i=1}^{n} \alpha_i(t) f^{(i)}(t) - \hat{f}(t) \right) dt \right|$. Denote

by $I_{p'}$, $I_{p''}$ the subintervals containing t', t'' respectively. According to (1), (2),

(3) we have

$$\Phi(t', t'') \leqslant \int_{I_{p'} \cup I_{p''}} \left| \sum_{i=1}^{n} \alpha_i(t) f^{(i)}(t) - \hat{f}(t) \right| dt + \sum_{p=p'+1}^{p''-1} \left| \int_{I_p} \left(\sum_{i=1}^{n} \alpha_i(t) f^{(i)}(t) - \hat{f}(t) \right) dt \right| \leqslant 1$$

$$\leq \frac{\varepsilon}{2} + \sum_{p=p'+1}^{p''-1} \sum_{i=1}^{n} \int_{I_{p}} \left| f^{(i)}(t) - \overline{f}^{(i)}(t) \right| dt \leq$$

$$\leq \frac{\varepsilon}{2} + 2 \sum_{i=1}^{n} \int_{\substack{p''-1 \ p=p'+1}} \left| f^{(i)}(t) - \overline{f}^{(i)}(t) \right| dt < \varepsilon.$$

Putting $v_i^{(\mathcal{E})}(t) = \chi_{M_i^{(\mathcal{E})}}(t)$ we see that the theorem holds in the case under consideration.

In order to prove the theorem in the general case, we shall need two lemmas.

LEMMA 1. Let T be a metric space and μ be a Radon measure on T, let $\left\{K_n\right\}_{n=1}^{\infty}$ be a sequence of compact subsets of T such that $\mu(K_n \cap K_m) = 0$ for $n \neq m$, $\mu(T \setminus \bigcup_{n=1}^{\infty} K_n) = 0$, let E be a separable complete metric space, let σ be an analytical (mod 0) set ([4]) in $T \times E$.

Then

- 1) $\operatorname{pr}_T \sigma = T' \cup T''$, where T' is analytical and T'' is μ -negligible.
- 2) There exists a μ -measurable function u(t) defined on $\operatorname{pr}_T \sigma$ such that $(t, u(t)) \in \sigma$ a. e. on T.

Proof. Put $H_1=K_1$,..., $H_n=K_n \setminus \bigcup_{i=1}^{n-1} H_i$ for $n \geq 2$. It is obvious that H_n (n=1,2,...) are Borel sets, $H_n \cap H_m=\emptyset$ for $n \neq m$, $H_n \subseteq K_n$, μ $(K_n \setminus H_n) = 0$, $T=\bigcup_{n=1}^{\infty} (H_n \cup L_n) \cup L_n$ where $L_0=T \setminus \bigcup_{n=1}^{\infty} K_n$, $L_n=K_n \setminus H_n$ for $n \geq 1$, the sets L_n (n=0,1,2,...) have measure zero by the assumptions and the construction of H_n . By the definition of an analytical (mod 0) set, there exists an analytical set σ in $T \times E$ such that $\sigma' = \sigma \cap (\text{pr}_T \ \sigma' \times E)$ and μ $(\text{pr}_T \ (\sigma \setminus \sigma')) = 0$. We have

$$\begin{aligned} \operatorname{pr}_{T} \sigma &=& \operatorname{pr}_{T} \sigma' & \cup \operatorname{pr}_{T} (\sigma \setminus \sigma') \\ \\ \operatorname{pr}_{T} \sigma' &=& \operatorname{pr}_{T} \left[\sigma' \cap \left(\bigcup_{n=1}^{\infty} K_{n} \cup L_{o} \right) \times E \right] = \\ &=& \bigcup_{n=1}^{\infty} \operatorname{pr}_{K_{n}} \left(\sigma' \cap \left(K_{n} \times E \right) \right) \cup \operatorname{pr}_{L_{o}} \left(\sigma' \cap \left(L_{o} \times E \right) \right) \end{aligned}$$

Since σ' and $K_n \times E$ are analytical $(K_n \text{ being compact})$, then so is $\sigma' \cap (K_n \times E)$. Hence, according to the Lusin — Yankoff's measurable choice theorem (see [5]) the set $\operatorname{pr}_{K_n} \sigma' \cap (K_n \times E)$ is analytical. Putting

$$T' = \bigcup_{n=1}^{\infty} \operatorname{pr}_{K_n} (\sigma' \cap (K_n \times E)) = \bigcup_{n=1}^{\infty} \operatorname{pr}_{K_n} (\sigma' \cap (H_n \times E))$$

$$T'' = (\operatorname{pr}_T \sigma \setminus \sigma') \cup \operatorname{pr}_T (\sigma' \cap (L_o \times E))$$

we have that $\mu(T'') = 0$, T' is analytical and $\operatorname{pr}_T \sigma = T' \cup T''$. Further, by the Lusin — Yankoff's theorem, there exists a function $u_n(t)$ defined and measurable on $\operatorname{pr}_{K_n}(\sigma' \cap (K_n \times E))$ such that $(t, u_n(t)) \in \sigma'$. Putting $u(t) = u_n(t)$ for $t \in \operatorname{pr}_T \sigma' \cap (H_n \times E)$, we obtain the desired function u(t).

LEMMA 2. Let T be a metric compact space, let μ be a Radon measure on T, let Ω be a Borel (mod 0) subset of $T \times \mathbb{R}^n$ such that for almost all $t \in T$ the subset $U(t) = \{x \in \mathbb{R}^n : (t, x) \in \Omega \}$ is non-empty and compact in \mathbb{R}^n .

Then, for every measurable mapping $\alpha(t)$ of T into \mathbb{R}^n such that $(t, \alpha(t)) \in U(t)$ for almost all $t \in T$, there exist n+1 numerical measurable functions $\lambda_j(t) \geqslant 0$, $j=1,\ldots,n+1$ such that $\sum_{j=1}^{n+1} \lambda_j(t) = 1$ for almost $t \in T$ and (n+1) measurable mappings $\beta^{(j)}: T \to \mathbb{R}^n$ such that $\beta^{(j)}(t) \in exconvU(t)$ for almost all $t \in T$ $(j=1,2,\ldots,n+1)$ and $\alpha(t) = \sum_{j=1}^n \lambda_j(t) \beta^{(j)}(t)$ for almost all $t \in T$.

Proof. Since Ω is Borel (mod 0), there exists a Borel set $T_1 \subseteq T$ such that $\mu(T \setminus T_1) = 0$ and $\Omega \cap T_1 \times \mathbb{R}^n$ is a Borel subset of $T \times \mathbb{R}^n$. From

the hypothesis, we can assume that U(t) is compact, for all $t \in T_1$. By the measurability of $\alpha(t)$, there exists a Borel subset T_2 of T such that $\mu(T \setminus T_2) = 0$ and the restriction of $\alpha(t)$ on T_2 is a Borel function. It is clear that $T' = T_1 \cap T_2$ is a Borel subset of T, $\Omega' = \Omega \cap (T' \times \mathbb{R}^n)$ is a Borel subset of $T \times \mathbb{R}^n$ and $T' = \operatorname{pr}_T \sigma'$.

But as has been proved in [4] (Lemma 1.2 and Theorem 1.7) the set $\mathcal{F} = \{ (t, \alpha) : t \in T', \alpha \in \text{exconv} U(t) \}$ is a Borel set. Hence the set

 $\mathcal{L} = \left\{ \left(t, \beta^{1}, \dots, \beta^{n+1} \right) : t \in T', \beta^{(j)} \in \operatorname{exconv} U(t), j = 1, \dots, n+1 \right\}$ is a Borel set in $T \times \mathbb{R}^{n (n+1)}$ since it is the projection on $T \times \mathbb{R}^{n (n+1)}$ of the intersection of two Borel sets, namely, \mathcal{F}^{n+1} and $(\operatorname{diag} T^{n+1}) \times \mathbb{R}^{n(n+1)}$ where $\operatorname{diag} T^{n+1} = \left\{ T = (t_{1}, \dots, t_{n+1}) \in T^{n+1} : t_{1} = t_{2} = \dots = t_{n+1} \right\}$

The set $\Phi_0 = \{(t, \beta, \lambda) \in \mathcal{L} \times S_{n+1} : \sum_{j=1}^{n+1} \lambda_j \beta^{(j)} = \alpha(t) \}$ is a Borel set

as the kernel of the Borel function $\varphi(t, \beta, \lambda) = \sum_{j=1}^{n} \lambda_j \beta^{(j)} - \alpha(t)$ defined on the Borel set $\mathcal{L} \times S_{n+1}$. Furthermore according to the Caratheodory theorem the projection of Φ_0 on T is T. Then by the Lusin-Yankoff's theorem, there exist measurable mappings $\beta(t) = (\beta_1(t), \dots, \beta_{n+1}(t)), \lambda(t) = (\lambda_1(t), \dots, \lambda_{n+1}(t))$ such that $(t,\beta(t),\lambda(t)) \in \Phi_0$ for $t \in T$. These functions may be considered to be defined on T and have obviously all desired properties.

We are now in a position to prove Theorem 1 in the general case. Let $J \subset I$ be a bounded interval such that

$$\int_{I \setminus J} f(t) \sum_{j=1}^{n} |f^{(j)}(t)| dt < \frac{\varepsilon}{2}.$$
 (4)

According to Lemma 2, there exist measurable mappings

$$\lambda(t) = (\lambda_1(t), \dots, \lambda_{n+1}(t)): J \to \mathbb{R}^{n+1},$$

$$\beta(t) = (\beta^{(1)}(t), \dots, \beta^{(n+1)}(t)): T \to \mathbb{R}^{n(n+1)}$$

such that $\lambda(t) \in S_{n+1}$, $\beta^{(i)}(t) \in \text{exconv } U(t)$ for almost all $t \in J$ and $\alpha(t) = \sum_{i=1}^{n} \lambda_{j}(t) \beta^{(j)}(t)$. We have a. e. on J

$$\sum_{i=1}^{n} \alpha_{i}(t) f^{(i)}(t) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \lambda_{j}(t) \beta_{i}^{(j)}(t) \right) f^{(i)}(t) = \sum_{j=1}^{n} \lambda_{j}(t) g^{(j)}(t).$$

where $g^{(j)}(t) = \sum_{i=1}^{n} \beta_{i}^{(j)}(t) f^{(i)}(t)$.

Since the theorem holds for the case $U(t) \equiv S_{n+1}$ there exist Borel sets $M_j^{(\epsilon)} \subset J \ (j=1,\ldots,n+1)$ such that $M_j^{(\epsilon)} \cap M_k^{(\epsilon)} = \emptyset$ for $j \neq k$, $\bigcup_{i=1}^{n+1} M_j^{(\epsilon)} = J$ and

$$\left\| \sum_{i=1}^{n+1} \left(\lambda_j^{(t)} - \lambda_M(\varepsilon)(t) \right) g^{(j)}(t) \right\|_{s_J} < \frac{\varepsilon}{2}. \tag{5}$$

Putting $\tilde{\nu}^{(\epsilon)}(t) = \sum_{j=1}^{n} \chi_{M(\epsilon)}(t) \beta^{(j)}(t)$

we have a. e. on J:

$$\sum_{i=1}^{n} \widetilde{v}_{i}^{(\varepsilon)}(t) f^{(i)}(t) = \sum_{i=1}^{n} \chi_{v_{i}(\varepsilon)}(t) g^{(j)}(t).$$

It follows from (5) that

$$\left\| \sum_{i=1}^{n} \left(\alpha_{i}(t) - \tilde{\nu}_{i}^{(\varepsilon)}(t) \right) f^{(i)}(t) \right\|_{s_{I}} < \frac{\varepsilon}{2}. \tag{6}$$

Since $\beta^{(j)}(t) \in \operatorname{exconv} U(t)$ for almost all $t \in J$, we also have $\tilde{v}^{(\epsilon)}(t) \in \operatorname{exconv} U(t)$ for almost all $t \in J$. On the other hand, since graph U is a Borel (mod 0) set in $I \times \mathbb{R}^n$, the set

$$\sigma = \{ (t, \alpha) : t \in I \setminus J, \alpha \in \text{exconv } U(t) \}$$

is a Borel (mod 0) set in $(I \setminus J) \times \mathbb{R}^n$ (see Lemma 1.2 and Theorem 1.7, [4]). By virtue of Lemma 1 there exists a measurable vector function $\tilde{v}^{(\epsilon)}(t)$ defined on $I \setminus J$ such that $\tilde{v}^{(\epsilon)}(t) \in \text{exconv } U(t)$ for almost all $t \in I \setminus J$.

From (4) and (6) it follows that the function

$$v^{(\varepsilon)}(t) = \begin{cases} \tilde{v}^{(\varepsilon)}(t) & \text{if } t \in J \\ \tilde{v}^{(\varepsilon)}(t) & \text{if } t \in I \setminus J \end{cases}$$

has all desired properties. The proof of Theorem 1 is complete.

As a corollary of Theorem 1 we obtain the following result which provides an answer to a question put by Hoang Tuy:

THEOREM 2. Let $U: I \rightarrow 2$ \mathbb{R}^n be such that:

- 1) graph U is a Borel (mod 0) set in $I \times \mathbb{R}^n$
- 2) for almost all $t \in I$, U(t) is a compact set in \mathbb{R}^n , contained in a ball around $0 \in \mathbb{R}^n$ of radius $f(t) \in L_1$ (I).

Then, every measurable section $\alpha(t)$ of U may be approximated in the norm $\|\cdot\|_{s_I}$ by sections taking values only in the sets of extremal points of convU(t).

Indeed, it suffices to apply Theorem 1 to the functions

$$f^{(i)}(t) = (0, \ldots, 0, 1, 0, \ldots, 0) (i = 1, 2, \ldots, n).$$

I take this opportunity to express my thanks to Prof. HOANG TUY for various valuable advices during the preparation of this paper.

Received September 15, 1975

REFERENCES

- [1] GAMKRELIDZE, R. V., KHARATISHVILI, G. L. Extremal problems in linear topological spaces, Izv. Akad. Nauk. SSSR (ser. Mat), 33, 1969, 721-839 (in russian).
- [2] CASTAING, CH., Sur les multi-applications mesurables, Thèse, Caen, 1967.
- [3] VALADIER, M., Contribution à l'analyse convexe, Thèse, Paris, 1970.
- [4] ARKIN, V.I., LEVIN, V. L., Convexity of the values of vector intergrals, theorems on measurable choice and variational problems, Uspehi mat. nauk. XXVII, 3, 1972, 21-77 (in russian).