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ON A METHOD OF APPROXIMATE SOLUTION OF OPERATIONAL
EQUATIONS AND ITS APPLICATION TO INTEGRAL EQUATIONS

PHAN VAN HAP

University of Hanol

" Consider the operational equation of the form
Az =10 )

where A — operator, which operates in the Banach space. Further, Iet X be tﬁe
commutative ring with the ensemble of the units Y.

§ I. THE ITERATED METHOD

Equation (1) will be solved by the iterated method as follows
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vide differences of j-th order of the operator A.
Further we construct an infinite sequence of successive approumatlons

defined by
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In thecase k=1 we have '
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this is the method of generalized regular falsi [1,2].

§ 2. THE THEOREMS OF CONVERGENCE

Suppose that the equation (1) has a unique solution x*. Denote by 3 the
norm of x*_.xj :
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We obtain the following

THEOREM 2.1. If the fo!lowfng conditions are satis[ied
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Then § :czl | converges in norm to the solution of the equation (1) and we have
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Proof. In view of the conditions (1},-(2), (3) of Theorem 2.1, and by formula
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In fact, we have
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and by the triangle inequality
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" Using the inequalities (2.2) — (2.4) we obtain
Cp=0, ¥ 1K6,. 8, 343 1S L(1+Y6,) 3,
G 41 1+Y6, Y

=1—(1— .
é, < 1+Y ( O")I y '

which implies



and

Let.

we have

hence

Further, we obtain

and

Lm < exp (_ Z )”k-{-j)
j=o
m m
Y o
N, . = i - .
K714y (er1 Z Okﬂ)
j=0 . j=0

1-6

Srpy <G -2 =1 (ékH + 12 +§+1).

1t follows that

where

Analogously, we have

where

- _ _
N
T 1+Y (-9
(5]\"1 <-=--—~—-=—=—=-—=—==-ql . zq~5=~'f1 1"
t1+7 1+Y(1—qj) PRGBS E

PR S
I ¥ g,y

(2.9)



It is not difficult to show that
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Putting this expression in (2.5} we obtain inequality (2.1). Finally, note that the
member ’t‘f of the sequence (1.2), under the assumptions of the theorem, belongs

to the sphere ||a* —af] < o. This proves the theorem.

Remark. If the operator A is differentiable of k-th order then we can show
that
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The following theorem shows the convergence of sequence (1.2) without any
assumption on the existence of the solution of equation (1).

THEOREM 2.9. Suppose thal the following conditions are satisfied
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et —x [ < Co -_1;_+na (27
l_qj
where
e i
=T (1o ) <omp [0 ]
i1 1+v +vy (1— ql)
and
Y
v = MY— i

Proof. We have
le; =2, 1< C el ey —2, 1< G C e,

leg—a, I<plie . lzg —x, 1< C, e 1+ 1 C,Che, |l s

0 =lleg —z Kbl 1<RC,C o ) 2.8)
Let '
p= max 2~z ||, ij=0,213
we have

p=YC Qe 1, vY=1+p(. (2.9)
In view of the (2.6) we obtain

1
01=[[a:2.~—:c§ [[gcocg (D+a0)oozq1 R

Analogously,
. ) 2 1
by = | T, — I KCCl+a,+9,) 2 .
Let

Do':'D‘i‘bo : 01‘—"-1)0‘[‘51' CELI Y I)j = 1)j,,_1+ 6]

Using (2.8) and (2.9) we have

- Consequently



and

b . 14
i=1 v
Furthermore we have
7 f]i - Qi
]T(1+_._L) < Tf(l + )=c<m
) 14w O 14+
i=1 i=1
Hence
j+1
dipr < C g ¥
- For any positive integers 1t and p the inequality
n+p—1 n+p—1
+ n +1 i
ALl ED N E AT Moy <
J=n j=n
n+p—1 n41
<o, Naitt<en,
o 1 S0
. 1—"q1'
=

holds.
Hence for an arbitrary € > o we can find N such that || x;H'p — :z:: | <& for

n> N, and so the Cauchy condition is satisfied. According to the definition of

a complete space X, there exists a point x* of the space to which the sequence
i
! x, | converges.

We now prove the estimate (2.7). In fact, we have
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Because &; = A x; as j —» e, x* is the solution of the equation (1). This pro-

ves the theorem,



§ 3.— APPLICATION TO INTEGRAL EQUATIONS

We observe that the above described method may be applied to the following
functional integral equation of resolvent (see {3])
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We can prove that the conditions of Theorem 2.2 are then satisfied and hence the
sequence (2.6) converges in norm to the solution of this equation, '
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The problem of solving the integral equations with (weakly and strongly)
singular kernels can be reduced to finding solutions by the described iterated
method [4). '

This method may also be applied to the problem of solving a class of singular
integral equations with displacement kernels [5].

REMARK. This method is very convenient in the case when the differentia-
tion of the operator 4 is complicated or the operator A is not differentiable.
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