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~ ASYMPTOTIC EFFICIENCY IN THE BAHADUR SENSE
FOR THE SIGNED RANK TESTS

NGUYEN VAN HO
Poiylechnic Instifute of Hanot
0. INTRODUCTION

The asymptotic efficiency in the Bahadur sense (the very exact slope, cf. [1]) .
of a sequence of statistics { S { in testing H {f{ against 4 { g {isevaluated from

_ clg) =2 K (p(g), M
when a particular density g € 4 obtains, provided the following two limits exist
lim = § = plg) @
t—»co
with probability 1(g), and
' lim _l—logsup{Pf(S Znr):feHi= K(I) (3)
n—» oo n

where 0 <p e, and K (1), 0 < K < =, is continuous in some open interval
including p (g).

The constant r in the above limit is often replaced by r,, where r . tends
to r as n — oo, for convenience of ev*ﬂuatmg the limit. Note that in nonparame-

tric cases the limit gets much simpler as

. 1
lim _,‘,:—I-I-longSnznrﬁ:K(r), (L))

Ntmey

where P denotes the probability measure under the hypothesis H. As proved
by Bahadur {1] and Raghavachari [6], the exact slope is bounded above

c (< 27(g) &)

for each g & A, where J (g} = inf g Ig log (g/fydr: fe H g



Several authors have investigated the limit (4) for nonparametric statistics,
e.g. , M. Stone [7] (1967), [8] (1968) for the two-sample Wilcoxon statistic, G. G,
Woodworth [9] (1970) for (not signed) linear rank statistics in the general case, ‘etc..
J. Klotz [5] (1965) explored also the problem for the signéd rank tests but only in a
very slmple case : the sCOres E are to be expected values of the i-th smallest

order statistics from a sample wath cdf R (x) on (0, ), provided the 3-rd moment
of it is finite,

The signed rank tests in the most general form will be ‘the topic of the work,
We shall b¢ also concerned with the signed rank tests having the best exact slopes
in testing the:symmetry hypothesis 6 against the asymmelry alternative o4. This
fact shows an asymptotically sufficient characteristic of vectors of signs and of
ranks in the testing problem. The latter result is established similarly as in
Hajek’s work (2] (1971) regarding to the testing randomness agdinst a general
class of two—sample alternatives. :

. LARGE DEVIATION THEOREMS FOR THE SIGNED RANK TESTS

" BASIC RESULTS

Let X=(X,, X,,..., X) be a sample of n independent observations

from a continuous distribution, The symmetry hypothesis Z6 asserts that the

distribution is arbitrary but symmetric, Let R+ = (R-‘:_ , R;_, vaes R+) be ranks of
. . . n . .
IX1 = (X1, 1Xa1,..., | Xp1). Consider the following general signed rank test-

= . R'
Z i i
— ——— y  Sng——— “1 (6)
Sn__ ¢ (11+1 nt1 ) '

where @ =a (a1, v, w) is a real function defined on the unit cube
I={'3,_<‘_u<1, 0, 0CwL1 }, and W, = w(X;,) are random
. variables on [0,1], provided under the hypothesis F6 '

P (W, & Aw, —;— 1<i<n k=1,2, @)

where Aw; = [0 ,—2—), Wy = [-—2-, 1], Note that (7) is held with Wf=-;—(sign X;+ 1),

G. G. Woodworth [9] has explored the problem for the linear rank

statistics '
n

o 3 iy i)



i

where R, , 1 <7< n,are ranks of identically distributed and independent observa-
tions, In splle of difficulties arised in our problem as the presence of component W;

in (6), all results in the Section are attained similarly as those in Woodworth’s
paper. Therefore we shall leave out all detail proofs where unnecessary.

We are concerned first with a simple case. Assume that for all n=1 i R

- - 8)
an = a (U,0,) = aijk {8)

consfant, if (u,p.w) e I

k—=1,2, where

" JgaeAui,ueAuj. weaw |, 1<i<s, 1)<,

Au =[u, y ) with0=u <u <...<un =1,
i i—1 i o i 8

Av = [v. »2) withO=v v <...<v =1,
J J—1 b o 1 t

1 1
(n) &) o o . :
Let Z ‘_“'Zijk be a random « matrix » of three dimensions, where .
(n) . l RI | -
Zn —Nzl Gy e WD € 1, ®

with N {.! standing for «the number of integers in { -1 » Thus S, defined by

(6) can be presented as
() | |
Sy= Z “ir Lyk -+ LY
L,k

Since R+ = (R:— y e s R:-) is. a permutation of (1, 2, ..., n), Z(n) must

satisfy under 6
’ i
Z zfj’g =72 sy = my,1gi<s,

I.. 7 l

(a) (n) .
Z Zigp =2 , sy, = CERES AL
i,k !

¢ . an

where

m =N {l] ——ehu} =N {(n+Du_yq,@+Du],

+
Rl . ’
n; = N{ll-——-—-eA }=N;[(n+1)vj__1,(n+1)vj)§.



Cleérly

Z& ;n=

1/11 —_— HI — —H;-_i = &U; , say,

ni/n —> v; — ;4 =30;, sy, &S N —» oo,

Putting

(n) (n) (n):

(n)
X 1 T Ziyat = {25 4

- ;Xg.‘);j: (Z

it is satisfied that

il

x™ 3 ¥ om,1<igs,

i. ij

() (m) .
X.j ZX!.]. =, 1 LjLt,

Then under F6 the distribution of X' is mulhhypergeometrlc In view of
this fact and by the assumption (7), one can verify that under 9’6

P;Z =z}=([!jm,-l ['I_“]nj!/nl E_’;]zu )([‘[(Z" )( ) ) (12)

Zify
n
== {"]m,I {_In_,l/2 n! .[-—]Zl‘jkt
H i ifk

or =0if 7 ={ ;3] satisfies (11) or not.

THEOREM '1: Let S be defined by (6) with « = o satisfying (8) such that
r, (=) < R (u), where '

- 1
ik~
and
R (a) = sup gz Uk qvk' ij 0, q, 09,5 , for all i;j,kz (14
. ijk

Let {1, } be a sequence of constants approaching a constant r. Then under F6, for
r< R (a)

. 4 ,
lim — 7 log PS, > -nr )=K(r;a), (15)

n—oco

say, wher €



K(r,a)-—mf ZZ 9 log @40/ Pyjpd Z Yk Tie Z 0 Qe 0 g [T,
ijk itk

‘I_J- —au , for ail :J,kz

\,The K Just defined equals zero if r < 1 (a).
Proof. The principal manner of the proof is to present the probabilily in (12)
by means of the multinomial distribution of the random «matrixy Y* = ng

with cell probabilities p = § Pijk } » and one Theorem of Hoeffding (1965, Theorem
2.1 of [3]) employed for the distribution. So we have

() (1) (1)

P (Z(n) = Z) = prob (Y =2,¥, = i Y_j. =n, for all i, j) + exp(ne), (16)

where

I

£, %log [["l(m'au ’)H(n'av f)/(n!)]_o(l)asn—-eo,
and

1 1 ' ) ‘
—_ log P, > nry) = — -;-l- log prob (Z @k Yijlc 2 nry, ,
ijk

) = n;for all i, j) +0() =

Y, = m;, Y.j.

— min Z (gm/n) log (qu/nqu) } Yyji aTE natural numbers,
uk _
3 b > Mt g1 = my,y =y for al i,j,k-i +o (). a7
ijk
The assertion that K(r; «) = 0 for r < r, (4), and for all r < R, (a) it is

nonnegaﬁve nondecreasing convex function ‘of r, hence it is continuous
where it is finite, is justified by the information inequality -and the definition
of K itself,

Let there be somer < R, («) and a subsequence {n} of {n } such that
. 1 ' ' )
lim — - log P(S, > nr;) < K(r; «) as n—oco through j '} . Clearly that there
exists a subsequence { n”} of {n'} such that the value of y for which the

(n)

minimum is attained on the right member of (17), say y = {yg;c)j, satisfies .

y(n)/n—»qo = {q;}k} » say, as n—~eo through {n"}!. Obviously q° ;;atisf'ies' the



constraint in the right member of (15). In view of this fact it follows from
(13) and (17) that

: 1 ‘
lim — =~ log P(S;> nro) = 3 gy 10g (qulpy) > KU o)
‘ ik :

as pi=—»co through {n”!. The contradiction affirms that

lm inf —- -1- log P(S, > nry) > K(r; ) for all r < R (o) (18)

n—+o0

Now rassume there are someé r <R°(9=), 3> 0 and a subsequence {ﬁ*% of
fn} such that

hm_-llogP(S nr))K(r,a)+4a
as 1 — o through {n* }. Then for all sufficiently large n in {n*}
Z (yuk / n) log (yw,c / npy,) > K (r; a)'+ 3a. (19
ijk
It follows from the behaviour of K(r; «) that there exists a counstant
£, 0< % <R0'(a=) — 1, such that .
K (r; @) £ K(r+s ) K K(ra)4aforalle, 0<e<e . (20)

By the definition of E(r + & ; «) there exists a ql= § qijk { satisfying the constraint

in the definition and

N allos(@, /p ) <K teid+a<K@a+2, @)
ijk ‘ :
by (20). Since both Za y q log (q /p ) are continuous in g 2
ijk ' :,k

there exist natural numbers y( Y such that y(") = §( ) satisfies the constraint in
the rlght member of (17) and for all sufﬁcmntly large nin §n* } ‘
~(r) ~(n)
] o Gy /) Yo G op ) — 908 @, 1 p) |
uk_ . : ijk
Hence, by definition of ym) and by (21)

Z (y(") / ) log (y(“) /np ) S K@ia)+ 3
ijk -



for all sufficiently large n in fn*] That contradicts with the above assumption.
Thus, for all r < Ro(a)

lim sup — —111 log P (S, > nr.) L K (15 a). (22)

n— oa

Note (18) and (22). Q.E.D.
_ The above result will be extended to the general case as follows, Assume that
a, satisfies

CONDITION 1: foreachn-—=1,2,..., a (U, v, w) is constant over the set of
rectangular parallelepipeds

fj;-l{ueAu,veAv weAwk} y 1L j<<nk=1,2,

where Aw, = [0 ), Awy = —;-. 1], Aui—Av = [{:....3 ' i)

CONDITION 2 : there exists a function « (u, v, w) over the unit cube I such

k .
that « = a( )(u, v)if we Aw,, k=1,2, and

sup EIIJ“ @, =alfdudydw

say, converges to zero as nn— o, where (5 is a space of trivariate densities such that

e agjzufg df)f 9| re 7 .

G = 2 faoamy: [ =" @) i weswg, k=12,

fffdudw:ffffdvdw=1g. @24

role) = fff a du dv dw, (25)
Ry(@) -.-_.-supgfffo:fdudvdwl fe(}'g, (26)

and for r < R @

K(r;zx)-_-infgfffflogfdudvdwllfffafdud'vdw>r,feGEE‘. @7

If “ is of & special form as in (8), relations (25) — (27) reduce to (13) — (15

Let us define



respectively (it is verified at once, puttmg g/p =f). One can check easily by
means of the information inequality and (27) that the ‘K(r;«) is nonnegatlve
nondecreasing convex functionof r,r <R (a), hence it is continnons where itis

finite, and for r << r (a), K(ir;«) = 0. We bave also for arbitrary r,e> 0,

r+e <R,

Kr—t;o) SEG; o) <K@ 4650 #f daP) <a  (28)

THEOREM 2 ; Let S be defined by (6)_ where «  satisfies Condftions 1 and
2 with = such that r o(a) < R 5@ where r (2) and Ro(a) are Idefined by (25) and (26).
Let §{r { be a sequence of constants approaching some constant r as n-—+ .
It is satisfied under F6 that

lim — L log P(S,, > nrp) = K(r.«) ‘ 29
Mi—o0 n

for r < R, (), where K(r; ) is defined by (27). In particular, for r <r (2,

the limit is zero.

Broof. We can write

3

n . R
) ; )

Sn=Zan(m,m,W,-)=n fff apfpdu dv dw, (30)
i=1 ,

‘where f € as defined by fpo=2n or 0if (1, v, w) € .1((13, 1 £ i &£ n, or not, where
(n) =T My with k, determmed by W € Aw_ ., Let an arbitrary & be given,
(l) i R k; k;

0 <2 <R (a) — I In view of (23) there exists an index n such that

¥
A0 <¢ and die,, u(s)) < for all n3> g N
where & stands for « . Clearly o) is bounded, say | o | < M, and satisfies

£

(8) with s=t=ns,anduf=vi=—l—,Ogi.g_ne.

Let




+

Since | (é(n+1 n+1 )=;‘=2nfz£;f ()dududw_
(0
_nfff ()f du dv dw
(n)
(t)

only if there is some plane U = ﬁ;’na or v = ‘\_’/r;s 0B, Y L n, , which cuts

through IE)) Since this can happen at most once for each plane u = p/ng or.

v=Y/ne, ._,_B,Y..(__ns — 1, it is plain that

5,O/n — J' f f O du dv dug' <2 . 2 (ng—1y/n = 3, 32)
say, ~ 0 as n —+ o, 1t follows {fromn (30) — (32} that
t

(e)
S .
o gfj'f |an...a(8){fndudvdw+angs+an'

for n = n#. Consequently for n > n,

S

P (si) 2n(rp+e+ a,,)) < P (S, > nry)
< (sff) > Nl — € - an)). 33)

Since r +et an — r+& as n— o, it follows from (28), (33) and Theorem 1
applied to Sf) that

A'K(r -2 0 L Kir - 8.; a(s?) & lm - —}; log P(S; > nry)

Ii~woo

L K(r+¢; ()) < K(@r 4+ 28, o).

Note that K(r;e) is continuous in r < R, (*) and & > 0 is arbitrary. Q. E. D,

EVALUATION OF K(r; «)

Given a constant r |, rye) < r < R («} Let f belong to G and

fff af dudvdw > r. Let a constant » > 0 and a 8() on (0,1) be such ‘that



Y =-:T log If expgx(a(u, v, w) — B(u))gdudw <o a.e,
Put
' gu,v, w) = expg .y (a(u , U, WY — B(UY — Y(u))g-

‘ ThenIfg dvdw =1. If » > 0 and B{v) can be chosen such thatj‘fg dudw =1,

fffa gdudvdw =r, then geG .and fjfflog_fdudvdw>

ffff log g dudvdw = J.ff g log g du dv dw. Thus in view of Theorem 2

we get

THEOREM 3 : If there exists a solution (», 8(v)), »> 0, of

e e e B et S

J 62)
j exrp (_ hB(v))% e:r:p( xa o (u, u)) -+ ea:p( (u v))g
and
fea:p(— 2B) ga e:cp(m ) + s exp(m ) { dv
j du =TI, (35)
e:rp(_ B) ge.rp(m ) + earp(m H dv :
then for r,r () <r < R ()
K(r;a)=x(r#f5dv)_ -
- f glog -::1)‘— f exp(—xB) [exp(haa)) + exp(?ta(2))] dvi du. (36)
REMARK 1: Thé roles of u and v can be exchanged in Theorem 3.
A SPECIFIC STATEMENT FOR THE VALIDITY OF CONDITIONS | AND 2
THEOREM 4: Let a be of the form
!
Up = Z q’fn(u) 4in(D) 4 fn(w) 4 (37)

i=1

where ¢ and ¢ _ are constant over intervals like (J =1, -i-) , 1L j<n,and
in mn ’ n T n
&)
or

. 1 1
Lin() =b, b(?lwa(O,-é-) or we(?,f)-



Let ,a8 n— oo ,for 1 <iLlI:

(¥) (k)
biw — b . k=12,
Giplt) — v {u) in Ly (0.1), 38)

D) = ﬁf(”) in Ly (0,1).

Then = satisfies Conditions I and 2 with

!

= Z o{w) @) L), (39)
i=1 ’
&y .
where 7, () = bi if weAwy , k= 1,2,
Especially, if ¢, (ortp ) 'K i < 1, approach step functions, it is sufficient

to assume only that (Pin e (or q:i —¢)inL 00),1<ig<L
n i

Proof. Givena fe (F, letus consider ‘

difay , ) = fff IZ !l’mtrm Zin — Z b9 T,

i=1

fdu dv dw

1

éé—z Zf in ljf'(‘l’fn—-‘pf)‘i‘fnf ’dudv+

i=1 k=1
) k
S o=/ awa s

+|(“-— (k)lfjl !b,trf ]dudv

Since
K %
Z'b()lff '(q’fn—“"i)“’fnf()ld“d”
< (max [ by, |)fo|(¢m_¢)¢mf [ du db,
k=1
and

i (ff“'l’m“'l’i) ‘l’mf(k)ldudv)z <
k=1 ] ,



2

ZEII W, w)fddff fduduz

o=
2

;; ff (“.’fn—'b,-)%f(k)dud 2 Z ff 0, f dudvg
- ngff('bm-—tbi)zfdudvdw; ngf q:?nfdudvdwg

2 2
= 4 j'( b, = ¥;) du f‘pm duv -s_Q as It — o

=

uniformly in 7, by (38), 1 £ i < I, we have
k (3
bfn)lff](¢i£—¢i)¢inf(?ldu_du~>0 as n — oo

umformly in G’ 1 € i < L Similarly, both

Z[b(k)__b(k)'ff,q; |dudv—»0asn_..,‘°,

and _
k K :
Z!b )]ffl(tpm —%;) wif()lrdudv-pﬂ as n — =
k=1
uhiformly in &, 1 < i < L. The last assertion of the Thearem is evident.

APPLICATION TO THE SIGNED RANK TESTS WITH REGRESSION CONSTANTS

Theorem 4 is a bridge connecting results for the general signed rank test
with the ones in the sequence, Pulting

1
@, = ¢, (1 + [nu]) a, (1 + [n0]) sgn (wu-é),

where [.] indicates the integer function and Cp =l @, = a (@, the
statistic defined by (6) reduces to the test with regression constants
- +
Sp = Z Cai @n (R; ). sgn X;. (40)

i=1



¢ 1+ [pu) ¢, a d + [ro]) — ¢(v) in Ly ©O,1), (41)

= salisfies Conditions 1 and 2 with

C_f— e e wedw,
¢ (u) «{v) if weaw, ,

~Hence we have from (25) (27}

r (d-) = 0, (42)
_Ro(a)' supz II !M(f —-f )dudu feg:g | 43)
and for r < R,(o),
. K(r; &) = inf 3ffff log f du dv dw'
| =[r ve () — 1 dudv>r.fe&’§- @)

Theorems 2 and 3 applied to (40) are of the form
THEOREM 9% Let S be defined by (40). Let (i) be satisfied with

;b(u) ¢(v) not being a.e.zero. Then r(e@) < Ro(u)' and for {rng rr, T <R (a)
N 0

lim — ;—- log P(S, = nrp) = K(r; 4. (45)

n— oo

In particular, for r<r (o), the limit is zero. r(a), R («) and K(r; «) are
defined by (42) — (44).

THEOREM 3* : If there exists a solution (», Bw),»> 0, of

ea:p - B(v)) cosh (?» P(u) cp(v)) o
I f ( du =1, ' (46)

iy ﬁ(v)) cosh (7» o{u) q:(u))d.’v

Ifeasp( »B )w sinh(u w) dv

diu = r, ’ (47)
escp( ) cosh (x § <p) dv ’

0 <1 < R (=), where R () defined by (i3), then K(r: o) defined by (44) is

evaluated from



K (r;a) =2 (r'—- f p dv )-f[ log f exp (— aB) cosh (npg) dv]du, " (48)
for0 < r <Ro {=}. For r < 0, K(r; 2) = 0,

REMARK 2  In view of Theorem 4, the convergence in (41) is required only
in L1 {0, 1) if one limit function is a step function. In particular it is the case for

tests without regression constants.
" REMARK 3. Putting Wi = u (Xi )» where u(x) - 0 or 1 if

: 1
r<0or » 0, and %, = €, (L + [nu]) a, (1 + [rw])u(w--a),

the statistic (6) derives to

n .
&
Sn = Z Cri Ay (Rz. u (X[.) s 40%
i=1 .
which is not equivalent to (40) with ‘exception the case Cpg =+-2=Cp
or a4 =...=4a, .Onecan form Theorems for {40%) similarly as for (40).
Example I. Let us consider an example in order to illustrate the role of

' -1

Theorem 3°. We are concerned with (40), where (41) is satisfied with ou) =@ (u),

-1 . . o« =1
)= (—% -+ —;—)wher_e @ is the standardized normal distribution. function and @
is its reverse function. We try to find B(v) in the form B() = be¢3. The constant b
attained by solving (46) is

- - -
b=—1 +‘/ Y.

o ' 3
Solving (47) for 0 < r < 1, » is. found to be » — rf(l —r), then b=yg/2. Conse-
quently (48) leads to

. 2
K (r; a) =_-% log (1 —1r).

- —1 . ' - 2
If () = @ 1(u), e@W)=¢ (v), by similar -calculation, we get A=r/(1-=r1),

()= _;. ((xa'_I (v) )2,7 and also K(r; ) = .. -%?‘— log ;rz). Both ‘the K’'s are

equal to that attained by Woodworth for the Fisher — Yates (normal-scores)
correlation coefficient (cf. Example 1 § 3 of [9]).



SOLVABILITY OF EQUATIONS (46) AND (47) FOR A SPECIAL CASE

I .
1
Let u, = Z $in(t) 9i(0) sgn (W — -2—), where ¢;,(u) , 9;,(0) are constant

=1

n
1<igCl, and ¢, () = 1 or 0f ue(u,_ ) or ue©1) — [u, _y,u)

over iptervals like (‘L;—l R -l-) » AKj a0 op(0) —p) in Ly(0,1),

. i
!
1Ligl, whej're 0=u <u =f < Uy =F, +Fp < uun <Yy = Z u, = 1
' ' i=1
In view of Theorem 4, e, satisfies Conditions 1 and 2 with '
ali , v, W) =‘u(i)(v,w) if u elu, _,,u), 1 Kig], (49)

where

! “(i)(" s W) =~ ¢, () or ¢, () if wehw, , or weAw, .

Thus r 0(e::) defined in i25), Ro(a) in (26), equations (34) and (33) afier exchanging

rolés of z and v and putting
B(u)_ =p; if ue [. u, _4.1.) 1Ligl, and K in (36) are of the form

r @ =0 50)

{ | :
. oA
Rotc)-_-.supE% E Eijtpi(v) [ff‘f) -‘—ff)] dvl

=1

® 1 | 1
oo > 0. = 3 (2 41 =1,

1
i=1
1 i o

;g'f(f:()’rﬂ()} =11 g_:gz,k=1,,2g, 1)

) I
| 'f[exp(.—kﬂj).coah {M:].)/Z f.[.exp(._.)«ﬁl.) cosh(mi)] dv =1,

i=1

1<jigl, 52)



‘Jﬁ[z f; ¢ exp (—»8,) sinh (ml-)/

i=1

)
/Z P, exp (—2B,) cosh (»¢,) ] dv = r, 3)
i=1 ’
and

! I
K(r; a)y == » (r— Z £ Bl: )_, flog Z P; exp (— kﬁi) cosh (a¢, ) dv. (54)

i=1 =1

- THEOREM S: If at least one of ®; () is not a. e. zero, R (o) defined in (51) is
positive, and for 0 <r <R_ («), there exists a solution (» , Byvees B,) with »> 0
of equations (62)-(53). All the other solufions are of the form (», By + Chuen, B, +¢)
with ¢ arbitrary. | ‘ , '

K(ria) is evaluated uniquely from (54) for 0 <r < R («). In particular
K=0if r<0.
Proof. In view of Theorem 3, it remains to prove that there exists a solution
(», Bl 2o ﬁI) with A > 0 of (52) - (53). The other assertions of the theorem are

.verified easily. The solvability of (52)- (53) is proved quite the same as in

Woodworth’s paper (Theorem 4 § 3, [9]), i. e., by six Lemmas successively. Let us

suggest these Lemmas with only a little interpretation if necessary, The first three

Lemmas are those of Woodworth (cf. Appendix in [9]). Y
LEMMA 1. Let Kj W, 1< j <, be a. e, positive ffunctions on {0,1).

Define

H
K.(v) = Z £, K, ()

i‘=1 .

)
where f; >0, Z ri_—.,l.
=1 iy

Let Kj (@) [ K. (v) be bounded a.e. away from zero, say
KJ./K. >a>0 ae on{01), 1L

Then there exist constants hy, hysove, h; such that



‘Zrh_mea\.gm x (1/f,) = b, say,
/ }é
=1
and
1
hj.:f E®  a 1<j<t

; Z P, K, @) /h,
- |

Proof. By means of the Brouwer fixed point Theorem (see.e. g., Kakutani,

1941, [4]) ~ .

LEMMA 9  Lemma 1 remains true with a = 0, moreover
@>0,14ng

LEMMA 3. There is only one solution h = (b ...., h,) for the general

case a = 0, such that

0<h<b 1<j<I

A

and
| f.h =1,

i
i

COROLLARY. For each » > 0 there exists a solution (g, (\), ..., B, () B

(52). Any other solution is of the form (B, (M +c,..., B, (») + ¢) where ¢ is

constant., The solution satisfying Z P, exp (2B, (3))-=.1 is unique.
i
Proof. Put Ki (v) = cosh (¢ () and

h = exp (2B,()) , 1<i<L

LEMMA 4. Le! m (1) stand for the left member of (53), where (13 . l?’ ) =
e (B{(?n)', vees B[ ™)), a solutton of (52) for A2 0. Then m(O) =0=r, {a),

and m(\) is continuous in » > 0.

Proof. Rewrite m(:») = fff a(u, v, w) f?~ (u, v, w) dudp dw, ‘where a is

defined by (49) and fx = fj}\. (v, w), say, if ue [u 10 Y ), 1L l with
fin = €xp {2 (o — 8,003 [ 37 ¢, exp (=28, () cosh (re, @),

i=1



Check that f;\ €@, and goon to verify the continuily of f)ﬁ in >0

LEMMA 5. If af least one of ¢, (v) Is not a, e, zero, m(x) is stricily increasing

in »>2 0.,

P_roof. Let 0, < *;+« Theén Iog(]">L1 /flo) is of the form (M —2) e+ au)

+8@(v). By means of the information inequality it is easy to verify

0 <ffffk1 log(fy /fy ) qu dv dw _ffffho' log(fy, / fy, ) du dv duw =

=()’1— 7"0) (m()]) "—m(ko))-

LEMMA 6.  m(»\) ——-r-Ro(m) as r — oo,

Proof. Rewrite

! , J
1 ; 2) 1 Ex
mx) = Y Z fy f ¥ @) (f:x vy — f:x)(v)) dv, ’

i=1

K , . .
where f§ )(u) = f! (v, w) for we Aw, ,k =1, 2. Next verify that there exists a

sequence A —+ o such that

®) @ .

fo, @ =T 1<igy,
and oy
K
gi ) - f f Ll k= 1 2, satlsfy the condition of Lemma (additional).

Now apply this Lemma (additional), Lemma 4 and the dominated convergence
Theorem.

LEMMA (ADDITIONAL) : Lef y @,..., ¢ {x) 'be infegrable with respect to
K . ‘
a measure ¥ on a set . Let any gg )(x) 20 1<Ligl, k=1, 2, be such that

I
Z (gi @ + g; (x)) = 1 on G&.

i=1

. 7 . :
- -~ ~d : )
Define | g:k)(a:) § satisfying Z (g: )(.1:) + gg )(x)) =1 asfollows: at a point

i=l1



xe o if |tpi1|=...=|¢Pi F'> 1o, l>...>|tpi|. Let us put

. . avk') -
where for 1 Lj<Lr, g:_’ (x) = 0 with kj =Tor2if <p < 0or> 0, and put
7

~(K
all the remaining g(. ) 0. Then

Z J- ( ~(2) -(1)) > i . (95-2) _ g?)) du

=1 = i=1

Proof. 'We have always
I

~(2) ~(1) (}.)
Soalis —5)= ZI Pete 1>

z_.l
!
2 1) (2) n
Z"’ (i :)>Z“’i(9i"9i)'

REMARK 4. One can establish a similar result as Theorem 5 for the -
statistic (40*) mentioned in Remark 3.

REMARK 5. For the statistic defined in (40) with ¢, (1 + [nu}) approaching
, a step funclion, say &) =c, fuelu, ,.u) 1<i<] and a (1 4 [n0])
converges to ¢(v) in L, (0.1, Theorem 5 is employed, putting ¢, (). = ¢; ¢ (V).

REMARK 6. In case [ = 1, Theorém 5 reduces to a simple result for the
signed rank test without regression constants. Since its simplicity but 1mp0rtance
it shall be presented separately below,

APPLICATION TO THE SIGNED RANK TESTS WITHOUT REGRESSION
CONSTANTS.

COROLLARY OF THEOREM 5.
Let ’

n
+
§, = Z a, (R;) sgn X, (55)
i=1
with the scores a , salisfying
_— .
f | a, (1 4 [nw]) — @) | dv — 0 for some ¢ & L (0, (56)



Then under the hypothesis 76

. _]_j*mm_f. % log P (S, > nry) = K(r; 9) 67)
1 : )
for r,—r< R (¢) = f [ ¢ (p)’[dv. For 0 <r< JR0 (¢) the constant K (r; ¢) is
4 o ' o . - . ) .
evaluated frem
- : 1
K(r; ¢) = — f log cosh (e(v)) dv, (58)
where »> 0 is a unique solu‘t:ion of
g
f ¢) tgh (» ¢@)) dv =r. - (59)
o ' o

Forr <0, K(;¢)= 0,

Proof. In-case I =1, equation (52) gels automatically an equality. Consequently

we may put B =0, for convenience, into (53) and 54).
v _ —1 :
Remark 7. In a special case ¢ = R , the Corollary reduces to Klotz’s

result mentioned in the 'Intr_oduction, moreover with only a weaker assumption
oo
on R:fde < w0l
v .

Example 2. Consider the sign test
n

S, = Z.sgn' X,

i=1 oo
Let us be in testing the symmetry hypothesis Fg against A = ge 0L <<y
where Qe' is a fa'mily.of all densities such that
1

¢ ={sar [ g a=iide!

“Applying the Corollary ‘to" S, » we get o = 1. Hence, -by (59), for 0 <r <1,
' 14r.
1—r’

= arctgh (r) = % llog
Then (58) follows
K(r) = »r — log cosh (:x) = %((1 +nlog(lsyr+(1—-rlogl— r)).

By the law of large numbers

1 : . -
—~ S,~>9 asn— o with probability 1 under any g€ Qe. Conse-

quently, by (1), the exact slope of the sign test is
CE)=( +6) log (1 +8 + (1 —8)log (1 —yp
with respect to any density g€ @, .



9. THE SIGNED RANK TESTS WITH THE BEST ASYMPTOTIC
EFFICIENCY IN THE BAHADUR SENSE -

Let us have at our disposal the statistic defined in (55). Let a densily geo¢

obtain and let G(x) = f g(x) dx satisfy
0<B <1, where, say, f=1 — G (0 60)
Put
a. H@) = G@) — G{(— 2), = =2 0,

b, G (x) = —;— (Gx) — G©Y)), =0
- . -1 '

¢ G =6(H ‘@) 6O =0H ©) 0<r<l,

where H 1(v) = inf {z: Hx) > v},

d * * d *

N | = ——— N = — N
d 90(”) do oW 9 (U). oo G @ |

Clearly 0°'< g =8y, <1 61)
e. m=N{i|X>0 1<ig<n}.
f. Gom(x) (Hn(x)) to be the experiment disiribution

function of only positive observations from
Xy X (of XL, TX D,
* =1
g G 0=0G6_ (H )
Then with probabitity 1(g)
a. m/n — B as n ~—=., by Borels theorem.
b. Gop@—G, @), H @ —Ha): G 0)—G ), (62)

by Glivenkos theorem, uniformly in x&(— e« , oo) and in.
ref0,11] respectLVely

THEOREM 6. Let_ X, ++++s X, be independent obsefqations having the
same density g(x) aé.abpve. Let Sn be defined by (55) provided scores functions
a, (1 + [nv]) have uniformly bounded variations on (0,1) and satisfy (56). Then



1
':'{ s, - f (2 g o) - 1) o) do 63)
. [v]
as n — oo with probability 1(g)

"Proof. The following relation is'clearly satisfied with probability 1(g)
F1 i n

So= Y 4 (B s X,=2 ¥ a4 (R)) - N a,

=1 X!. >0 t=1

It follows from (56) that

n 1
-I—Zani—b fq:(v) dv, as n — oo,
- .
4] .

f==1

So we have to prove only

1
1 + .
Py Z an(Ri)—rfg(v)(p(v)du as n— oo (64)
X;>0 o

with probability 1(g). It is plain that

1
1 +
- a (R') = ’n—" a, (1 +[n0]) dG._(v)
X >0 o

1
m *
= 2 | ) gy o) dv +
- 0

1
m

+
oon

(an(l + [nv]) — ts(v))g:(v)a'v +

"

1 |
2 an(1+[;w])d(G;m(v)—G'j;(u)). (65)
0 .

In view of (61)d. it follows from (62)a, and (56) that the second term in the
right member of (65) converges to zero as n —+ . Since a, (1 + [nu]) have uni-

formly bounded variations, one can verify by aid of the formula of partial
integration and (62) b. that the last term of the member tends to zero
as n —+ o with probability 1(g). Now (61)d., (62)a. and (65) reduce to
(64). Q.E.D.



ReMARK 8. Clearly (63) remains true when P =0 and $=1. The
i
respective limits are — f ¢(v} dv and f o(v) dv.
' o o

THEOREM 7. Lel g(x) € o be given such that g0 and g=1 a.e.

n
.o "
Let S = Z a (R; ) sgnX;
i=1

with scores satisfying assumptions as in Theorem 6 for

o) = log I—E%i- (66)

Then the exact slope c(g) of { S, } is the best one among all tesis in festing the

symmetry hypothesis &6 against g, and
1 1
clg) =2 f g* log 2g% dv 4 2 f (1—-g* log 2 (1 —g% dv 67)

Proof, For any fe &6

j'g(x) log 2 ‘ da:-j'g() log 42 45 4 B,

o hx )
*where _ :
h(x) = ;— (g(‘x) + g(—x)) € 6 ,
and :
h(x) hx)
B = —
- f g(x) log dx = I f f ( gex) + g( xl) log @) dz

= | @ 1og -;l(‘% dx > 0, by the information inequality. Then J(g) defined

in (3) is determined by

oo

J(g) = f gix) log ~—=—-= q(x) dr = f f

0

_ 9 oy lox IED g =
= f g(x) log hia) dr + f gl—z)  log ) dx
[+] [+] - .



B 2 g(@) - 2g(— )
= x) 1 d — 1 d 68)
of o g Y Of =D e e ¢

Note that (61) a-d follow

- —1 -
D= H(H 1(u))-: G(H (u)) — G(— H I(v))-, by the conlinuity of H, and

-1 ) —1
—1 d -1
v dv
—1 6
. (H_I) dH o
' J __ g dv
Thus (68) follows
1 1 .
Jg) = f g* log 2g* dv 4 f (1 —g* log 2(1 — g% dv. (70)
4] o

In view of (5) and (70) we have to prove only (67).

From Theorem 6 we get
1 .
1 g*
— 8, f @2g* — 1) log T_?._g“- dv = p(g), 1
¢}
say, as n — o« , with probability 1(g).

In view of (69) it is easy to see that g* = %- a. e. if and only if ¢ &€ Z6.

Consequently f(g) > 0 for g in our topic. Since (69) and' assumptions g¢* =& 0,
gt=1 ae, wehave 0 < g* <lor—1 <2¢*_—-1<1a.e. Hence

1
£(g) <f
4]

Now we may apply (58) and (59) in Corollary of Theorem 5 for r = f(g)} in order

1
log——L*—»- du=flq’fdv.
1—g* '

o}

to compute K(f(g);¢). The solution » = __12_ is get from (39) with r = f(g) defined

in (71). In view of (1), (67) is proved at once since (58) with r = ¢(g) defined by (71},
o(v) by (¢6) and » = % gives K(P(g): @) = J(g) determined in (70). Q.E.D.

Finally let us suggest an example which shows that the sign test is the best one in
the Bahadur. sense in testing 76 against a large family of asymmetric densities.
Moreover the sign fest is uniformly optimal with respect to the family of
alternatives.



N

— . +
- exampLe 3. Consider a family o# -of alternatives

={4,:0<0< 1},
where i
1 8 L
a49 3 (@) : g(x) (2 —)-h(a:) or (5 — —)h(_:c)
if x>0 or =<0, for any dens1ty hon (0 eo ) i
Let any geA,c oAt be given. It is computed from (61} that

- o
H(z) = jg(:c) de = (% +-;-) I hiz) dx + (—;-__-g—) f h(—2z) dx
[+] -

—

xr ‘
= f h(x) dx, x}O,

1
H o220 , 0g£vLt

T
1 8y -1 1
G(x) _—.j,g(x) dr = (5—-5) + (E 2) H(x) for x > 0, ¢* () =§+

.

(Y=

By (66),

¢(v) = log( ; ) / (-% —_ -2-) =a(g) = _constant > 0,
Consequently, by Theorem 7, the sign test S =Z sgn X, is the bestone (in the

i=1
Bahadur sense) umform in testing 6 against o4+, The exact slope of it is

the same for any g € 049 , as calculated from (67) with g =-;— + %:

og) = (1+ ) log (148 +(1—8 log (1—6)
This result coincides with that in Example 2, noting 049 c ge . Similarly for

A = go49 » —1 <0 <04, the opposite sign test S"=_Z sgn X; is optimal.
i=1 !
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