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Intreduetion.

It is now common knowledge that the maximum principle, like many other
optimality necessary conditions, is based upon the separation theorem for convex
sets. Nevertheless, the specific features of oplimal conirol problems make the
application of the separation theorem a raither involved process. For this reason,
although elementary proofs are known for cases in which more or less stringent
conditions are imposed upon the data, the foundation of the maximum principle
under the most general hypotheses usually requires a fairly elaborate machinery
(see e.g. the proofs given in |1] and [4].)

The purpose of the present paper is to provide an approach which would
enable us to simplily substantially the derivation of the maximum principle and
at the same time, to relax, without cxira cost, some assumplions generally made
in standard optimal control problems. In section 1 we shall establish a general
multiplier rule which seems to be well adepied to control problems. In section 2
we shall show that the previous theorem can be applied fo every control system
whose dynamics is described by an cquation of the form

2(f) = fx (), ), fe F,

provided some very general conditions upon the family F are satisfied. As a
consequence of this result we shall oblain a new simple proof of the main
theorem in [2] concerning variational scis of differential equations. The last
section 3 is devoted to the derivation of the maximum principle for problems
with boundary conditions more general than in the usual setlting.

The paper as a whole could be considered a simple, self-contained presenta-
tion of the maximum principle under gene'ral hypotheses. Apart [rom Gronwall’s
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lemma®* which will be used in gection 2, we do not assume, as & prerequisite for
reading the paper, any special knowledge of the theory of difTerential equations.
In contrast, theorems on the dependence ol solutions of differential equations
with respect to initial conditions and parameters will be obtained as by-products
in (he course of the proof.

1. An abstract maximum principle.

Consider the sysiem

(x,0)e AXC, E(xgp=0, Glx)sM (N
where A is an open subset of a Banach space X, € a subset of a linear normed
space Q, K: 4 X 0— X, G 4 — R* two mappings and M is a closed convex
cone in R*.

Let (T, q) be a given solution of (1) and assume that:

(I) For every [inite-dimensional linear manifold L in () passing through q
the restriction of K lo 4 % L is Fréchet differentiable al (r. ) and its partial
derivative EI:: X — X at this poinl, wilh respeet lo x, is a bijection (with
inverse K_7").

‘1' .

(IT) There exist a convex set V in 0, containing ¢ as an intérnal point, and a
continuous mapping H: ¥ — .1 such that

_ T =H{@., (vgeV)y KH(g,q)=10 (2}

(1IT) There cxists a convex et €’ in (, containing 0 and having the following
property: to every triple (S, ¢, n), where § = Lg% @ gt ] = € (h < k)™, ¢
and n are two positive numbers such that 0 s < &, with & depending possibly
on S one can associate a continuous mapping £: S — €~V satisfying

(vqe$)y Ne(@—q—cqgh<en (3)

(IV) 6 is continuous and there exists a coniinuous mapping ' X — Rk
which is an M-derivative of G at & in the following sense : &’ is M-convex*** and
to every pair (¥, W), where v € X and Wis a ball in R* (centered at 0), one can
associate a number & > 0 such that

*) This lemma (which is casy to prove) reads as follows: if g, =: [0.1] — R! are
continuous, if ¢: [0. 1] — R is integrable, and if
{
ety go<{lo®lywatlzol,
n
{ 1
then (% telo, 1Dy < | (0| —}-C‘><S P ()i 2(s) | ds with c:expj L (s} | ds,
V] (0]
**¥) By [E] we denote the convex hull of the set E.
*%%y 7 ig said 1o bhe M-convex if For all 2. € Xand {8 (0 1
Gt (19 ) €1 @H + 1~ 060D + U



fr—x|<<3,0<e<<d=26G@ +e2)—G(X)ec (@@ +W)+M @

Let D denote the set of all x € A such that K(x, g) = 0 for some ¢ € C
(which may depend on 2). We say that the system (1) is critical if

0 & int{(G(D) — M) ()

THEOREM 1. Under assumptions (1) through (IV), if the system (1) is crn‘zcal
then there exists a nonzero veclor N\ € M* such that

(Vge—C) ANGK ™ 1_ Kq.q <0 ()
NG (%) =0, . (6)

where M* is the conjugate of M, i.e. the cone formed by all vectors A & R¥
such that <A, y> > 0 for all y € M, K and K are the partial derivatives of K
at(;c, 7).

We shall first prove a number of auxiliary propositions.

Lemma 1.1, If & is an M-derivative of ¢ at x in the sense defined in (IV)
and if G’ is continuous, then to every pair (I, W) where Z is a compact set in X

and W is a hall in R¥, one can associate a number & > Osuch that (4) bolds
forall x ¢ =.

Proof. By definition of an M-derivative, for every x € X there -is a number
& (x) > 0 such that G (x +¢2) — 6@ e (6" (@) + Yo W)+ M whenever
Iz — 21 <8(); 0 <e < 8(x). Because of the continuity of G° we can
suppose & (z) to be so small that G’(z) € 6’ (x) + 12 W whé}lever lz — x|

<C ' 8(x). But I being compact there exists a finite set {2, { € I} such that
can be covered by the balls of centers z! and radii 1, & (zly ie I Let d =
min {Y, & (zf): lel}. Then for every xe X there is ie/ such that § x— !y <
Y, & (’ci) and hence ¢’ (x) e G’(:ci) + Yy W.So if | 2 — x ) <Td,0<C e <9, then
bz—a < lz—z)+Jx—a ) < 8(x') and we have G + e2) — G(x) €
c@@H+ W)+ M Ce(G @+ W)+ M

Lemma 1.2, If * is an M-derivative of G at x = H(q) and if A’ is a {0} deri-
vative of H at q then G’H’ is an M-derivative of GH al q.

Proof . Since H’ is'a {0}-derivative of H, H’ is an affine mapping and hence
G’H® is an M-convexrmapping. Now, if ¢ € Q and W is a ball in R¥, then there
is & >0 such that G{x +¢cz2) — G(x) € ¢ (G°(H(g) + W) + M whenever
1 z— H(q) } < 8,0 <e<4. On the other hand, there is 7 > 0 such that

1 H(g 4 ¢p) — H(g)— cH(g) 1 <<ec & whenever lp -~ gf < m,0 < e <1, and
we may always suppose q < 8. Then, for § p — ¢ F <<%, 0 <<= <, we have

GH(g + <p) — GH @) € < (GH* (@) + W) + M,
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Given a set E in R¥, we shall say that a convex set E’ in R* is a convex
approximation of E (at 0) il to every lriple (P, ¢, W), where P is a h-simplex in
E'(h << k), 0 <z <8, with & depending possibly on P, and W is a ball in R¥
one can associate an upper semi-continuous mapping {: P — 2% such that for
every y € P the set £ () n =(y + W) is convex and nonempiy.

Lemma 1. 3. Let G+ V — R, G* :() — R¥ be two mappings. If (II) holds, if -

Eis continuous,ﬁé(*q_) e M, and if for every [inite-dimensional subspace I’ of

( the restriction of G* to L’ is continuous and is an M-derivative of the restrie.

tion of G to L = L’ + g, then the set E' = E(q_) + G {C’) — M is a convex ap-

proximation of E = G(C N V) — M.
Proof. Consider a h-simplex P = [yo, ey ]in B (A< k) and a ball W

in R Select g’ € €’ such that 7 e E@ —+ G‘Gi) — M and let & be the convex

hull of ¢°, . .., ¢". From Lemma 1.1 (applied to the resrictions of G and G to
L, I’ = L —7q vesp., where L is the linear manifold through ¢ and S), there is
a number & > 0 such that

geS, 0<e<dG +cqeC @ +:C @+ W) + M
Since ¢ is an internal point of V, one can assume  to be so small that ¢ + &S

V. Then, using the continunity of G and the compactness of ¢ - & 5, one
can find for every ¢ a number 1 = 7(g) > 0 such that

qe8qeV,0<: TS, !fq’—(3+s_q)|!<en=>5(q’)e§(6+sq)+%w.

On the other hand, using condition (IlI) and assuming, accordingly, & to be
sufficiently small, one can associate to ¢, 1 a continuous mapping £: § —
C N V satisfying (3). Then for every ¢ ¢ § we have

TE@eCl +o)+ S W G+ @@+ W) + M
Let us define for every y ¢ Pwithy = 2 tl.yi, t; =0,z { = 1:
() == GEE 1) —M = E. @
Then, noting that 6 ($4g) e ZtF Y+ M Sty —C(g) + M =y —
5(!}) + M (because-@ is M-convex), we get from the above
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GEEg) se (- W)+ —2) 6 @+4 T eg+W)-+ I, and hence, £ (1) A
¢(y -~ W) == % This proves the Lemma, since the upper semi-continuity of ¢ is
ensured by the continuity of G and &,

Lemma 1.4. ¥ E’is a convex approximation of E, then 0 ¢ int E’ implies
0 g int E.

Proof. Assume 0 < int E’ and let P be a k-simplex in E* containing 0 in its
interior, W a ball such that W — W  P. Then there exisl ¢ > 0 and a mapping

t: P— 28 with the properties specified in the delinition of a convex approxima-
tion. Replacing if necessary { (y) by &y} n =(y + W), we can always assume
the set £(y) to be convex for every y € P. Let us consider now an arbitrary

element w of W and let us define a mapping 7 : P — 2P by setting (i) = P n

(y + w — _i,g(g))_ Then x (y) is nonempty because from {(y)ne (y 4+ W)=

1 - s o
we have 4 - w’ € = { (y) for some w’ & W and, consequently, u € g+ w —

[

—-L () withu=w-—w’ e W-— W = P. Furthermore, = (y) is convex and = is

upper semi-continuous, because il u € % (yM), u"t —u°, y' — y° then yg° + w —
1
—ute . £{y™ and so, by the upper semi-continuity of {,¢° 4 w — u’ e

_1; t(y°), which meaps u° € x (y°). Hence, by Kakutani’s fixed point theorem,

<

one can find an element y ¢ P such that y +w — y ¢ 1 E(y), i e swe L(Y)

- E. Thus, s W — E, proving that 0 € int E.

Proof of Theorem 1. If (1), () hold, then, according to the implicit function
theorem, for every finite-dimensional linear manifold L i in () passing through
g, the restriction of H to V n L has a derivalive equal to

H’ = _E—l'ffq;L.__~(?__>X_
Morever, if L,, L, are two such manifolds and H}, H) are ‘the corresponding
derivatives, then H}, H, must agree on Ly —¢) N (L, — ), because of the
uniqueness of the I‘1echet derivative. Thelefore, one can speak of a linear
mapping H’ : Q — X defined on all of Q.

But it is obvious that the restriction of B’ to any L — ¢ is a {0} - derivative
of the restriction of H to L, at point g, and hence, according to Lemma 1.2,

the festricﬁon of G = G’H to L— Eis an M -derivative of the restriction of

G=GHtoLat c} Since M’ is linear, itis continuous on f—gq. Therefore, by Lem-
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ma 1.3 the set G(x) 4- & H* (C°) — M is a convex approximation of
GH(C ~ V)— M. Now, il system (1) is critical, then 0 & int (GH (C ~ V) — M),
because H(C N V) 7= D. Hence, by Lemma 14
0 € int(G () - GH* (L)Y — M),
and, since Lhe lailer set is convex (because ’f’ is M-convex), there is by the
separation theorem a nonzero vector A sveh that
FageC)CryeM) < AGRER) +GH (@ —g><0.

This implies by a standard avgument A e M* and < A, G(x) - GH’ (g) > <0 for
allg € €. Setting ¢ = 0, we have ,\ G (x)<70, hence (§) follows, because the converse
inequalily is implied by G (z) € M. Since H' = —R’: K’q, we thus obtain (5). Q. E. D.

2. Variational sets of differential equations.

We now show that the basic assumptions (I), (IT), (IlI) ol section 1 are
satislied for a large class ol optimal control problems.

Let @ be a bounded open set in R", We shall denote by B (2, R") the linear
space of all mappings f (o, #) from Q x [0,1] into R™ suchthal f (s, #) is continu-
gusly differentiable with respect to o, f(s,{) and the matrix f_{o,{) of first
partial derivatives of f (o, t) with respect to ¢ are measurable with respectto i,
and there exists for eachf an integrable function m(¢) satisfying

(Voeld) (Wel0l]) (s, 01 + {folo ) <<m() (8)
In this space two elements f%, f2 are regarded as being equivalent if for every
o e Q, fi{s, 1) = f2(s, {) for almost all f e [0,1]. It is easily seen that B(Q, R™)is
a normed space, with

. t,'l
Ifi=sup il ff(s, hdl} :6eQ,0, 0" e|01]L (9)
i,
Let Q= R™ X B(Q, k"), X =% the Banach space of continuous mappings
x(1): [0,1] ~> R", with the usnal norm Jx} = max{ |2x()]|:0 <! K1}

Let F be a given set in B(Q, R™). We shall be concerned with the system
;
() e d x €K@ % 2@ —w—{fle), Hds =0 (10)

a
where .1 is the set of all x(.) € €% such thai (% ) x(H) e Q € = Q X F, the
set of all ¢ = (w,. f) with w ¢ Q, f & F.
Following Halkin and Neustadt [2], we shall say that the set F is
convex-under-switching il : whenever 1, f*> ¢ F and 0 € (0, 1), then Lo 9}]“ -+
—]-%(B 1]f2 € F, where % is the characteristic funclion of E, i. e. x&; (H=1ifteE

and %g(f) = 0ift € E,
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Let (x,q) = (:c‘,“(w_,—fﬂ)') be a solution of (10), so that

dﬁ—g?) = (@), ) for almost all te{0,1], x (0)

THEOREM 2. Whaiever may be F, conditions (I} and (11} are always satisfied
for the system (10). If F is convex-under-switching, condition (IIl) is satisfied as well.

u,

i

The proof of this theorem will proceed in several steps.

I. First let us show that condition (I) is satisfied. Consider an arbitrary
finite-dimensional linear manifold Z in (, passing through ¢ = (w, f). Since
K(z, q) is linear in g, the resiriction of K to X X L has at each point (z, ¢) a
partial derivative, with respect to ¢, equal to

t
K (), 9): 8 g = (8w, 8f)1—> —buw —MS &f(x(s),s) ds. (11)

o

Further, a shori computation yields
]

P §
K @98z —{7,@@.98() & (12)

It is not hard to see that both Kq (x,q) and K_(x, q) depend continuously on

(z, ) € € x L. Indeed, if {¢! = (&, {1, i = 1,..., m} is a basis of L — g, then
we have, ¢ = Zh.q’,

K (w, q) g— K (€, Q). gh < 2| A lJ' I f’(:c(s) 5) — FL(Z (8),9) | ds

and an analogous argument holds for K_. It follows then from a well known

theorem of analysis (see e. g. [5]), that the restriction of K to A X L is continuou-
sly differentiable. To complete the proof of (I) it remains thus to establish the
following

Lemma 2. 1. The mapping

H
K, = K&O D0~y — [fo@), 9y @)ds oy

is a bijection from ™ onto itself and we have

1 20120+ 10 gr—* ) Fo @) 5).2(5) ds, (14)

where I' () 1si..}he matrix-valued function that satisfies the system

Ity = fox®,0.L (@, T (0)= the identity. A (15)
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Proof. For every given z {.) € €', there exists an y{.) satisfying the equation

Kp.q() = z{.), namely
t
gy = z()) + T (O[T .F, @ () ). 2(s) ds,

Indeed, we have

t

Vo @) ) T @I @) Fo @@ 0).2(x) dr) ds =

[

1 s

= 5 I'(s) (Sl““1 (7) fol® (D). 2(1) d 7) ds =

H _ - ¢ o
=TI @) fo@ 6,92 @) ds — [T @I 0, G e) 9] 2() ds

1]

t i
=TT @ F @926 ds = F,E () 9-26) ds
hence ‘

t
\ fo @99 y@ ds=y©O—=z(),

[+
i.e. y(.)is a solution of the equation K y(.) = z(.). This sélution is unique,

since by Gronwall’s lemma the equality K; g ()=0, ie.
) ; : :

y () — STFG(;(S),S) y(s) ds =0

implies y(f) = 0. Thus, Lemma 2.1, and hence, Gondition (I), hoids.

II. Let us now proceed with Condition (II). To prove this condition is satis-
fied, we need only establish the following proposition on the dependence on
parameters of solutions of differential equations.

For every a0 lel §, denote the set of all g = (0, f) € QX B (Q, BT
such that )

o -] < q, A (16)

¢ - ‘ —_
(wre® ((Ff@n—F@hl+if,@)~f@od<a A
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Lemma 2. 2. If o is sufficiently small, then for every q € (., the
equation (10) has an unique solution x {) = H(g), and the mapping N: (, - 4

is continuous.’

Proof. Consider the mapping J : €@ x § — €@ defined by

{

T p=T@{r (s)[:c(s) —w—{fem, 0. dr]ds +

1]

{

At S f (x(s),s) ds (18)

It is easy to see that for every fixed ¢:
E(@(), =0 a()=J4((),q).
Indeed, if x(.) = J(2(.},q), then

o :
T () { T s) yts) ds - 5 =0

[}

t
with g(f) = (1) — o — g f(x(s),s) ds. Applying Gronwall’s lemma yields

1)

[ T2 (Hy () | = 0,hence y(7) — 0 for all ¢ Gonversely, if K(x(.},¢)=0, then
obviously, @ (.} == J(x(.), q).
Also observe that J can bhe rewritten as

i
J(x(),q) =T S C—i(s) Fz(s),s) — F. (@(8),8) (x() —w)ds+w  (19)

Indeed, integrating by parts yields

{ § !
\ I () ((fem.odr)ds=— [ T () f(ls) . 9) ds +

<] [c} Q

1 . .
+ T @) { fle(s), 9 ds,

]

hence
{ {
T@E(), =T 0T @@ — o)y ds + T O)T @ Ff @ (69 ds
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Hence, for every #:

1@ @ —201 = 1J@®,9-IE@® )<

ST EO.-J@EO,PI+idJ@@H.Q—IE&E W DI <
s ‘

<An@iod+rn@aegNd+earyB+d ()

Now we observe that, because of (8) and'the continuity of: f. (z, ) with res-
pect to x, A

1 . ‘
Slﬂ @ ) 4+ h,8) - Fy(@(s)s) ds—~0ask —0.

Consequently, one can take ¢ € (0,1) to be so small that whenever || x— x]l =
< ewe have:

x()eASif @ &9 - F @6 S)Eds<'~;T. _- (26)

Let a> 0 be sufflclently small to ensure 8« (v + vB + 1) < ¢. Then for every

x (.) € Ag, g € Q, we can write, according to (22) (23) (24) (25):
1 @) -Zi<y hz=7 | (3a+ ) Fet DS

<we(pmt ——+ ) <,
‘ Y
which means that J maps 4¢ X Q. into As On the other hand, from (22) (23)
(24) we get for any ;n‘( » x () € 4; and ¢ € Qs

IJ @ 9—J@PI< ynfmm%%+fr)<iuf~Mh

which is the desired relation (21).

Thus, provided « and ¢ be small enough, J (4c X Q.) T 4¢ and (21) holds
for every fixed q € Q.. If now we can show that for every fixed x € Ag the
mapping ¢ 1> J (z, ¢).is continuous on Q., then by a well known result (see e. g.
[5], theorem 46;), the mapping J has for each q € Q, an unique fixed pointz €Ag,
such that = (.) = H (q), where H: (, ~ Agis a: continnous mapplng, and the
Lemma will be proved.

Therefore, the only thing that remains to be shown is that for every fixed
x(. ) & A the mapping J (z,.): Q. 1_,3(10 is contmuous But we have obviouslys
for any ¢, ¢* € Q.

LK (@ q) — K @ I <] o — o+ 1f =f 1,
go that the mapping q 1— K (x, gq)is contmuous Since from (18) (14) (20) we can
easily deduce

I (= (. ),Q)—x( )~ K, -K@(. ),Q)a
jhé continuity of the mapplng gl J (:c, q) follows.
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Lemma 2.2 shows that Condition (fI) holds with V — = g, for o > 0 sufficiently

small (the fact that Q. is convex and contains g = (w, f) as an iniernal point is
‘obvious).

lil, Finally, let us examine when Condition (III) is satisfied.

We shall say that the set F is gquasiconvex if for every positive number «
and for every integer k 2> 1 Condition (lII) holds with V = Q,, € =[Q x F] —7q,
where [Q X F] is the convex hull of Q x F. '

The following property is an immediate consequence of the definition of
quasiconvexity and the hypothesis that Q is open in R".

The set F is quasicon\k{ex if and only if for every o > 0 and every simplex

= [f* ,....,fh] with vertices f%,..., fin F — f there exists a ‘positive number &
such that to every pair(e,n), where 0 <Ce < 8, 71 >> 0 one can associate a continuous
‘mapping 0: T — F, (the set of all elements of F satisfying (17)) such that

#feET He () —f—ef 1<<en. (@7

‘Thus, to prove the second part of Theorem 2, it suffices to show that every
convex - under - switching set F is quasiconvex.

Before doing this, we shall establish a fact, the geometric meaning of which
is rather simple. -

Let ¢° ,..., g be given functions of {, integrable on [0, 1] and let P" =4{h=
=g by )R >0, 28, = 1}. With every A € P and every partition ; of

the interval [0, 1] into subintervals A,,..., Am (m = m (x)) we associate a

funectiong :::

in the following way, We divideeach A (s=1,..., m) into h 4 1
S
small intervals A, (i =0, .., &) in such a m.nner that | Agl=h | A,

(| A pisthe length of A)and we define
9@ =Z%y ().9i ().

51 si
For any two parlitions ® = {A tand2’={A_,} we write ® < x’ whenever

each L\s is contained in some A g

Lemma 2. 3. Given 'any system g°,..., gh and any ¢ > 0 there exisisa partifion
=’ such that for all ® <{x* we have

. g
(yrePh) gl’,g,__ (g ) — gl ) at] < 28)

Proof. Assume first that each function gi (1) is piece‘wiée constant and select
a partition 7’ = {A_,} so small that for all {, s’

(Vteint A ) gt (f) = const = Yis’ (29)
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Ig(f)ldt—i'k’.”i\’l< 30
- SAS 4(h+1) (30)
Hr = {A }is a partltlon such that ® < x’, then, since every A is contamed
in some As,, we have, from (29) and (30), for every & & P#:
h i A
S E Ag' () — gl () di =0,
AS =0 . :
Ehg' @) —gn® ] dt < 22N, Ly de <=,
SASI PG 9,:()1 Saslg @1 dt <
whence (28) follows. .
In the general case, since each g' is integrable, we can approximate it by

& piecewise constant functlon g " such that

S ld@O~g W a <<,
o . _ 3

’n
-

If =’ is a partition such that for all <<

sup S & A O —gheya <
ngi, t2§1 ¢ i=0

" then it Will be the desired partition for g ,eo- > gt as can be easily verified.

Note that the’previous lemma is in fact a simplified version of the Approxi-
mation Lemma in [1] and relies on the simple idea that A a.b = a.A b.”

We now come to the closing part of the proof of Theorem 2.
Lemma 2.4. If the set F is convex-under-switching, it is quasiconvex.

Proof. Let « > 0and T = [f1 f"] be given (fi F — T) From .. the

definition of % (@, R™) there exists an mtegrahle function m(f) such that for
allee @, t €0, 13:

1Fo, )1 4+ | Folo, D) 1 < m(t),
i ) —Fle) ) + 1 fi(o ) —F (5,01 < m(t), i=1.., h
Let d > 0 be¢ so small that : _ -
mesE<5=>S m() dt < a E (31)
and consider any pair (s, m), where 0 <T e < 8,1 > 0.
From (8) and the continuity of each function fi (o, 1) with reSpect' to o, it
follows that each integral
. :
{fio t) dt, i =1,k
. 0
is a continuous function of o. Since Q is a compact set, there exists a finite' set

cl , 6" € Q and a number p > O-such that
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1
= €816 —afi<ps | 1 (.0 —F ol 0 di < o (52
Let f° = 0. By Lemma 2.3 there exists a parlition =={As} of the interval

10,17 such that we have for all j=1,...,r:
* . t!!-
"~ ph : & [ ] A 1
(v e P?) sup ]S(Z M )= fz (o7 Ddl| <5 . (33
i=0

Ogtv:tu\{‘-l
f

where _
fa @) = tay O - Flle).

If 5 €Q, then |s—a/| < p for some j and by (32) we have
3 ' A o
--Slffi(aaf)—-—_fi“ .0 ]dt < X glf‘(a,f)—f’ (cf,t)]dt<—;},
o i=1 a : . :

so that, taking (32) and (33) into account, we can write for any £, #”:

£ _ il
[S (.g‘.oki_fi(a,t)—fi'.(c,t))dtl\{ glk,-g ]fi(c},t)_-ff(gf,t)ldt—{—
P =y
e’ . ”
| enre oo na | e o—freo)a<a 6o
ts : . tv

Define now the mapping 6 by setting for every f = Zh i Fi (o, 1) with
>0, T p =1:% | =
8 (F) =F (s, ) + fZ: (o, 1), where A = (1 —c¢, ¢ iy, .., S Htp)-
It is easily seen that. 8: T — Fs. Indeed, 6 (f) € F because F is convex-under-
switching ; furthermore, if we denote by F the set of all { for which

8 (f) [0, ] —F (5,1) 4= 0 at least at onec € Q,

* ¥ T is not a (2 — 1) —simplex, we can iriangulate it in such a way that all vertices
of the triangulation are among 71, ... /. Then every f € T belongs to the relative interior
of an u11iqu_e1y determined subsimplex [fi ,i€1] with I=I(NCT {1, ... h}; hence
f= 2 Iy fi with [, >0, Z:IJ.I- =1 H;=0C EI) and W; are uniquely determined. These

o .:

are just the H; we have in mind here.
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then mes E = ¢ << §, and so by (3.1)
(oo —Fle ol +l o (Dl 0 (0D A<
0 _
which means that 0 (f) € F,, . | .
The condition (27) is easy to check, "too. Indeed, we have for all o€,
b 1 elo, 1]: ' ‘
. . t”
| Loty —<F (o, 1)) dt |=
v B
t,, ) 1]
'y h . s h .
1§ 02— a—af —c2mfat|=|{ ¢z~ X nfHdj<n
P o i=1 ' £ f==0
(see (34)), hence (27) follows. _
Thus, it remains to prove the continuity of 8. To do this, we observe that

h s h . :
forf=3 puf,f =3 wf, withp, s ph—1 if we denote byA, the set of
S =l =1 : :

all ¢ such that 6(f) o, £] == 0(f*)[o, 4], then A, C A for all o € Q, where A is

some set with mes A —~ 0 when |t — ' |— 0. But from the choice of m(f) it
follows that ' '

10 (F) — 0(F) 1 < 10— F @ D 1+ (Fla H—0(F) | < 2m()
for all 6 e Q, 0t < 1. Therefore, ' : ’ '
. ; ' s ’
B —0(F =sup { | \[B()—0(F)]di [ :0€Q, 0Kt <1} <2{ m@dt -0
: £ : R
when mes A ~» 0. Consequently, 10(f) — ¢(f )1 > O whenjp — ' | — 0, as was
to be shown. : ' J
The proof of Theorem 2 is complete.
Remark. By an argument almost.identical to that used for the proof of
" lemma 1.3, one could prove the following proposition: if assumptions @O (I
(IIl) of section 1 are satisfied, then for every A-simplex § in H’ (C) (h < k) and
~ for every ¢ € {0,1] there exisis a continuons mapping £: 8§~ D — x such that
Fzel) ' L(x) — ex = 0fe),

where o(c)/c — 0 uniformly with respect o all z € 5.

From this property and Theorem 2 it follows that: a set F in B(Q, RMY
which is convex-under-switching is a variational set in the sense introduced in
(2] (the sets D and H’(Q X F — q) can be easily identified with L and N — =
resp. in [2]. We thus obtain a new simple proof .of the basic result in [2], under
somewhat weaker assumptions than in [2] : '
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3. The maximum principle for optimal control problems.

~ In this section we shall derive from the previous results the classical
Pontryagin maximum principle for optimal control problemis.

We continue using the same notations and assumptions as before.

Consider the syStém (10) and let there be given, in addition, a continuously
differentiable mapping p: Q X @ — R™ + 1 and a closed convex cone N in R™,
Let p=(Pg + + - s Ppy)- A typical optimal control problem is the following: find
an absolutely continuous n-vector function x (f) such that:

1) for some ¢ = (w, f) € C = Q X F we have (10), i. e.

% () = f (z (), tyfor almost all € [0,1]; 2 (0) = w;

2) (py (@ (0); T (V)sers Ppy & (O, 2 (1)) €N

3) po (x (0), x (1)) achieves a minimum. a .

THEOREM 3. Assume F io be a quasiconvex family. If = (1) is an optimal
solution, corresponding to ¢ = (w,f), then there exist an absolulely continuous n-
vecior valued function V() satisfying the maximum principle

: 1 '
, Sfp ) F (@@, ) di = max S‘q} (OF @ @), O d (34)
‘ o ' i fEF 8 . :

and a rionzero (m -+ 1)- vector A = (loy Msh ) such that ko KOs (Aayeuss Ay )
€ N* and 3 _

H_ Fofcon ' (33)

TO == AP, 5D = ABg, 69

E ap @ O)7Q) =0, @7

: : i=1
where pg : Ps, denote the partial derivatives of p (05.0): @ X @ — Rt at
point (z (0), = (1)), with respect to o, and o, respectively.
Proof. Before rroceeding to the proof, it is worthwhile noticing that the pre-

sent theorem differs fron the standard formulation of the maximum principle
by the presence of the Vconditions (37 and (Ayyeeny lm) & N*. In fact, in'the stan-

dard formulation, N = {0} C R™, so that these conditions are automatically -
fulfilled. ' '

~ In order to be able to apply Theorem 1, let us verify that all conditions (I)
through (IV)insection 1 are satisfied. Indeed, if 4, C, K are defined as in section 2,
then conditions (I) (1) (IIT) hold by Theorem 2, with €’ = [Q X F} — gand V=0«
for o safficiently small. If now we let k=m+{ 1, M =R XN (RL denoting
the set of nonpositive numbers), '

119



G: 2 (.)i= p@(0) (1) — (go» O,y 0) With y, = pg (= (0), z (1),

G:x (.)[—:-pﬁo Lz (0 4+ Ps,’ (1),
then it is easily seen that &’ is an M-derivative of G at x(.), i. e. condition (IV)
holds, too. On the other hand, if  (.) is optimal, then the system (1), with 4, C,
K, G, M, as just indicated, is critical, since otherwise there would exist z (.),

q = (w, ) verifying (10}, such that G(x (.)) € int (RL % N), hence (g (x(0),2(1))s.s
P (@ (0),2(1))) € N, po( (0), z (1)) < p, (x (0), z (1)), contrary to the optimality of
x. Consequently, by Theorem 1, there exists a nonzero vector A = (Agseers lm) such
that A, <0, (Ay 5or» A ) € N* and '

(4 = (o, f) €2 % F) ~ NG E'E (g—7) <0 (39)
E a5 GO, (1) =0. (40)

1=

But we have from (14) and (11):
: t

— K Kyq=T O+ {10 fE @ 9dl,

where T () is the absolutely continuous matrix-valued function satisfying (15)
Therefore, forallw € @, f € F: '

— - —_ 4 - )
A {ps, (@ — @)+ P, TN lo—w +§ T~ (5) (f (2(5), 8) — f ( (5),9)) ds}}, < O(41)

Letting w = w , we get
1

FFER AB, T (T OFE@T @@ 9de <o,

which means that the maximum relation (34) holds if we set
B (t) = Ape, L ()T (). 9
Then from (42) and (20) we have (35). On the other hand, letting f = f in (41},
we can write -
(Vec) Alpe, + P, T (D} (0 — ) <

which vields, since Q is open,

: /\[}}Go“!"Pclr (D] =0.

Combining this with (4.), where we let t =0 and { = 1 resp. we obtain (39).
'This concludes the proof of our theorem.

In the previous problem the initial and terminal times are fixed. A more
general problem in which these are free could be formulated as follows.

Lettherebe given,as before,a hounded open set Qin R” and a setF in B(Q, R™),
and, in addition, aclosed convex cone N in R™ and a continuously differentiable

mapping p (6, o1y by ) @ X @ X I X 1 R™ ¥ where I = (0,1). Itis required
to find a pair (4, #) and an absolutely continuous p-vector function x(f):
[0,1] — Q, such that: : ' ' '
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1) for some g = (w, f) € Q X F we have
T () =F(x (%), ©) for almost all ¢&[0,1]; 2 (0) = w;
2 (ps (2 (), T (h): Loy B)oeess P (1), T (1), 1, 1)) € N
3) po (x (), (1), 1o, £,) achieves a minimum.
THEOREM 4. Assume the set F to be quasiconvex. If x (1), 1,, t, is an optimal
solution, corresponding io q = (u, f), then there exists an absolutely continuous
n-pector valued funcﬁon V(1) satisfying the maximum principle

4 f
hmw@maw max\ () £ (50, a 43)
f feF 1.

and @ nonzero (m -~ 1)-vecior A = (1g, Piyere, A ) such that 3a <0, (Ay,.., ko)

& N* and

R
e

F=—tOF G0 Y, | ()
T @=—APs,. D (t) = A, | (45)
2 Foa= APy $@TFi=— APy - -8y
_1;‘11 Mo (Z(E)® () ft) =0, @

where fj = f (% (ij), tj), J=0, 1
Proof. Let A = I X I (where I=(0, 1)),z = (6, x) e & X €, ¢ = (o, ¢)
EAXQA=AXA C=AXCM=R. x N R+t

E: (3. 0) = ((8,2), (o0 ) [> (0 — 0, K(z. @) (48)
(where K{x, q) is defined by (10)),

G: %= (tas 11, ) 1= plx(t,), a:(ﬂ), te £1) —{¥os Osnrs O,
with Iy == p. (-7: (tg)n x(tl), tﬁ! tl)' ) .
6 T o=t ty, @) =Py (ta o+ 2 (B) + g, (1, i+ (@) + Py - Lo + Py -11.(49)

It is easy to verify that conditions (I) (II) (III) in section 1 are satisfied for
the system

.9 edxC, K@ =0, ‘é‘(.%)eM. (50)

we now show thét G’ defined by (49) is an M-derivative of G atzx — (o 1 ).

To do this we observe that G is the composition of two mappings: G = 3 R,
A .,

with R: {t,, &, @) 1= () b, 2 (B)s T (@), P2 (o b B(E) T(W)) 1> ~

pl{x(l,), z(t), i, 4} — (Ygs 0...., 0). For each j = 0,1 let Ry; (2, 1 @) 1> z(t;). As

t—=0and r = (3, &, 2) > x=(, ty, ) we have
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LRG4eD-R@= 7 GG+ ot) =FG) (G +et)

d
=y EY .

so that 'R'_; {to, i, X) i— fjf,_g—x(?_-) (fj _ da':;f)")

isa f0}- derivative of R; at pomt T = (T, t, @) in the sense defmed in sectmnl
(note that if t ; is a continuity point of f (), t) then f; = f (:c( ), J)) Therefore

R’: (i, by ) 1> (to’ ty, 1 f,, -+ x(fﬁ) t f': + @ (tl))
is a {0}-derivative of R at z , and hence, by Lemma 1.2, G = p R, -as .defi-

ned by (49), is a {0} - derivative (2 fortmrl an M derivative) of Gatz = (to, I XY
as we have asserted.
Thus, all assumptions 11sted in sectmn 1 are satlsﬁed for the system (50). If

now T = (i, i ¥)is an optlmal solution, then, as can easily be seén, this system
is ‘critical, Hence, by Theorem 1, there exists a nonzero vector A= (hgses M)

sugh that A, <0, (Ay ..., Ayp) € N* and, denoting g = (2, 7 = (U T1» @), we have
(V1= (&g ed X[2XF]—¢): ~ AT E 7 4<0, .69

i=—=1

m S
S hpEE,T @0 H) =0 B )
But it follows from (48) that ' | ‘

K“' 0, 21— K, o O Kg ()i (= Kg )

hence

K~ K""- q:(——ﬁ,'—K Kq.q),

and 80, in view of (49), relation (51) becomes
(V(fo’fl)eb_(tostl),meg"“(D feF f)
A{pa (t f 'J_y(to))+pa (t1f1+y(t1))+pt i +pt t } . \(53)
where, according to (40)
. t
yO=— K 'E, . q=T0O [w+§‘r-‘1 () (£ @), 9 ds‘]i‘_ s
Bf letting w :.O,f =0, we get : .
NG T+ =0 AGnFr R =0
Also, by letting £, =0, { = 0, f = 0, we have, since Q is open,
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Apg, Tt} + g, T (W) = 0.
Finally, by letting 4, = 0, §; = 0, © == 0, and taking into account the just written
equality, we obtain

(¢f € F) A, r(ii)S I8 [F () 8) —F @ 6) 9] ds <

fy
which becomes (43) if we set

Tty = /\ Py, T )T (D).
It is now a simple matter to check the remaining relations (44) (45) (46) and
. thereby to complete the proof.

3. In order to show with more evidence the advaniage of the approach we
have taken, we now close the paper by sindying a non-standard problem.
Namely, let us consider the problem differing from the previous one, only-in
that, instead of assuming the function p(o,s5,, {,, 1) to be differentiable in the®
usual sense, we assume only that p (a,, o, t,, ;) has at point (z (&), () T &) @
continuous M-derivative p’ (.,...,.) such that p'(0, 0, 0, 0) = 0, where M = {0} X
N C R X R™. |

For example, it may happen that p(.,.,.,.} is M-convex but not necessarlly‘
differentiable in the usual sense. In that case, as can be easily verified, p’: (% o1
tyr 1) 1= P (54 4 oo O3 - 61, g + Iy 11 + 1) — P (6, 61 1y, 1) is an M-derivative
of p at the indicated point. -

This kind of Iﬁroblem could be encountered in some practical applications.
For example, if x(f) describes the state of the economy at time ¢ (say, the stoce
of capital and other facilities), then the boundary conditions may consist in
requiring that x (%), x(}) belong to some prescribed convex sets (of the type of
the production-technological sets); that is, these quantities must satisfy inequali-
ties of the form (p (x (%), x(t). &y E)sees P, (2 () (), £y &) € N, where p is
simply N-convex and not necessarily differentiable in the usual sense.

In view of the possible non-differentiabitity of p, the problem cannot be
handled by standard methods.

We can prove the following L
 THEOREM 5. dssume the set F lo be quasiconvex. If x (1), I, T, Is an optimal
solution, corresponding toq = (w, f), then there exist an absolutely coniinuous
n-vecior valued function ¥, (f) satisfying the mairxmum principle
(aFOFf@E @, pdt = max {2 v Of @, 1 at (55)
s feF 7,
and a nonpzero (m - 1)- vector A = (Roy Mooy A} such that %, <0, (Ao m)'



€ N*, together with o veclor = = (7 %, . &, , X, ) € R™ % R™ x R' x R! such
e} 1}
that — 7t is a subgradient* of — A p’ at 0 and '

I MEIOTE (56)
W)= —my Bl =%, (37)
PEHfo=1,  BEFi=— oy, S G

z hp @y T @) o 1) =0 - - (59)

where f_ = XJE_(.{I) (=fx(t ) i.) if f(z (1), ¥) is continuous at ?.).

Proof. Just as above, it is easily seen that the system (50) satisfies all‘
conditions (I) through (IV) of section 1 with

C=0%X{Q@xXF—@¢q 6=, 10h) , .
G =l 1, 2) 1> P (f, Ll b+ x(@) f B). (60
Therefore, ifn_:.z; = (1> &, ) is optimal, then there exists as previously a nonzero
vector A = (kg &) such that &, < 0, (A &) € N* and (51), (52) hold, with
G’ given this time by (60) in place of (49).
Noting (48) and remembering (11), (14), we can write (51) in the form
(v g=(xq)ed X[QXF]—9:
p’ (io fﬁ + y(fo)! flfl + y(tl)’ los tl) < 0. o (61)
where ¢ = (0, §) = (i, b, ) and y(£) — I—{;l ?(q .q is given by (54).
'Let B denote the set of all z = (g,, a1, 1,, #,) stch that
{, h) € A - (—to’ Ht-i-)s 7 _
;= (t —?.)T.-—f—y(fj.), j = 0,1 for some ¢ = (w, f)e [Q X F).

Then, smceK K is linear,.it follows that B is a convex set.
From (61) we_have

(Vz€B AP@ <O T (8
. Since A € M* and p’ is by hypothesis M-convex, the function — A p'(2) is
convex (in the usual sense). If the convex set {z: A p’(z) > 0} is non:empty

* Given a convex function ¢ : R°® — R a vector @ € R® issa’d to be a subgradieni

of ¢ at 0 if (% z € RY) Y9 (@ =90 LT, § 2. Thus if r is linear (as in Theorem 4}, then
x=Ap.
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then (62) means that it does not mieet the seéi B. Hence there exists u non-cons-
_tant affine function ¢ such that ¢(z) < 0 for all z€ B and ®(z) 2= O for all ¢
verifying A p’(z) > 0. The latter fact implies that the system
¢ (s} <0, — AP (x)<0
has no solution, and since the inequality ¢ (z) <C0 has at least one solution
(because ¢ in not constant), one can find a non-negative number ¢ such that

¢c¢(z)— Ap(2) = 0for all z Setting w{z) =c n(2) if (Iz) A p’(z) > 0, and
w(z)=0if (V2) A p’ () < 0, we obtain an affine function =(z) such that

(Vz€B). n(zH <0 (63)

(V€ Z) AP ) <7 (2), (64)

where Z = R? % R®" x R! X R*. We bave from (63) = (0) < 0 (because 6 € B),

and from (64) = (0) >0 (because p’ (0) =0), hence 7 (0) = 0, i.e. 7 (2) is a linear

function: % (z) =< w25, with = (%, ,%g,, W . Wy ) € REX R? X R RL

Relation (64), together with p’(0) =0, show that — x is a subgradient of — AP
at 0, and from (63) it follows that

(V) €A—({,, h)we€l~w,fEF—f):
o, (o fo + Y @) + 7, (h Frt 5 Q)+ 0y 1o+ 70 £ < 0

which is similar to (53). The proof can now be completed in the same way that
we compleied the proof of Theorem 4.

Remark 3.1. From (34) (or (43)) it is easy to derive the Pontryagin’s form
of the maximum principle for control problems in the conventional setting,
Indeed, in this setting we are given a function f (o, v): R? X R! x R" — R® .
a set U in R” and a class % of functions u(f): [0,1] — U. The fuanction
f (s, 1, v) is assumed to be continuous on RR X R! ¥ R’ and continuously
- differentiable with respect to 6. As for %, it is usually the set of all piecewise
continuous functions, or the set of all measurable, essentially bounded f{func-
tions from [0,1] inte U, Anyway it will suffice to suppose that % is a set of
measurable, essentially bounded functions from [0,1] into U such that every
constant funciion is an element of % and whenever u?, 2 € U, 0 < 8 < 1, then
X[g g U + Xgq @& € . Under these conditions, if F denotes the family of

all functions f(s,#) of the form f(o, D) = f(o, Lu(f)) for some u € %, then F is

clearly a convex-under-switching family in % (Q, R") (that F is a subset of
B (Q, R™) follows from the fact that for every f € F the function

m(t)=sup {|f(e, ,bu DN+ | folo.bu®)) |10 € Q,0< 1< 1} isintegrable
over [0,1]). ' ' '

The maximum relation (34) reads now as follows:

\FOf @O, ta@m)a = max V9 OFEW.Lu) dt
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if # in-a Lebesgue point of the function ¥ (t)f (x .4, u ) and if we take u(t)
to be equat to v €U for P IS + k and equal to u(f) for all other values
of #, we can write

1 t'+h _ ~ 1 £+h _ ~

| E‘S FOIEO.Loa <\ FOIEO. LEwa

S & t
hence, by letting # — 0 and noting that ¢ is a continuity point (and, therefore,
also a Lebesgae point of ¥ (Of (x(D),4,): '

D) FE @) 1,0 < OF @)1, )
Thus, for almost all ¢ € [0,1]:

v OfEW.Lu @) = max v (f)f(w 0.t 0)

Remhr& 3.2, It can be proved that Theorem 1 still holds if G: A — ¥; X ¥,
M=M XM, withM;CY;,Y, =R, Y, is an arbitrary normed space and

int M -= &. With this extension, Theorem 1 could be used to derive the
“maximum principle for control problems with restricted phase coordinates.

Received October 1st, 1975
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ERRATA CORRIGE

The saddle— point theorem under a weaker
. assumpfion than. constraint . qualification

Hoang Tuy

With reféerence to the paper published in ACTA SCIENTIARUM VIETNAMICARUM,
Fom IX & X (1974), the defmltmn of a surtangent mappmg in page 116 shoukd e modlfled
as follows : . '

Given a-mapping H: D — Z, a mapping h: D~ Z is-said to be surtangent to H at o
Af for every € D.and for every 7 >>0 there exist a neighbourhood U of x and a 8>
such that whenever 2 &€ DN U apd 0 <E < 8 thenH (2® ez —2") 22w’ +¢ (x—x Na,
thh ju] <e.1.

ERRATA

de Uauteur de 'article

« Sur les formules asymptotiques mulliples de
Perreur en méthodes aux différences finies»

paru dans ce journal, t.IX et X, 1974, 41-52,

On est prié d'ajouter i la page 43 p = ki, k== const >> 0. De plus, le filet non-uniforme
mentionné dans les théorémes 5, 7, 9 doit étre celui que 'auteur a employé & la page 89
de ce journal t. II, 1965, par suite les seconds membres de Uéquation (2, 9) et les deux
derniéres relations de I'article devraient étre modifiés de maniére convenable.

Ta van Pinh
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