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SOME REMARKS ON MINIMAX THEOREMS

BUI CONG CUONG

Institute of Mathematics, Hanoi

The minimax theorem, which plays a fundamental role in two-person game
theory, has been generalized by many authors (see, for example [5,6]). Among
these generalizations the theorems of Wu Wen Tsun [7], Ky Fan {2], Sion [4], and
Hoang Tuy [1] in topological spaces are of particular interest.

It is the object of the present paper to extend the results of Wu Wen
Tsin and Ky Fan. Although the theorem recently discovered by Hoang Tuy
[1] is very general, our results can nct be deduced from it as special cases.
Moreover, in the proofs we shall use a different method.

I, MINIMAX THEOREMS FOR a- STRONGLY CONNECTED FUNCTIONS

1.1. Let X and Y be two Hausdorff topological spaces. Let C < X, D © Y
and let f be a real-valued function defined on C X D, For every real number
a and for every x &€ C, y € D let us define the sets: '

D) = fyeD: fxy <=
D) = {y e D: flx.y) 2 af, Cly) = {2z € C: flx.y) 2al.

First, we can state the following

LEMMA 1. Lef C = [a,b] ¢ R, D = Y. Assume that: (i(Yforeveryx e C,ye D
the sets D™(x), C(y) are connected or emply ; (i) f is upper semicontinuous separately
in & and gy ; (iii} for every y € D the set C(y) contains at least a or b. Then there
exists x*€ C such that D~(x*} = @.

Proof. [Usipg conditions (i)-—(Aiii) we first note that C(y) is a nonempty closed

interval of [a, b] for every y € D. Since C is compact and every C (y) is closed, it
. k

suffices to show that for every finite set Yy + ¥y v Y € D we have énl Cwi+e.



Indeed, assume that there exist y, , ¥y ,..., yk_ of D such that i:[]1 C y) = 2.
Let C (erD ) be the smallest interval C (y;) containing a and C (yq) the smallest
interval C (y,) containing b (p, g € {L 2., n { ). Then C(yp) nc (yq) =2 %
and A = [a,b] \ (C (yp) U C(yq) )= @. Nowtake an " € 4 and define Jp =
D=y nD (a), Jq = D~ @)ND (b). Obviously, Yp € JP : Y, € Jg . Since f is upper
semicontinuous separately in x and gy, the sets D (a), D (b) are closed, D~ (&) is
open. and Jp , Jq are nonempty closed subsets of D~ (x). Since D-(x)
D) U D @), we have D () = Jp U Jq , moreover the connectedness of D~ (x")
implies JP N J’q *+fo lfye JP N Jq , then from the fact a & C (v, b e C (y) and
the connectedness of C(y") it follows that [a, b] = € (y). Thus 2* & C (), which

conflicts with y* € D™ (2’) and so completes the proof.

As an immediate corollary of Lemma 1 we obtain :

THEOREM 1. Under conditions stated in Lemima 1, if « = inf sup f (v, p),
yeD xeC
then

b, = inf sup f(x,y) = sup inf f(z, y) = U, 1.1)
yeD zed xelyelD :

1.2. A real-valued function f defined on C » D is said to be a-strongly
connected if :

1) For any pair ¢, » ¢y € C there exists a continuous mapping u : {a, b] — C

such that u (a) = ¢y, ud) =c, and the set u‘"I(C (1} ) is connected or empty for

every y € D,

2) For any finite subset €5 Cy s ey Ci;f of C one of the following

k
conditions holds ;: 2a) the set ﬂ D‘(ci) is connected or empfy; 2b) the set
i=1
l t
Depyn(lUD (c; )) is connected or empty for each [ =2, 3,..., k.

i=1

A generalization of Wu Wen Tsun’s result [7] is the following

*) Note that Helly’s Theorem is not necessary for this proof.



7/

THEOREM 9. Assume that: a) D is ¢ompact; b) f is upper semicontinuous

in x and continuous in y; c) there exisis an increasing sequence of numbers %
converging to v, such that f is a-strongly connected for each «= % Then (1,1)

holds.

Proof. Note that v, may be finite or infinite. The inequality »; > v, being
evident, let us suppose v, > v, and show that this leads to a contradiction, In
fact, using assumption c) and the strict inequality v, > v, wecanfind a number

« such that f is a-strongly connected and v, > « > v, .

Since  inf sup fixr,y) > «, it follows that for every y e D there is
yeD =zeC

x, € C such that f(:cy . ) > « Using the lower semicontinnity of f in y we
can find a neighborhood Uy of y such that f(xy ) > « for every y’ € Ug - Since
D is compact, the open cover g Uy} of D contains a finite subcover; in other
words, there exists a finite system g, ,y,,...,y, €D such that the open
sels Uj = ij‘(j =1,2,..,m) form a cover of D, Let ;= a:yj (j=t,...,m). Since

m
Uj CD(xj) (j=1,..,m) we have D= {J D(:cj), Now using this last
J=1

relalion we can find by the following Lemma 2 a point x: € C such that
D“(x;) = @& . Then for every y & D, f( :U; y 4 ) 2 a, so that v, 2 « contrary

to the inequality « > v, .

LEMMA 9, Assume that o < v, and that: 1) f is upper semicontinous separately

in x and y; 2) for any pair c, ¢, e C there is a continuons mapping u: {a,b] — C

such that u(f) = ¢ s u(d) = [ and for ecvery y € D the sef .. (C(y)) is connec-

ted or empty; 3) there exists a finite system x, =z, ,...,x € C such that
m

D= D %) ; 4 one of the following conditions holds : 4a) for every xeC the
i=1

n
seis D~(x) and D~(x) N ( N D« i) ) , k=2 ,..., m, are connected or
: i=k :



_ k
empty ; 4b) for every = e € the sets D={x) N ( U D(:vi)), k=2, ...,m,
i=1
are connected or empty, Then there exists an x, such that D( a:; ) = 2.
Proof. First let us suppose the conditions 1,2, 3 and 4a) to hold. T6 prove
the existence of x; we shall proceed by induction. For m = 1 the fact is evident
since we may take a:: = &, ; assuming that it holdsfor m = n . 1 letus prove

it for m = n. Let D = D=(2_). It is easy to verify that the conditions of the

Lemma still hold for C, Diszyg,ag..., x, 4 and the restriction of f on

*

¢ X Dn‘. Therefore, there exists z, ,€C such that *f (x;___l » §) 2 afor every
| yeD . Let u: [a,b]— C be the continuous mapping that corresponds to the
pair m;_l » & according to assumption 2) and let g be thg function defined on
[a,b] X D by glz;y) = fw@),y) for every zela, b], ye D. Since clearly,'
[@,b], D and g satisfy the conditions of.Lemma 1, there exists z; € [a, b] such

that g(z; : §)Y2a for every ye b, Putting x: =1 (z: ), -we have

f(ﬂfz »§)>a forevery yeD, i e, D‘(x;) = @, so that we can take

It remains to qonsider the case where conditions 1,2, 3 and 4b) hold. Let

k
D, = U b x,), we shall prove by induction. that for every k=1,..,, m

there exists a point x', such that f(x’k » Y) 2= for every gy G.Dk . For k=1
the fact is evident since D(:rl) = gy eD: f(o:1 P > a % Suppose that an

x';_ 4 € C has been found such that f(:c’kh_1 »§) 2 a for every ye D, Let

1"
v:[a, b]— C be the continuous mapping that corresponds to the pair. PIREE Y
according to assumption 2) and let k be the function defined on [a, ] X D, by

h{z ,-g) ..—_-:f(u(z) + §) for every zela,b), yeD,. Since [a,b], D, and h ob"



viously satisfy the conditions of Lemma 1, there exists an ', € [a', b] such that

h(z,,y) >a for every ye D, i.e. flo(z,), y) > = for every ye D,. We

may take 2’ = v(z'.) and x: =

k= " The proof is complete.

From Lemma 2 it follows that :

Let « < v, and let C, D, f salisfy assumptions 1 and 3 of Lemma 2. If f is
a-strongly connected, then there exists an xy € (¢ such that D‘(.v;):g.

A function f defined on C X D is said to be strongly connected if it is
a-strongly connected for every « € R.

COROLLARY 2.1, Assume that: D is compact, f is strongly connected and
continuous “separately in x and y. Then (1.1) holds,

The above defined notion of strong connectedness is & generalization of the
corresponding notion introduced by Wu Wen Tsun in [7]. A function f defined on
€ X D is said to be strongly connected in the sense of Wu Wen Tsun if condition
1) and 2a) of a-strongly comnectedness hold for every a & R, Therefore the
main result of Wu Wen Tsun [7] is included in Corollary 2.1. Since a function
ftx,y) which is quasiconvex in « on C and guasiconcave in gy on D is obviously
strongly connected, Corollary, 2.1, contains also as a special case the well-known
minimax theorem of Nikaido in [3],

1.3. In many questions, we are interested in the existence of a saddle point
for fix,y). From the previous results we can deduce the following

. THEOREM 3. Let D and f satisfy all conditions specified in Theorem 2 and
let the set C be sequentially compact. Then f has a saddle point on C X D, i, e.

min max [ (r,y) = max min f{z,y) (1.2)
yebh zelC zelC yeb

Proof. From Theorem 2 we kunow that (1.1) holds. Since C is sequentially compact,
for every y € D the function f(x, y) which is npper semicontinuous in x attains a
maximum on C. Since f{r, y) is lower semicontinuous in y, so is the function
sup f(x, §). The set D being compact, there exists a point y* such that

sup f{x,y*) =inf sup f(r,y)=v
xel yeD zel I

and therefore f(z, y*) < v, for everyx € C and vy <+ o=

On the other band, for each % < v the function f satisfies the conditions of

Lemma 2. Hence there is d:;-' such that f (a':f, ) = % for evrey y € D. Since Cis

- sequentially compact the sequence ga:l.*; contains a cluster peint 2* € C. From

& =0 and the semicontinuity of f/ inax we then have f(z*, y) 2 v, for every y € D.

Clearly (z*, y*) is a saddle point of /.



Note 1. Using the following

LEMMA 3. Let the sets C and D be sequentially compact and let f be lower
semicontinuous in x and upper semicontinuous in y, then Uy=inf sup f(z,p)
: xzeC yeb
Is finite and there exists an x* € C such that f (@*, y) < v’y for every y € D.

we can deduce the following Hoang Tuy's modification :

Assume that: (i) D is compact, C is sequentially compact ; (ii) f is strongly
( v’y Y -connected in the sense of [1]; (iti) f is lower semicontinuous in and upper
semiconfinuous in y. Then

min max f(xr,§) = max min f(z, y) ' (1.3)
xeCyeD pyeDxel

Note 2, From Note 1 one can easily deduce the following modification of
Sion’s theorem [4] :

Assume that C, D are convex sefs of two linear fopological spaces X, Y resp. If
() the set Cis sequentiallj compact, D is compact ; (ii) the function f is lower semi- .
continuous in x and upper semicontinuous in y ; (iii) f is quasiconvex in x and qua-
siconcave in y, then f has a saddle point.

2. A GENERALIZATION OF KY FAN'S RESULT

2. 1. From the above established results we can deduce some minimax
theorems, which immediately generalize the result of Ky Fan.

Let f be a function defined on € X D and k be a' positive integer and
let R¥be a Euclidian space, Rﬁ_ be its non-negative orthant. Define now S, =
{z &R D g}, Ce=fey a0y} 6 €= {C cC: nCD(ci)=g;

i':ff[ C; €Yy
and f(C,. D) = gzeRk: (2);=f(c;, y) for some y € D}, For ecach 3 & R de-
note 3= (3,...,8) € Rk.

A function f is said to be «-strongly connected in y if for each positive integer
ke and for every C, & €, there exists a set E R" and a number 5 > 0 such that :

8 f€,,D)+3—2acE @.1)
b) v, (Ey=sup inf (t,z><0 2.2)
. ze =

¢) the mapping ¢ (f,2) = <, 2> defined on E X S]". is u-étrongly con-

nected for every p: v (E)—2» <b < v, (E) where v, (B} =inf ‘supe (t2) (23)
_ : teSk ZE



Further we denote by Cov(d) the convex hull of 4 in RY. 4 function f
defined on € X I} is said to be a-locally pseudoconcave in y if for every positive
integer k and for every Ck = (Zk there is a number £ > 0 such that (C.ov(f ..
+8) 0 (Ri—i— a) = @. The relationship between this notion and that of «-strongly

connectedness is summarized in the following

LEMMA 4 Any funciion a- locally pseudoconcave in y is «-strongly con-
nected in y.
Proof. Letfbe an « -locally pseudoconcave in y and G, € €, . Now take the
number & as in the definition of a-locally pseudo.concaveness and E =

Covi(f(C, ., DY) + ¢ —3. Then (2.1) holds with £ = 5. Since the sets E and Ri are

coovex in R and EN Ri = @, there exists an {° € S]I: such that (&, z> <9
for every z € E, and therefore (2.2) also holds. To complete the proof it suffices to
observe that any linear mapping «(f, z2) = (¢, z> defined on convex sets is
strongly connected, which implies that condition c¢) is satisfied.

A function defined on € X D is said to be locally psendoconcave in y if for
any pair §, , ¥, € D and for any real i g [0, 1] and for any positive integer %, for
any €, < C, there exists a yeD such that p .f C;r9,) + U= (e0,) <
flc;, y) for each ¢, € €,,. A function f defined on C X D is said to be pseudocon-
cave in y (Ky Fan [2]} if for any Yy + Yy € D and for any real p & [0, 1] there is
ay €D such that b f(z, 5 ) + (1 —p)fx, ¥y ) £ flx, y) for every 2€ G A
function f is said to be pseudoconvex in y if —f is psendoconcave in g, It is easy to

verify the following

LEMMA 5. Any function pseudoconcave in y is locally pseudoconcave in y. Let
the function f be upper semicontinuous in y and locally pseudoconcave in 'y, Then f
is e« -locally psendoconcave in y for every « € R.

2.9. THEOREM 4. Assume that: a) the set D is compact, b) the function f is
upper semicontinuous in y, c) the functionf is. pseudoconve:c in x and v’ —slrongly
cannected in y. Then

= inf f@,y) =sup inf flx,y) = (2.4)
’1 xeC eB yeD acC

Proof. Since the set D is compact and the function f is upper semicontinuous
iny and a=2",, for every xeC the set D(x) is nonempt} and compact,

Therefore to prove the Theorem we need only to show that n D(a:i) # @ for
i=1
any finite system of C.



. Suppose that for some finite system.Ck—_~ { Cislyruensly } of C we have

k . . .
N De)y=@,i.e. C » € @, . Since the function f is v, -strongly connected
A

in y, there exist a number & >0 andaset EC R such that (2.1), ¢2.2) hold
- and the mapping ez, §) = ¢, z> defined on E X Sk' satisfies the conditions of

Theorem 2, This implies  inf . sup «(t, 2) = sup inf ¢f,2z) <0 and so
' te§, zekE zeEteSk

there exists a i* € S, such that (t* , z> < Ofor every z € E. If now we take z€ E
‘ 4 _ .

with z; = f(ci ) — v’y + & we have Z t: (f(ci s ) —vy + &) L0 for every
) : i—=1 .
ye€D. Since f is pseudoconvex in x, there is an a*e C such that for

k
every y € D, fla*, yy — Ui+ e Z t;'f( ¢;. ) —v; +€<0 and hence
i=1
‘su% f*, é.u'l — & This is confrary to the definition of vy and
ye C ‘
completes the proof,

COROLLARY. ( Ky Fan [2])}. Assume that: a) The set D is compact ; by the
function f is upper semicontinuous iny ; c) the function f is pseudoconvex in x and
. pseudoconcave in y. Then (24) holds.: ' '

Note 3. From Lemma 3 and Theorem4 we can deduce the following :

Assume that : s) the set Cis sequentially compact and the set D is compact ;
'b) the function f is lower semicontinuous in x and upper semicontinuous in gy ;
o) f is pseudoconvex in x and v'y-strongly connected in §. Then f has a saddle
point on' C X D, o ' '
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