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As is well known, the separation theorem for convex sets serves as a foun-
dation of first-order necessary cofiditions and duality theory in extremal pro-
blems. On the other hand, optimality criteria and duality theorems in mathemati-
cal programming are often restated as minimax principles in the context of game
theory (saddle-point characterization of optimal solutions), and several proofs are
known for minimax propositions, which are based upon separation theorems.

~ This suggesis that the connection between minimax theory and duality theo-
ry is far deeper than it seems. It is the aim of the present paper to display this
connection in the converse direction by showing that various separation theorems
can in turn be viewed as direct consequences of minimax propositions, and that,
consequently, a meaningful duality theory could be buiit up, starting from mini-
max principles.

First, in section 1 we shall establish an elementary minimax proposition from
which it is possible to derive in a simple unified manner some strong but little
known separation theorems for polyhedral convex sets. Then, in section 2 we.shall
prove a general minimax proposition, using only topological assumptions: The
proof is independent from separation theorems and fixed point principles and
seems, therefore, to present some interest. Finally, in section 3 we shall show that
from this minimax proposition one can easily deduce the Eidelheit-Mazur separa-
tion theorem {or, equivalently. the IHahn-Banach theorem). Thus, from a purely
mathematical standpoint, minimax theory and duality theory are equivalent in
most of their parts.



I. AN ELEMENTARY MINIMAX PROPOSITION AND ITS APPLICATION TO
SEPARATION PROBLEMS FOR POLYHEDRAL CONVEX SETS.

In an earlier paper ([4]; see also [3]) we have proved an elementary pro-
perty of convex sets, which turned out to be useful for the foundation of many
existence propositions in Convex Analysis. Here we shall restate this property in
a minimax form, more convenien! for the application to special separation pro-
blems we are concerned with in this section.

n - n
Let C be a convex set in R . We shall say, as in[4], thataset Ein R is a
i
scheme for C if every element x of € can he represented in the form :z:—_—Z A€
et

i i i .

withe € E, J finite, supp e < supp 2, 2, > 0 and ¢,z > ¢ for alli € J and all

J =12, ..., n (supp a denotes the support of x, i.e. the set of all i such that the i-
component of a is non.zero).

. n X ..
THEOREM 1: Let C be a non-empty convex set in R, E a finite scheme for
C,8;(i=1,...,n) a red interval (i.c. a non-emply connected subset of the real

line, possibly degenerated fo a single point) and let A = Ay X ... X A, - If we have
for some real «:

(v cE) (3te A) x> > a . (1.1)
then

@Ate ) (yxel) <hadea 1.2)

In other words -

inf sup (x> = sup inf <t x>,
xek teA ted xel

Proof. Since E is fini_te, one can choose for eachi aclosed bhounded interval
[p.g9)c A such that (vee E) 3Le(p, ¢l) <t 2> > & where [p, q] = [py, 1]

X o % [P, q ) Therefore, to simplify the notations we can assume A = p,q)
n it i 13 1

If we define {p, ¢, 2> = E p.r. + E q; % , then clearly {p, q, 2> = max{t, x>
I 7 teA
; <0 a:j >0

and condition (1.1) can be rewritten as



(vaxekE) {p, ¢, x> 2 .

Since E is a scheme for G, it is easy to see that the previous relation implies

(vx e () <P, x> > o, e

vzeO) @Ftepr) > >
For each x let

A@W={te: <tad> 2=l

We have to prove that the family { A (x), x € C} bhas a non-empty intersection.

Since every A (z) is a nop-empty closed subset of the compact set A, it will suffice
to show that this family has the finite intersection property.

Let us first show that for any two points a, b€ C we have
A@nad =+ o ' (1.3)

Indeed, éssume the contrary,that A (o) and A (b) are disjoint for somea, b € C.
For every x =2»a 4+ (1—Mb 0L < 1) we have obviously A (x)c A{a) U A (b),
hence A (x) = Ga U Gb with Ga: A 0 AlQ), Gb =A@ n A@ two closed,

disjoint sets. Since A (x) is convex, it follows that either G or & " must be empty,
a

That is, for every « in the segiment [a ; b] one of the following alternatives holds,
but not both:

(0 Alx) € Ala); 2 A@) < Ap).

Let M (Mb, resp.) denote the set of allx € [a; b] for which (1) occurs ((2)
a ;

occurs, resp.). It is not hard to see that each set Ma, Mb is open in {a; b]. Indeed,
ifxe Ma (for example), then (i€ A(d)) {f{, x> <=« and to every fe A (D) there
correspond a neighbourhood Wt of t in A (D) and a neighbourhood It' of x in
[a; D], such that (', 2') <aforallt’€ W, and all =’ € I,. Since A (D) is compact, a
finite set Q can be found such that } Wt yteQlisa covering of A (b). Then for all

xvel= nQI ; and all € A (b) we have {t', x> <a, which shows that [ < M and
te . : a

hence M is open.
a

Thus the segment [a,b] is the union of two non-empty disjoint subsets
Ma M b which are both open in it. This being impossible, we must have (1.3).

, 1 k
Let us now show that for any finite seta ,...,a €C:

k .
n A Fe. (1.4

=



Assume that the fact holds for k= h —1 and consider the case k= h> 2 (for

hk
k=2 the fact has just been proved). Let A’ =.A(a), A’ (Zy=AE@NnA" Then,
by the above, A’(x) is non-empty for every xeC ,ie. (wre€) (JicA’) {tx> »a
and hence, all assumptions of the theorem are still folfilled when we replace
1 h-1
A by A’. Therefore, by the inductive assumption the sets A’ (a) ,..., Aa )
have a non-empty intersection, i.e. (1.4) holds for k — h.

The proof is complete.

We now apply the previous proposition to derive some of the most
strong theorems concerning separation properties of polyhedral convex sets.
It is convenient to begin with the following

LEMMA 1: [Let C be a polyhedral convex sel in R" such that @ ==
jrel: L0} c ja: (viel) T, = 0. Then there exists a vector t > 0 such that

(viel) fi >0 and (yxeC) <{f x> > 0.

Proof. Let C be defined by the rélation Aa ,5<_..b, where 4: R — R" is a linear

mapping and b e R™. Denote by Cé the cone 4w < 0. From the resolution
theorem for polyhedral convex sets we know that a scheme E of C may be chosen

so that EcCU . But it is easy to see that
fxe E: rL 0 b (viel T, = 04
Indeed, in the contrary case there would exist an xeE with x £ 0, and =, < 0 for
4
some i€l ; then 2€C, so that xeCA and taking an arbitrary aeC such that a < 0

we would have a + reC and a +x L0 a + xi < 0 for some iel, which conflicts
- 1

with the hypothesis.

Thus for every zeFE, either > 0 for at least one 7 — 1, .., nor z, = 0
I .
for all iel. Taking Ar_= (0, + ) for iel and AI': [0, + ), for je&I,
A=Ay X...x%x Ap, we then have

_ vzeE) (3tep) <t x> = 0. |
Indeed, if :cr_0> 0 we can take tj = + 1 (ieD), ti = 0 (igl U {iof ) and tfn > 0 large
enough ; if a:i =0 for all iel we can take an arbitrary feA such that ti =0 (i&l).
The Lemma now follows readily from Theorem 1. o _

THEOREM 9: If M; and M, are two polyhedral convex sefs in Rn such that
MynMy= §01%, and if My is a pointed cone (i.e. a cone M, such that r and —z

cannof belong both 1o M, unless.x = 0), then there exisls a hyperplane  separating
M, and M, and having no common point with M y other than 0.



Proof. Let M, be defined by Ax < 0, where 4 R R" is a linear mapping. Con-
sider the set

C = A(My =§yeRm; y = Ax for some a:eMzg.
Since M, is a polyhedral couvex set, it can be easily verified, by making use for
example of the resolution theorem, that € is also a polyhedral convex set. The
hypothesis My N Mp = { 0{ implies

fyeC:y<o} =10},

so that Lemma 1 applies with I = {1, ..., n}. We then obtain a vector t > 0-such
that (¢ y € C) <t, gD > 0. Setting t = A*l, so that {{, Az > = {t', x>, we have

WrxeM) {t,x>>0 and (yxe& M) (P, x> =<t Ax> < Oprovided x 50 -

(which implies Ax == 0 since M, is a pointed cone).

As one sees, the proof is quite simple. Another proof of this theorem may
be found in Rockafellar [8]. The next two propositions express deeper results and
have been established in Rubinshtein [9] by more involved methods and starfing
from a different definition of polyhedral convex sets.

THEOREM 3: Jf M, and M, are two polyhedral convex sefs in R" such that
My O M, c ¥y N Fy, where F, is a facet of M; with dimF; <n, then there exists a

hyperplane P separating My and M, such that PN )M, < F, (i = 1,2).

Proof. 1t suffices to show the existence of a separating hyperplane Py : {#,t> = o
such that P; N M, < F;. Indeed, by a similar argument, one could prove the exis-
tence of a separating hyperplane P, : {{2,&> = «, such that P, N M,  F,; then the
hyperplane P: {#! 4 t, &> = & + 2, would be the required one, assuming that

(fay>aforallze M, .

Let M, be defined by Az — b < 0, where A: R — R is a linear mapping
and b & R". Consider the polyhedral convex set

C = A(Mg)—bzsyERm! y = Ax — b for some x € M, }.

¢

Since Fy is a facet of M, there is a set J < {1, ..., m! such that [y is just the set
of all x € M; verifying

(dr — b), =0 el
The hypothesis M; N M, < Fy; means that
{yEC: g<L0fc fy. (wiely, =01
Therefore, by Lemma 1 a vector { 2 0 cun be found such that (y i € ) i > Oand
(Wge O {tyd> = 0. Setting £ = A*1, {{. h> = «, we have



(vxeM) <t,xd>= {t Axd £ <, bD=u

( yreM,) E, Ar —b>2 0, hence (', 2Dz «,
which shows that the hyperplane P: <{f, x> = « separates M; from M,. On the
other hand, since (yiel) t. > 0, since every xeM,~F; must verify (dr—¥0); < 0

for at least one iel, we can write
(yoeMF)) Kty = <t AT> < (L B> =«

Thus PN M; cFy , completing the proof.

COROLLARY : I/f My and M, are two polyhedr'al convex sets in R such that
MiNM, = @ and dim(M, 0 M) <n, if F, is the smallest facet of M, containing

M; N M, then there exists a hyperplane P separating My and M, such that P N M =
F, i=12);

Proof. By the preceding theorem, there exists a separating hyperplane
P =§a: : x> = a‘ such that PN M c F (i =1,2). Furthermore, under the con-
i !

ditions-of the carollary, P is a supporting plane for each set M,, M, since for
every:x € M, N M; one must have {{,&)> == «. Therefore, PN Ml_Ais a facet of MI,

and: hence PNM = F,
H i

n
. THEOREM 4 : If M, and M; are two polyhedral convex sels in R such that
M, N M, — @, then there exists a hyperplane P separating them strictly, ie. such
that the riormal vector t to P salisfies the relation :

sup § <taxd: e My} <inf {{ta): @€ Myl (1.5)

Proof. By an argument quite similar fo that used for the proof of Theorem 3,
one can prove the existence ef a vector { and a number Y such that (yx € M)
(Va're My) {{,x> <Y < <{ta» The relation (1.5) then follows, since a linear
function which is bounded from above (from below) on a polyhedral convex set
attains its maximum (minimum) on this set.

_ -

COROLLARY : If M, and M, are two partial polyhedral convex sets in R such
that My N M, = @, then there exists a hyperplane P’ separating them such that
PDM = & (1_12)

(A partial polvhedral convex set is a polyhedral convex set from w'hlch
some of the facets have been.removed).

This proposition can easily be deduced from Theorems 3 and 4, but can
also be established dir ectly by the same method as that used for the proof of the
previous resulfs.

Note that the above theorems and their proofs are still valid for polyhedral



i

convex sets in an arbitrary linear (not necessarily finite-dimensional) space, X,
i.e. for sets defined by inequalities of the form Az < b, where A is a linear

m m
mapping from X iato a finite-dimensional space R and be R. Indeed, in the

preceding argunments Theorem 1 was needed only io show the existence of some
vector ¢ in the range space of {he mapping 4, the required separating hyperplane
being given by the functional £ = A*¢,

Thus, Theorem 1 permits a straightforward derivation of most of the
special separation theorems for polyhedral convex sets. It could also be used to
deduce many known results on linear inequalities {Farkas’ lemma, Stiemke’s theorem,
Tucker’s theorem, strong complementary slackness theorem, and so on), as well as
a number of theorems of a combinatorial character. As an example, let us prove
the following

THEOREM 5: (Gallai [1]). Any (directed) graph confammg no directe_d
elementary path of length 2 k (k > 1) is k-colourable,
Proof. Let C be the set of all circulations in the given graph (a circulation

. It
is a vector x € R such that Sx = 0, where nis the number of arcs of the graph,
§ is the incidence-matrix). Then, as can be easily verified, the set E of all elemen-
tary cycles is a scheme for C. Let us set for every arc j: p; = =1, q; = k1, From

the assumptions of the Theorem, it follows that for every elementalsy cycle x

we have :
Zq N

feis .='.—1

That is, (yx € EY (@t €A).  <{t, x> > 0. Therefore, by Theorem 1 there exists a
te A such that (yxe C) {,x>> 0, hence such that (yxeC) {¢,2>=0,
since (0 is a subspace, Let ©»,==0 and for every vertex i=zx1 Ilet

v = minEZt‘ —_ Zt' g, where the mninimum is taken over the set M, of all
I I
jept  jep-

paths j from vertex 1 to vertex i and p.* (. 7) denotes the set of all ares of § orienled in

the running direction (in the converse direction) of . The condition t.g_'..z 0 for
: : I
every cycle x ensures that t]. =v; —uv, for every arc j going from vertex i, to
1 2 :

vertex i Therefore, if u; is the residue of [v; ] modulo k, then 0 < n, L k—1

andu -]- u for any two adjacent vertices i,, {; (here [v] denotes ihe greatest

mtegm not exceedlng v). This shows that we may assign to every vertexi the
colour « u, », completing the proof.



2. THE GENERAL MINIMAX THEOREM

A common feature to all minimax theorems known up to the present is that
they are based upon a fixed point principle, or a separation theorem, or some
other equivalent proposition. Moreover they all require convexity or quasiconvexity
assumptions,- which in some applications appear to be too siringent.

Recently, the author has obtained in [5] a new minimax theorem using
topological assumptions weaker than traditional algebraic ones aund including as
special cases most of the results known in this field. In this section we shall
present an improved version of that result, the essential improvements concerning
the assumptions and some points in the proof (which appeals neither to the
fixed point principle nor to the separation theorem).

Let us consider a real function F: C x D — R1 , Where C, D are subsets
of two topological Hausdorff spaces X, Y respectively. For any finite system

F1 k N
', ...,x" &C and for any real « we define

D (x' ...,xk)zgyef):F(xi,y)zrx,i=1....,k2_

(in games-theoretical terminology this is the set of all strategies which gnarantee
to the second player a pay-off not less than «, if the first player chooses one

1 k
of the slrategies = ,...,2 ).

We shall say that the function F has property (P_) on C x D if for any finite

1 ko '
systemx, ...,z € Cand for any pair a, b € € such that D'a (@ N D'a ) =2

1 k : TR
— where D'u (x) stands for Da (@ ,...,x ,x) and the bar denotes the topological

closure operation — there exists a continuous mapping u: [0,1] — C verifying
u (0) =a, u (1) = b such that for every interval [s,- 5;] <[0.1] and every s € [30:31]
we have '

1) either D @) « D (u(s)) 2.1y
- 1 [ 3 4]

2 or - D @) c D @e)) @.2)

Example. If X, Y are linear topoiogical spaces, if C, D are convex subsets of

X,Yresp.,ifthese:tsDm(..fr:)= yeD.:F(:c,y)>m:andCa('y)=z x € C:

F,ypy <« i are convex for all x € € and all y € D, then F has property (P;z)
on C x ’D.

It should be noticed, however, that the class of functions having property
(Pa) is larger than the class of functions quasiconvex in # € € and quasiconcave

iny € D,

[N



THEOREM 6 : Assume that: 1) the set D is compact ; 2) there exisls a non -
decreasing sequence «_such that e, — Y, where :

Y = inf sup F(x, 1) . 2.3)
_ xeC yeD
and the function ¥ has property (P, n) on C % D for every n; 3} F (x,y) is upper

semi-confinuous in y for every fixed x & C; either of the following conditions holds :
a) «, < Y for every n and F(x, y) is lower semi-continuous in x for every fived

yeD;b) Fzy is upber semi-continuous in x for every fixed y € D. Then

inf sup Flr,y) = sup inf F(x, 7. (2.4)
xzeC yeD yeD «xeC

Proof. The prodf is similar to that of Theorem 1, although is more involved.
" 1. We shall first show that for every pair a, b € C and every n :
D, (§ N D, &) + @ | (2.5)

. Assume the -éontrary, that this does net hold for some a, b & € and some .

" For the sake of simplicity let w, =a, so that we have

D_(a) N D_(b) = 2. | (2.6)

Observe that, D being compact, Y = inf max Flz,y) , and so for every
' xeC yeD

z & C the set Da (x) is non-empty. Further, Da (x) is closed, because F (x, p) is

upper semi-continuous in' y by assumption 3). Now, let u be the continuous mapping
that corresponds to the pair a, b according to property (Pcx ). Then for every

s € [0,1] one of the following alternatives holds but not both :
(1) Da I(u ) < Da (@) ; (ii) Da ) c Da () I
Denote by M_ (M, , resp.) the set of all s € [0,1] for which (i) ((ii), resp.)-holds.
ObviOIISIy, 0e Ma ,1e Mb s Ma U Mb = [0,1] and, according to (2.1) and (2.2) , for
every s € [0,1]: if s€ M then [05] € M_,if s € M then [s,1] C M, .
Let 5 = sup M, = inf M, and suppose, for example, sE M_ . We shall show

that (2.6) leads to a contradiction.

Assume first that condition 3a) holds. Since s € Ma , we have Da (u(s)) c

Du (@), hence F (u (5), 1) < « for every y & Dm (@). From this and the relation

a <Y <K su})) Fu(5),y) it follows that a point y € D o (@ must exist such that
ye



F@(s),y)>a Then, F (x, 1) being lower semi-continuous in z, thére exists a
neighbourhood V of u (s) such that
wxeV)  F@p>a
: -1 -
Because of the continuity of u the set I = u (V) is a neighbourhood of 5 in [0,1],
and for all s € I we have F (#(s), )) >« , ie. [ € D_(u (s)) and hence D_(z (5))

c Du (a) since§ = Da (@). Thus s Ma for all s in a neighbourhood I of E, which

conflicts with s — inf M, .

It remains to consider the case where 3b) holds. Since s € M, , we have

D (u (s)) N Da(b) =@, ie.

wyeD ) FuGs),y <a.

Using the upper semi-continuity of F (v, y) in x, we can find for every fixed y €

Da (b) a neighbourhood Vy of u (5) such that

(Vre Vy) F,y) < a.
-1 - -1
Since u (Vy) is a neighbourhood of s , two numberss;, =s; () € u (Vy)

(i = 0,1) exist such that Iy =[5, 5,] is still a neighbourhood of s in [0,1). We have
Fu (5;) < e (i = 0,1)and hence, using the upper semi-continuvity of F (z, g0 in g,
we can find for each { = 0,1 a neighbourhood W, () of y satisfying (vy' € W[. ()
Fiu (si )y ¥ < = Then Wy =Wy N W () will be a neighbourhood of y such
that (y ' € Wy Yy F(u (Si Ly)y <o, le pé& Da (u(s;)) for i =0,1. Therefore, accor-
ding to (2.1) and (2.2), " € D (u () ) for every s € Iy and we have thus associated
to every gy & DG {b) a neighbourhood Wy and an interval Iy such that -

WWsel vy eW) Fu gy <a

-Since Da (b) is a closed subset of the compact set D, it is itself coinpact and so there
exists a finite subset Q of D“ (b) such that the family 3 Wy ,ye @ i cOvers Da ).

Ifs e I=n§Iy: y e Qg andif y € Dq(b), then y & Wy, for some ' € ) and
hence F (u (s), y) < « . Therefore, Da u(s)) Da (a) for every s € I, so that
s

I < M_, which again conflicts with s = inf M, . This proves (25).



11, Fixing an arbitrary natural number n, we now show that for every finite

1 k
system @ ,..., a € C we have

k .
ﬂ D, (a) + @. 2.7

I=

For k = 2 this has just been proved. Assuming it to hold for k = h — 1, let us con-
h
sider the cgse k = h. Let D'=D_  (a ) , D'an(;c) =D N D“n(x).
F ¢ .

From the above argument it follows that for every in > n we have D, (ah) ND, (@)
m nt
/

== @ , whatever may be = & C, But D (a )y & D {a ) because m > nimplies
m n

h
a > =, . Therefore, for every x € C we have D (a) N D (%) # @, le. (Qy €

n m

Dy F (z, ) = % . This means that inf sup F (z, y) > % and hence, by letting
relC yebr

m > e, we getinf sup F (x, §) = Y. It is then easily verified that all assumptions
xel yelr
of Theorem 6 still hold when D is replaced by [r. Consequently, by the inductive
h—1 ' k _ '
assumption, n D’u (al) == @, thatis, n D (al) + o .
i=1 =1 %,

n

Thus' we have shown that the fémily 3 Da @,red g has the finite inter-
n

section property. Since evefy Da (x) is a nonuempty closed subset of the compact
n

set D, the family must have a non-empty intersection. Let yn be a common element

to all Da (), « € G, and let y be a cluster poiﬁt of the sequence g yn g C D, Then
n
- n
yeD F@,y)= x , and using the upper semi-continunity of F (a:,"-;,i)'_in ¥,y weg
conclude that F (x, y) > Y for every fix;ad xz € C, Thus sup inf F (z,y) > Y !
yeD xeC

Since the converse inequality is obvious, the proof is complete. - TJL 4 ;&/

Remark, One of the first «topologicaly minimax theorems have been proved‘
by Wu Wen-tzun [11]. However the result of Wu Wen-tzun does not inclide-entirety’



those of Nikaido [7] and Sion [10]. It is not hard to see that the class of functions
F (z, y) having property (P, ) on C x D contains as a proper subclass the class of
functions « - connected in the sense of our paper [5] and hence, as was shown in
[5], it also contains as a proper subclass the class of functions strongly connected in
the sense of Wu Wen-tzun in [11}. Therefore Theorem 6 includes as special cases
all the main results of Nikaido |7}, Sion [10], Wu Wen-tzun [11], as well as Theo-

rems 1 and 2 in [5].

3. THE EIDELHEIT-MAZUR SEPARATION THEOREM AS A COROLLARY
| ~ OF THE MINIMAX THEOREM

In this section we shall show that, starting from minimax theorems, it is
possible to obtain in a simple way even the most general tesult on the separation
of convex sets. More specifically, we shall provide a new proof of the Eidelheit-
Mazur theorem, based upon the following minimax propousition :

Let C, D be two convex sets in two real linear topological spaces X, ¥ resp.
If D is compact and F (x, ) is a continuous bilinear function on C x D, then the
mmimax equality (2.4) holds. ' T

(This is only a special case of Theorem 6 and could be established directly
by an argument as simple as that used for Theorem 1).

We shall first prove the following

LEMMA 9 : Let A be a closed convex set in a real locally convex space X. If A
does not contain the origin O, then there exists a continuous linear functional t such
that Wx e 4) <t x> 2 1. :
Proof. Since 0I¢ Aand A is closed, one can find a convex bhalanced neigh-
bourhbod Vof 0 such that Vand C = 4 + V‘are disjoint. Let ;ei, iel} be an
algebraic basis of the space X, such that g ei, iel{ ¢ Vand let W be the abso-
lutely convex huﬂ of the set | ei, iell,ie. W isthe set of all finite linear'
combinations in ¢ WithVZ[in < 1. Then W is a convex, balanced, ahsorbing
subset of V, and if X* denotes the algebraic dual of X, then the set D of all te X=*
for which sup It x>l:ze W { < 1is convex and compact in the topology
c-;\'(.X*;"," X)‘ For every 1: € C let us define in the following way an element f € D '

such that (¢ 2 > >1:ifx= Z N ¢ (with completely defined »;), then tis the



FY

linear function such that (¢, el> = sgn A, for every ie l. Clearly for every
g = Z p,ie'with Z |pi|glwehave|<t,g>|g,z IW;1< 1, so0 that,

actually, fe D; on the ofher, hand, we must have x> = Z R 1,

otherwise x € W, conflicting w1th the hypothesis x € €. Thus (y x € ) Qte D
{t x> > 1. Hence, by the minimax theorem, (3¢¢& Dyivzxel {txzd>x>1.
Since int C s @, the linear functional ¢ must be continuous and so the lemma is
proved.

COROLLARY. Let A be a convex set in a real locally convex space X. If 0 & A
and int A== @, then there exists a continuous linear functional t == 0 such that
vrxed <tzxd> >0 '

- Proof. Let a be an interior point of A. For every £ > 0 we must have

—ta & A (the closure of 4), for otherwise from the convexity of A it would follow
that 0 € int A. Therefore, 0 € e a + A and by the previous lemma there is a linear
functional te such that (yxega + ) < te , £ > 2 1. Now, using the fact that

aeint A we can choose a convex balanced neighbourhood V of 0 such that
a+V Cea+ A for all £ > 0 small enough. Then ¢ ts, a> 2z 1 and setting

u () = {fg» > we haveu(a) = 1, (vereea+ u (@) > 0. For

1
{toa>
every x € V,since 2 + a € ¢ @ + 4, we have u, {r+a) = 0, hence u @) us(a)

= —1; on the other hand, since — =z ev, u (— :i:) > — 1, hence ug < 1.

Thus | ug (x) 1 < 1, so that u, belongs to the set V= fueX*:lu (@)1 L1 for
allz € V}§. Since Vs compact in the topology o(X*, X), the sequence
{ua »8— 0 lhas a cluster point t and we have clearly {t,a> = 1, (yz € A)

{t,x> > 0. As previously, the continuify of the functional ¢ is ensured by the
fact that int A 5+ @. :

The Eidelheit-Mazur separation theorem now follows readily :

If two convex sets A, Bin a real locally convex space X are disjoint and such
that int A == @, then there exists a continuous linear functional t == 0 such that

vzed)lyyeB) <(HLzxd> =2 {ty).

Indeed, since 0 ¢ A — B and int (4 — B) = @ , there exists a continuous
linear functional t == 0 such that (yxe 4) (yye B) (tLx—yd> > 0.
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