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ON AN APPROXIMATION THEOREM FOR
' SET-VALUED. MAPPINGS

PHAN VAN CHUONG
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In this paper we shall consider the problem of approxxmatmg a section of a -
set-valued mappmg U (from a real interval [ to R ) by sections whose values at -

. almost every f € I belong to exconvU(f) (the set of extremal points of the convex
“hull of U(f). Our result may be considered as an extension of the approximation

lemma by Gamkrelidze and Kharatishvili in [1]. On the other hand it is known
(2], [3] that under sultahle assumptions the integral of a set-valued mapping is
convex. As a consequence of our main theorem, we obtain that the set of all mea-
surable sections of a set-valued mapping is quasiconvex in a sense.

X ]
Let L;" (I) be the linear space of all Lebesgue integrable m-dimensional vec-

“tor-valued functions defined on an interval I (finite or infinite). We shall introduce

in this space the norm

. = max su (Hdt
hals 1<j<m t’t”gl ]fg l

Wher_e - . gn_—(gi,gz,...,g!;x).

Consider n vector-valued functions
; m .
O r—Rr (=12,...,n)
and a .set-valued mapping '
U: I — 2

THEOREM 1. Suppose that:

. 1) - the functions f (l)(t) i=12,....0n) are‘ measarable,'



2) the graph of U is a Borel (mod 0) set ([4]%in IX R"” and for almost
all t I, Ul IS a compaci sel in R cuntamed in a ball around U IR_H of radius
P(?) such that f (t)l’(t)e L (I)

Then for every measurable section a(f) = (@) y..., @ 20)) of the
mapping U and for every &> 0 there exists a mca.su:ablc section such that

v( )(t) = ( (s)(t) re e (8)(2‘))6 exconvli{ty a. e, and

gty

Proof. We first prove the theorem for the special case when [ is a bounded interval
and U is the constant mapping

n
U () ESH= 2x—(\1 "9""’7”11)5]?‘1 , in=1?.

From condition 2) it follows that each functlon f (t) is integrable over I, so

< &,

5

that there exists a pxecemse constant function f (z‘) such that

Z.f

where |.] denotes the euclidean norm in R

‘o —r P , a <z (1)

ut

Let {Ip gf—l be a partition of I such that the functions f U)(;‘) take cons-

tant values on every Ip and
n ’ : ‘ :
Do .
Zf frofd < 2. 2)

Since Z f a, (1) a't = f dt = meas I we can divide every interval

T
P IP

A' n ] . . . -
Ip into n subintervals { Ip,i ¢ o -such that (Ip,i n IPJ) = @ 1f izj and

- meas I, ;= I e (D) t_it. Put
I, |
f (t)= o it ey _
%
=

TO="w it tel
R



n
ie. fo=2" 1,060
' i

A - n rs '
FO=2 v @07
3

where M(s) =1 . x%f(t) denotes the characteristic function of the set M.
. i { ps 4 . -
»

Since the functions ]' (t} take the constant vector values f (t) = a(i)
I we have :

n n
f Z O T dt = a(’) _J" a(t) dt =
I =1 { =1 P 7 t 7
b P
n
= al measI ' f(t) di .
o =7
Conseqﬁent[y
- j >0 r (t)—f(t)) al<| [ (Z 7% -7 ) at|
_ . I =1
p .
U' a(t) (f“’(t) —F(i ® dt, +, f(t)—-f(t)) dz[
i=1 )
n n
< (D _F® I 5t , T O
ZEII[ 0 -7 +Zij 7D (t)ldt<
— 5 i= I

2 Z f ,f@ & —fO (t)' dt. @)

i=1 I
tll

f (Zai @ @ (t)_f(t)) dt‘-. Denote

¢ i=1
by IP’ R Ip,, the subintervals containing ', I respectively. According to (1), (2),
(3) we have

olt, ) < f lza @1 — i(t)ldf+Z l f Z <f)f"’(t)—f(t))dt,

'UI o i=1 p=p'+1 Ip i=1

Let us now estimate @ {, i) =

on



C) !___1

H.-+ Z 3 flfw(i) m(t),dt <

p=p'+1 1—1 I
<gerZ . Jrm-roface
i=1 _
p=p +1
Putting st) ()= x ® (£) we see that the theorem holds in- the case under
i N i .

: i
consideration,

In order to prove the theorem in the general case, we shall need two
lemmas.
LEMMA 1. Let T Dbe a metric space and p. be a Radon measure on T, let

{ K, }w be a sequence of compact subsets of T such that pE N K.}=0 for

n :;z. m, W(T U K.} =0, let E bea sepamble complete melric space, let 6 be an

n=1

analgtwal (mod 0) set ([4) in T X E.
Then
1} prp 6 =T'UT", where T" is analytical and T" is W-negligible.
92) There exists a W-measurable function u(t) defmed on pr,¢ such that

{t, u(t))eo a. e on T,

n—1

Proof. Put Hy =K ,...,H =K \U H for n>2 It is obvious
i=1

that - H (n=1,2,..) are Borel sets, H N H =@ for n#m,

H, CK B NH) =0, T= U(H UL ) UL, whereL:T\ UK,

n=1

_L = K ~ H for n 2 1, the sets Ln (n=0,1, 2,..) have measure zero by the

assumptions and the construction of H . By the definition of an analytical (mod 0)
set, there exists an analytical set 6’in T X E such that ¢’ = 6 (pr, ¢ X E) and

¥ (pry (6 \ 0)) = 0. We have



pry6 = prp¢ U pry(c \ o)

prp0 = Pry (o' N (HEIKHULO) X E] =
-]

- Ul-ern(o’n(Kan)) Upr, (@ N(EL, X E)

n=

Since ¢’ and K X E are analytical (K being compact), then so is 6’ N (K X E),
Hence, according to the Lusin — Yankoff's measurable choice theorem (see [5]) the
set pr, o (K, X E) is analytical, Putting

I
7 =Upr, @nNE XE)= r, (@NH XE
Uy @nw, xey= U pry @nu, xm)

T = (prp o\ o)Upry (6N (LO x EY)

we have that | (T") = 0, T" is analytical and pr, 6 = I" U T". Further, by the

Lusin — Yankoff’s theorem, there exists a function u () defined and measurable

on prp (6"N(K X E)} such. that (f, u (f))e o Putting u(f) = u, (f) for
n

t e pro o N (Hn X E), we obtain the desired function u(f).

LEMMA 9. Let T be a meiric compact space, let P be a Radon measure on T,

let ¢ be a Borel (mba’ 0) subset of T X R " such that for almost all t & T the subset

U =€ R": (,v)eq ! is non-cmpty and compact in R,
Then, for every measurable mapping a(f) of T inlo R" such that (4, & (6) e Ul

for almost all t € T, there exist n + 1 numerical measurable functions » () 2 0,
n+1 " !
j=1,..,0n 4 1such that ; r() =1 for almost te T and (1.4 1) measurable
f
=1

mappings . 7+ R™ such that 8 (1) € exconvl(t) for almost all t € T

n
(j=212, .., n+1) and off) = Z ;mj(t) B(])(t) for almostallt € T,
j=1 '

Proof. Since o is Borel (mod 0), there exists a Borel set 7, © T such

that p(T > TI) =0 and QN Tl e |R‘rI is a Borel subset of T X R" From



the hypothesis, we can assume that U(f) is compact, for all ¢ e T, .By the mea-
surability of a(f), there exvis-ts a Borel subset Ty of T such that p(T \' 50 =0

and the restriction of «{f) on T, is a Borel function, It js clear that
r=7,N T, is a Borel subset ofr T, @=0N(Tx .jRn) is a Borel subset
of.T ® ]Rj1 and 7" = pro6’

| But as has been proved in [4] (Lemma 1.2 and Theorem 1.7) the set

F={lto: te T, ag exconvl(f)} is a Borel set. Hence the set -

n+ 1

L= {(tp,.... 8 ):‘teT',B(”eexcoan(t),j=1,...,n-;-l}

n (n+1 n{n+41)

is a Borelsetin T x R )since it is the projectionon 7 X 'R of the

1 1 (a+1
intersection of two Borel sets, namely, (}TH-I—. and (diag T + ) % an(n+)
. . 1 ' 1
where diag Tn+ ={'C=(t s eead tn+1)eT_n+ = fg= ... =tn+ 1}
R _n+1. ( .)' -. . -
The set cbo"—_- {(t,ﬁ,x)eﬁx SI1 F1° Z mj B] =a(i)% is a Borel set
J=1 ’
I

iis_ the kernel of the Borel function ¢ (Z, B, = Z "xj 5(” — a(t) defined on the

j=1

-Borel set £ x S, Furthermore according to the Caratheodory theorem the

+1°
projection of @, on I'is 7", Then by the Lusin-Yankoff's theorem, thers exist
‘measurable mappings B({) = ( By () E B, 1 ) 2 = ( M@, * ‘1 H)
such that (4,B(5), MH) e @, for {& T'. These functions may be considered to

be defined on T and have obviously all desired properties.

We are now in a position to prove Theorem 1 in the genéral case, Let
J < I be & bounded interval such that

n
‘ U, g
t Ty dE -
Joro 3 e e < @
N i=t '

According to Lemma 2, there exist measurable mappings

o + 1

MO = (M), eey 2y D) T R™T

(n+1)

5(t)={5(1)(t),..,,|5 ®): T— ]Rn(n-l-lj

&



such that ) & Sn L1 ﬁ(f)(t) € exconv U(f) for almost all (eJ and

n .
a(f) = Z ).j(t) B{'j)(f). We have a.e, onJ
j=1
n I n n . '
SoaorPo=3 (3 o8 0) % =3 o0,
i=1 i=1 =1 j=t
n
where 30 ¥ Dty .

i=1
Since the theprem holds for the case [{f) = Sn_l_1 there exist Borel sets
ME = J(j=1.,....n4+1) such that Mj(ﬁ) nM®&=g for j+k
atl ()

UM =Jand
=

| n4-1 )
12 [y o- w00 ) 0]
j=1

n .
Putting 59 (0 = Z ey © 87 @

c .

= 5
, < 3 )
J

we have a, e, on J:

n 1

D000 = Y e 0500
f=1 j=1 7

It follows from (5) that

n
| 2 (w0 -3 0) 00
i=1

Since B () &. exconvl () for almost ali teJ, we also have ;(8)(0 €
exconvl(#) for almost all feJ, On the other hand, since graphU is a Borel (mod 0) set
o inI A R", the set

2

l <= ©6) .
Sy ’

6 = {{{:felNJ, acexconv Uit
is a Borel (mod 0) setin (I'\ J) X R" (see Lemma 1.2 and Theorem 1.7, [4)). By

virtue of Lemma 1 there exisls a measurable vector function i(s)(t) defined on INJ

such that ;(8) () € exconvl (f) for almost all t e I\ J,



From (4) and (6) it follows that the function

RCP i ted
B 0w i tel~d
has all desired properties. The proof of Theorem 1 is complete,

As a corollary of Theorem 1 we obtain the following result which provides
an answer to a question put by Hoang Tuy: '

]Rn
THEOREM 9. Let U': [ — 2 be such that:

1) graphU is a Borel (mod 0) setin I % ]R',1
2) for almost all t-€ I, U{t) is a compact sel in ]Rn, contained in a ball around

0€ R of radius F(f) e L, (.

Then, every measurable section «ff) of U may be approximated in the norm
N0 s by sections taking values only in the sets of extremal points of convU(f).
I

Indeed, it suffices to apply Theorem 1 to the functions
i @
Po=0...0%0....,06=12.... n).

I'take this oppertunity to express my thanks to Prof, HOANG TUY for various
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