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REALIZING CORNERS OF LEAVITT PATH ALGEBRAS AS

STEINBERG ALGEBRAS, WITH CORRESPONDING

CONNECTIONS TO GRAPH C∗-ALGEBRAS

G. Abrams1, M. Dokuchaev2 and T.G. Nam3

Abstract. We show that the endomorphism ring of any nonzero finitely gen-

erated projective module over the Leavitt path algebra LK(E) of an arbitrary

graph E with coefficients in a field K is isomorphic to a Steinberg algebra.

This yields in particular that every nonzero corner of the Leavitt path algebra

of an arbitrary graph is isomorphic to a Steinberg algebra. This in its turn

gives that every K-algebra with local units which is Morita equivalent to the

Leavitt path algebra of a row-countable graph is isomorphic to a Steinberg

algebra. Moreover, we prove that a corner by a projection of a C
∗-algebra of

a countable graph is isomorphic to the C
∗-algebra of an ample groupoid.

Mathematics Subject Classifications: 16S99; 05C25; 46L

Key words: Leavitt path algebra; Morita equivalence; Steinberg algebra;

graph C
∗-algebra; groupoid C
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1. Introduction and Preliminaries

Given a row-finite directed graph E and any field K, the first author and

Aranda Pino in [4], and independently Ara, Moreno, and Pardo in [13], intro-

duced the Leavitt path algebra LK(E). The first author and Aranda Pino later

extended the definition in [5] to all countable directed graphs. Goodearl in [22]

extended the notion of Leavitt path algebras LK(E) to all (possibly uncount-

able) directed graphs E. Leavitt path algebras generalize the Leavitt algebras

LK(1, n) of [26], and also contain many other interesting classes of algebras. In

addition, Leavitt path algebras are intimately related to graph C∗-algebras (see

[29]). During the past fifteen years, Leavitt path algebras have become a topic of

intense investigation by mathematicians from across the mathematical spectrum.

For a detailed history and overview of Leavitt path algebras we refer the reader

to the survey article [1].
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One of the interesting questions in the theory of Leavitt path algebras is to find

relationships between graphs E and F such that their corresponding Leavitt path

algebras are Morita equivalent. This question has been investigated in numerous

articles, see e.g. [6] and [32]. In large part this research effort has been motivated

by the goal of resolving the “Morita equivalence conjecture”: if the Leavitt path

algebras of the graphs E and F are Morita equivalent, must the corresponding

graph C∗-algebras for E and F also be (strongly) Morita equivalent? (see [9, p.

3758]).

If e is a nonzero idempotent in the ring A, then the “corner of A generated by

e is the unital ring eAe. Since Morita equivalence passes to (full) corners, it may

be germane to the resolution of the Morita equivalence conjecture to understand

situations in which a corner of a Leavitt path algebra is again a Leavitt path

algebra, or at least Morita equivalent to a Leavitt path algebra. In [7] the first

and third authors proved that any corner of the Leavitt path algebra LK(E)

of a finite graph E is isomorphic to a Leavitt path algebra LK(F ), and F may

be obtained from E via a sequence of well-understood “graph transformations”.

This result notwithstanding, it turns out that a corner of a Leavitt path algebra of

an arbitrary graph E need not in general be isomorphic to a Leavitt path algebra

(see Example 2.11). However, as a consequence of our main result (Theorem 3.6),

we establish in Corollary 3.8 that every corner of such Leavitt path algebras is in

fact isomorphic to an algebra of a more general type, to wit, a Steinberg algebra.

Steinberg algebras were introduced by Steinberg in [33], and independently

Clark et al. in [19]. We begin by establishing that the corner algebra (or “corner-

like” algebra) of a Steinberg algebra generated by idempotents of a special form

is again a Steinberg algebra (Proposition 2.3). Consequently, we obtain that

corners of Leavitt path algebras of arbitrary graphs which arise as sums of finitely

many distinct vertices are isomorphic to Steinberg algebras (Theorem 2.10 and

Corollary 2.12).

Let Q denote a finitely generated projective left module over the Leavitt path

algebra LK(E) for an arbitrary graph E and field K. Using Theorem 2.10, we

are subsequently able to establish our main result, that the endomorphism ring

EndLK(E)(Q) is isomorphic to a Steinberg algebra (Theorem 3.6). To do so,

we use the theorem of Ara-Goodearl, and independently Hay et al. (Theorem

1.3) to have a description up to isomorphism of Q as a finite direct sum of left

LK(E)-modules of the forms LK(E)v and LK(E)(w−
∑

e∈T ee
∗), where v ∈ E0,

w ∈ E0 is an infinite emitter and T is a non-empty finite subset of s−1(w).

To analyze terms of the form LK(E)(w −
∑

e∈T ee
∗), we extend to arbitrary

graphs a result of the first author and his co-authors [2, Theorem 2.8] about

the out-split graph. By a sequence of out-splittings we get a graph G, and

obtain a description up to isomorphism of the LK(E)-module Q in terms of cyclic

projective modules of the form LK(G)v where v ∈ G0 (Proposition 3.5). This

result combined with Theorem 2.10 then establish Theorem 3.6. We note that
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the ample groupoid whose Steinberg algebra is isomorphic to the given corner

of the Leavitt path algebra can be explicitly described. Theorem 3.6 has as an

immediate consequence that any corner of a Leavitt path algebra of an arbitrary

graph is isomorphic to a Steinberg algebra (Corollary 3.8). As well, Theorem 3.6

and Corollary 2.12 yield Theorem 3.9, showing that every K-algebra with local

units that is Morita equivalent to the Leavitt path algebra of a row-countable

graph is isomorphic to a Steinberg algebra.

The development of Leavitt path algebras has both been a guide for, and been

guided by, investigations into structures known as graph C∗-algebras. As we re-

mind the reader in Section 4, for a directed graph E, the Leavitt path algebra

LC(E) sits as a dense ∗-subalgebra in the graph C∗-algebra C∗(E). As has been

demonstrated by a number of remarkable results in both subjects over the past

fifteen years, there is a very tight, although not completely well-understood, re-

lationship between these two mathematical objects. We find another example of

this tight connection in the current work. Specifically, by employing the same

general approach as that used in the proof of Theorem 3.6, we establish in Theo-

rem 4.6 that a corner by a projection of a graph C∗-algebra of a countable graph

is isomorphic to the C∗-algebra of an ample groupoid. We note that Arklint and

Ruiz [15], and Arklint, Gabe and Ruiz [14] have established (among many other

things) a specific case of this result. To wit: when E is a countable graph hav-

ing finitely many vertices, then any corner by a projection p of C∗(E) is in fact

isomorphic as C∗-algebras to a graph C∗-algebra; that is, when E is a countable

graph having finitely many vertices, then pC∗(E)p ∼= C∗(F ) for some graph F .

We now present a streamlined version of the necessary background ideas. We

refer the reader to [10] for information about general ring-theoretic constructions,

and to [3] for additional information about Leavitt path algebras.

A (directed) graph E = (E0, E1, s, r) consists of two disjoint sets E0 and E1,

called vertices and edges respectively, together with two maps s, r : E1 −→ E0.

The vertices s(e) and r(e) are referred to as the source and the range of the

edge e, respectively. A graph E is called row-finite if |s−1(v)| <∞ for all v ∈ E0.

A graph E is called row-countable if there are at most countable arrows starting

at any vertex. A graph E is called countable if both sets E0 and E1 are countable.

A graph E is finite if both sets E0 and E1 are finite. A vertex v for which s−1(v)

is empty is called a sink ; a vertex v is regular if 0 < |s−1(v)| <∞; and a vertex v

is an infinite emitter if |s−1(v)| = ∞.

A path of length n in a graph E is a sequence p = e1 · · · en of edges e1, . . . , en
such that r(ei) = s(ei+1) for i = 1, . . . , n− 1. In this case, we say that the path p

starts at the vertex s(p) := s(e1) and ends at the vertex r(p) := r(en), we write

|p| = n for the length of p. We consider the elements of E0 to be paths of length

0. We denote by E∗ the set of all paths in E. An infinite path in E is an infinite

sequence p = e1 · · · en · · · of edges in E such that r(ei) = s(ei+1) for all i ≥ 1. In
3



this case, we say that the infinite path p starts at the vertex s(p) := s(e1). We

denote by E∞ the set of all infinite paths in E.

For an arbitrary graph E = (E0, E1, s, r) and any field K, the Leavitt path

algebra LK(E) of the graph E with coefficients in K is the K-algebra generated

by the union of the set E0 and two disjoint copies of E1, say E1 and {e∗ | e ∈ E1},

satisfying the following relations for all v,w ∈ E0 and e, f ∈ E1:

(1) vw = δv,ww;

(2) s(e)e = e = er(e) and r(e)e∗ = e∗ = e∗s(e);

(3) e∗f = δe,fr(e);

(4) v =
∑

e∈s−1(v) ee
∗ for any regular vertex v;

where δ is the Kronecker delta.

For any path p = e1e2 · · · en, the element e∗n · · · e
∗
2e

∗
1 of LK(E) is denoted by

p∗. It can be shown ([4, Lemma 1.7]) that LK(E) is spanned as a K-vector

space by {pq∗ | p, q ∈ E∗, r(p) = r(q)}. Indeed, LK(E) is a Z-graded K-algebra:

LK(E) =
⊕

n∈Z LK(E)n, where for each n ∈ Z, the degree n component LK(E)n
is the set spanK{pq∗ | p, q ∈ E∗, r(p) = r(q), |p| − |q| = n}.

Remark 1.1. Let K be any field, E any graph and H a finite subset of E0.

(1) If v ∈ E0 and s−1(v) is a single edge (say s−1(v) = {f}), then ff∗ = v.

(2) (
∑

v∈H v)LK(E)(
∑

v∈H v) is spanned as a K-vector space by {pq∗ | p, q ∈

E∗, r(p) = r(q) and s(p), s(q) ∈ H}.

A graph morphism from a graph E to a graph F is a pair ϕ = (ϕ0, ϕ1) con-

sisting of maps ϕ0 : E0 −→ F 0 and ϕ1 : E1 −→ F 1 such that sFϕ
1 = ϕ0sE and

rFϕ
1 = ϕ0rE. A graph morphism ϕ : E −→ F is a CK-morphism (short for

Cuntz-Krieger morphism) provided

(1) ϕ0 and ϕ1 are injective;

(2) for any regular vertex v ∈ E0, ϕ1 induces a bijection s−1
E (v) −→ s−1

F (ϕ0(v)).

In particular, condition (1) says that ϕ maps E isomorphically onto a subgraph

of F , while condition (2) implies that ϕ0 must send regular vertices to regular

vertices. If E is row-finite, injectivity of ϕ0 together with condition (2) is sufficient

to ensure injectivity of ϕ1. Thus, in this case, ϕ is a CK-morphism if and only if

it is a complete graph homomorphism in the sense of [13, p. 161].

A subgraph E of a graph F is called a CK-subgraph in case the inclusion map

E −→ F is a CK-morphism. Less formally: E is a CK-subgraph in case for every

regular vertex v of E, all edges which v emits in F are included in E.

We shall let CKGr denote the category of directed graphs: the objects of

CKGr are arbitrary directed graphs, and the morphisms are arbitrary CK-

morphisms.

Fix a field K, and consider a CK-morphism ϕ : E −→ F between graphs E

and F . Following [22, p. 173], ϕ induces a K-algebra homomorphism LK(ϕ) :

LK(E) −→ LK(F ) defined by LK(ϕ)(v) = ϕ0(v) for all v ∈ E0 and LK(ϕ)(e) =

ϕ1(e) for all e ∈ E1. The assignments E 7−→ LK(E) and ϕ 7−→ LK(ϕ) define
4



a functor LK from the category of graphs CKGr to the category of K-algebras

K-Alg.

Proposition 1.2. (1) ([22, Lemma 2.5 (a)]) Arbitrary direct limits exist in the

category CKGr. In particular, if ((Ei)i∈I , (ϕij)i≤j in I) is a directed system in

CKGr and lim
−→I

Ei = E, then E0 and E1 are the direct limits of the corresponding

direct systems of sets ((E0
i )i∈I , (ϕ

0
ij)i≤j in I) and ((E1

i )i∈I , (ϕ
1
ij)i≤j in I).

(2) ([22, Lemma 2.5 (b)]) For any field K, the functor LK : CKGr −→ K−Alg

preserve direct limits.

(3) ([3, Lemma 1.6.6]) Let K be any field and ϕ : E −→ F a CK-morphism

between graphs E and F . Then the map LK(ϕ) : LK(E) −→ LK(F ), defined by

LK(ϕ)(v) = ϕ0(v) for all v ∈ E0 and LK(ϕ)(e) = ϕ1(e) for all e ∈ E1, is an

injective K-algebra homomorphism. Consequently, if E is a CK-subgraph of F ,

then LK(E) is a subalgebra of LK(F ).

A ring R is said to have local units if every finite subset of R is contained in

a subring of the form eRe where e = e2 ∈ R. For example, the Leavitt path

algebra LK(E) of an arbitrary graph E with coefficients in K is a K-algebra

with local units (see, e.g. [4, Lemma 1.6]). We call a left module M over R

unitary if RM = M, i.e., for each m ∈ M there are r1, . . ., rn ∈ R and m1, . . . ,

mn ∈ M such that r1m1 + · · · + rnmn = m. If R is a ring with local units

then this implies that for every finite subset M ′ ⊂ M there is an idempotent

e ∈ R such that em = m for all m ∈ M ′. By R-Mod we denote the category of

unitary left R-modules together with the usual R-homomorphisms. Since R-Mod

is a Grothendieck category, various standard homological notions are applicable.

In particular, projective modules make sense in R-Mod for this is a categorical

notion. We refer the reader to [12, Section 10] for an investigation of projective

modules over non-unital rings.

For any ring R with local units, V(R) denotes the set of isomorphism classes

(denoted by [P ]) of finitely generated projective left R-modules. V(R) is an

abelian monoid with operation

[P ] + [Q] = [P ⊕Q]

for any isomorphism classes [P ] and [Q]. On the other hand, for any directed

graph E = (E0, E1, s, r) the graph monoid ME is defined as follows. Denote by

T the free abelian monoid (written additively) with generators

E0 ⊔ {q
Z
| Z is a nonempty finite subset of s−1(v) and v is an infinite emitter},

and define relations on T by setting

(1) v =
∑

e∈s−1(v) r(e) for all regular vertex v;

(2) v =
∑

e∈Z r(e)+qZ for all infinite emitters v ∈ E0 and all nonempty finite

subsets Z ⊂ s−1(v);

(3) q
Z
=

∑

e∈W\Z r(e) + q
W

for all nonempty finite sets Z ⊆ W ⊂ s−1(v),

where v ∈ E0 is an infinite emitter.
5



Let ∼E be the congruence relation on T generated by these relations. Then ME

is defined to be the quotient monoid T/∼E
; we denote an element of ME by [x],

where x ∈ T . The foundational result about Leavitt path algebras for our work

is the following:

Theorem 1.3 ([12, Theorem 4.3] and [23, Theorem 4.9]). Let E be an arbitrary

graph and K any field. Then there exists a monoid isomorphism γE : ME −→

V(LK(E)) such that γE([v]) = [LK(E)v] and γE([qZ ]) = [LK(E)(v−
∑

e∈Z ee
∗)].

Specifically, the next three useful consequences follow immediately.

(1) For any regular vertex v ∈ E0, LK(E)v ∼=
⊕

e∈s−1(v) LK(E)r(e) as left

LK(E)-modules.

(2) For any infinite emitter v ∈ E0 and finite sets Z ⊆W ⊂ s−1(v),

LK(E)(v −
∑

e∈Z

ee∗) ∼= LK(E)(v −
∑

e∈W

ee∗)
⊕

(
⊕

f∈W\Z

LK(E)r(f))

as left LK(E)-modules.

(3) For any nonzero finitely generated projective left LK(E)-module Q, there

exist a nonempty finite subset S ⊆ E0×2E
1

and positive integers {n(v, T )}(v,T )∈S

such that

(i) Q ∼=
⊕

(v,T )∈S n(v, T )LK(E)(v −
∑

e∈T ee
∗);

(ii) For all (v, T ) ∈ S, T is a finite subset of s−1(v);

(iii) For all (v, T ) ∈ S, T is nonempty only if v is an infinite emitter.

We emphasize that the direct sums indicated in the above theorem are external

direct sums. Also, throughout the paper, for a positive integer n and a left R-

module M , the direct sum of n copies of M is denoted nM .

We finish the introductory section by presenting some results about endo-

morphism rings of modules over rings with local units which will be of great

importance in this analysis. These can be found in [10, Chapters 1, 2]; the proofs

given there for unital rings go through verbatim in the more general setting of

rings with local units. For a left R-module RM , we write R-endomorphisms of

M on the right (i.e., the side opposite the scalars); so for f, g ∈ EndR(M), (m)fg

means “first f , then g”.

Proposition 1.4. Let R be a ring with local units.

(1) Let e, f be idempotents in R. Then HomR(Re,Rf) ∼= eRf as abelian

groups.

(2) Suppose P ∼=
⊕n

i=1 Pi as left R-modules. Then

EndR(P ) ∼=

(

HomR(Pi, Pj)

)

,

the ring of n× n matrices for which the entry in the i-th row, j-th column is an

element of HomR(Pi, Pj), for all 1 ≤ i, j ≤ n. In particular, if P ∼=
⊕n

i=1Rei,
6



an external direct sum of the left R-modules Rei for idempotents ei, then

EndR(P ) ∼=

(

eiRej

)

,

the ring of n× n matrices for which the entry in the i-th row, j-th column is an

element of eiRej, for all 1 ≤ i, j ≤ n.

2. Corners of Steinberg algebras

We begin this section by reminding the reader the basics of Steinberg algebras.

We then establish that for idempotents of a specified type, a corner algebra of a

Steinberg algebra generated by such an idempotent is isomorphic to a Steinberg

algebra (Proposition 2.3). (This allows us to re-establish Webster’s result that

the path space of an arbitrary graph is locally compact Hausdorff (Theorem

2.6).) Consequently, we use Proposition 2.3 to establish that, for idempotents

of a specific form, the corner of a Leavitt path algebra of an arbitrary graph

generated by such an idempotent is isomorphic to a Steinberg algebra (Theorem

2.10 and Corollary 2.12).

We begin by recalling the concepts of ample groupoids and Steinberg algebras.

A groupoid is a small category in which every morphism is invertible. It can also

be viewed as a generalization of a group which has a partial binary operation.

Let G be a groupoid. If x ∈ G, s(x) = x−1x is the source of x and r(x) = xx−1

is its range. The pair (x, y) is is composable if and only if r(y) = s(x). The set

G(0) := s(G) = r(G) is called the unit space of G. Elements of G(0) are units in

the sense that xs(x) = x and r(x)x = x for all x ∈ G. For U, V ⊆ G, we define

UV = {αβ | α ∈ U, β ∈ V and r(β) = s(α)} and U−1 = {α−1 | α ∈ U}.

A topological groupoid is a groupoid endowed with a topology under which

the inverse map is continuous, and such that the composition is continuous with

respect to the relative topology on G(2) := {(β, γ) ∈ G2 | s(β) = r(γ)} inherited

from G2. An étale groupoid is a topological groupoid G, whose unit space G(0)

is locally compact Hausdorff, and such that the domain map s is a local home-

omorphism. In this case, the range map r and the multiplication map are local

homeomorphisms and G(0) is open in G [30].

An open bisection of G is an open subset U ⊆ G such that s|U and r|U are

homeomorphisms onto an open subset of G(0). Similar to [28, Proposition 2.2.4]

we have that UV and U−1 are compact open bisections for all compact open

bisections U and V of an étale groupoid G. An étale groupoid G is called ample

if G has a base of compact open bisections for its topology.

Steinberg algebras were introduced in [33] in the context of discrete inverse

semigroup algebras and independently in [19] as a model for Leavitt path algebras.

Let G be an ample groupoid, and K a field with the discrete topology. We denote

by KG the set of all continuous functions from G to K. Canonically, KG has the

structure of a K-vector space with operations defined pointwise.
7



Definition 2.1 (The Steinberg algebra). Let G be an ample groupoid, and K

any field. Let AK(G) be the K-vector subspace of KG generated by the set

{1U | U is a compact open bisection of G},

where 1U : G −→ K denotes the characteristic function on U . The multiplication

of f, g ∈ AK(G) is given by the convolution

(f ∗ g)(γ) =
∑

γ=αβ

f(α)g(β)

for all γ ∈ G. The K-vector subspace AK(G), with convolution, is called the

Steinberg algebra of G over K.

It is useful to note that

1U ∗ 1V = 1UV

for compact open bisections U and V (see [33, Proposition 4.5]).

If F is an orthogonal set of nonzero idempotents in a ring R, then the set
∑

f,f ′∈F fRf
′ is a (not-necessarily-unital) subring of R, which we call a “corner-

like” subring. In case F is finite, then e =
∑

f∈F f is an idempotent in R, and

Σf,f ′∈F fRf
′ = eRe, the usual corner of R generated by e.

Definition 2.2. Let G be an ample groupoid, and let U be an open subset of

G(0). We define GU ⊆ G by setting

GU := r−1(U) ∩ s−1(U).

Proposition 2.3. Let K be a field and G an ample groupoid.

(1) If U is an open subset of G(0), then GU is an open ample subgroupoid of G.

(2) If {Ui | i ∈ I} is a set of compact open subsets of G(0) with Ui ∩Uj = ∅ for

all i 6= j and U =
⋃

i∈I Ui, then AK(GU ) can be realized as a corner-like subring

of AK(G), specifically,

AK(GU ) =
∑

i,j∈I

1Ui
AK(G)1Uj

.

Proof. (1) We have that GU is clearly a subset of G closed under the inversion

and the composition, so GU is a subgroupoid of G having G
(0)
U = U . Since U is

open in G(0), and the two maps r and s : G −→ G(0) are continuous, GU is open

in G. This implies that GU is a topological subgroupoid of G with the subspace

topology.

We note that if B is a compact open bisection of GU then B is also a compact

open bisection of G. Indeed, since B is open in GU and GU is open in G, B is

open in G. Assume that {Cj}j∈J is an open cover of B in G. We then have that

{Cj ∩ GU}j∈J is an open cover of B in GU . Since B is a compact subset of GU ,

B has some finite subcover {Cjk ∩ GU}
n
k=1, so {Cjk}

n
k=1 is a finite subcover of B

in G, and hence B is a compact subset of G. Since B is an open bisection of GU ,

s|B and r|B are homeomorphims onto open subsets of G
(0)
U , so s|B and r|B are

8



homeomorphims onto open subsets of G(0), since G
(0)
U = U is open in G(0), thus

showing that B is a compact open bisection of G.

Let B be a base of compact open bisections for the topology on G. We then

have that BU := {B ∈ B | B ⊆ GU} is a base of compact open bisections for

the topology on GU . Indeed, every element B ∈ BU is clearly a compact open

bisection of GU . Let V be any open subset of GU . Since GU is open in G, V is

open in G. Then, since B is a base of compact open bisections for the topology

on G, there exists a subset {Bj | j ∈ J} ⊆ B such that V = ∪j∈JBj. This implies

that Bj ⊆ GU for all j ∈ J , that means, Bj ∈ BU for all j ∈ J , so BU is a base of

compact open bisections for the topology on GU . Therefore, GU is an open ample

subgroupoid of G.

(2) We have that

AK(G) = SpanK{1B | B is a compact open bisection of G}

and

AK(GU ) = SpanK{1B′ | B′ is a compact open bisection of GU}.

Then, for any i, j ∈ I we have

1Ui
AK(G)1Uj

= SpanK{1UiBUj
| B is a compact open bisection of G}

and each UiBUj is a compact open bisection of G which is contained in GU , so

1Ui
AK(G)1Uj

⊆ AK(GU ), and hence
∑

i,j∈I 1Ui
AK(G)1Uj

⊆ AK(GU ).

Let V be a compact open bisection of GU . By the above note, V is a compact

open bisection of G. Put W = V −1V ∪ V V −1. We then have that W is a

compact open subset of U , so W ⊆
⊔n

k=1 Uik =: B for some i1, i2, . . . , in ∈ I.

We then have BV B = V and 1V = 1B1V 1B = (
∑n

k=1 1Uik
)1V (

∑n
k=1 1Uik

) =
∑

1≤k,j≤n 1Uik
1V 1Uij

∈
∑

i,j∈I 1Ui
AK(G)1Uj

, so AK(GU ) ⊆
∑

i,j∈I 1Ui
AK(G)1Uj

,

thus proving AK(GU ) =
∑

i,j∈I 1Ui
AK(G)1Uj

, finishing the proof. �

Definition 2.4. Let E = (E0, E1, r, s) be a graph. For α ∈ E∗ and a finite

subset G ⊆ s−1(r(α)), we define

C(α) = {αx | x ∈ E∗ ∪ E∞, r(α) = s(x)} and C(α,G) = C(α) \
⋃

e∈GC(αe).

Lemma 2.5. Let E be a graph and α, β ∈ E∗ with |α| ≥ |β|. Then C(α)∩C(β) 6=

∅ if and only if α = βα′ for some α′ ∈ E∗.

Proof. Assume that C(α)∩C(β) 6= ∅. Then, there exists an element x ∈ E∗∪E∞

such that x = αx′ and x = βx′′ for some x′, x′′ ∈ E∗ ∪ E∞. This implies that

α = βα′ for some α′ ∈ E∗. The converse is obvious, finishing the proof. �

We define the map ϕ : E∗ ∪ E∞ −→ {0, 1}E
∗
by ϕ(p)(α) = 1 if p ∈ C(α),

and 0 otherwise. It is not hard to see that ϕ is injective. Assume that {0, 1}

has the discrete topology. We endow {0, 1}E
∗
with the topology of pointwise

convergence, and E∗ ∪ E∞ with the initial topology induced by {ϕ}. Then, the
9



topological space {0, 1}E
∗
is compact by Tychonoff’s Theorem, and Hausdorff

because products preserve the Hausdorff property. Moreover, since ϕ is injective,

ϕ is a homeomorphism onto its range.

In [35, Theorem 2.1] Webster proved that for any countable graph E, E∗∪E∞

is a locally compact Hausdorff space with the basis of compact open sets C(α,G),

where α ∈ E∗ and G is a finite subset of s−1(r(α)). In the following theorem we

reproduce a short proof of Webster’s result, generalized to the case where E is

an arbitrary graph.

Theorem 2.6 (cf. [35, Theorem 2.1]). For an arbitrary graph E, the collection

{C(α,G) | α ∈ E∗, G ⊆ s−1(r(α)) is finite}

is a basis for the locally compact Hausdorff topology on E∗ ∪ E∞.

Proof. The proof is essentially the same as that given in [35, Theorem 2.1], except

when showing the compactness of the sets C(α,G). First we consider the topology

on {0, 1}E
∗
. Given α ∈ E∗ and disjoint finite subsets F,G ⊆ E∗, define UF,G

α ⊆

{0, 1} by setting

UF,G
α =







{1} if α ∈ F

{0} if α ∈ G

{0, 1} otherwise .

Then the sets N(F,G) =
∏

α∈E∗ U
F,G
α , where F and G range over all finite, dis-

joint pairs of subsets of E∗, form a basis for the topology on {0, 1}E
∗
. Therefore,

the sets ϕ−1(N(F,G)) form a basis for a topology on E∗ ∪ E∞. It is also not

hard to check that

ϕ−1(N(F,G)) = (
⋂

α∈F

C(α)) \ (
⋃

β∈G

C(β)).

If ϕ−1(N(F,G)) is nonempty, then
⋂

α∈F C(α) 6= ∅. By Lemma 2.5, there exists

an element α ∈ F such that for any µ ∈ F , α = µµ′ for some µ′ ∈ E∗. This

implies that ϕ−1(N(F,G)) = C(α) \ (
⋃

β∈GC(β)). Take any β ∈ G. If β 6= αp

for all p ∈ E∗, then we have C(α) ∩ C(β) is the empty set, or C(α) is contained

in C(β) (this only happens when α = βp for some p ∈ E∗). If the later happens,

then ϕ−1(N(F,G)) is the empty set, which contradicts with our hypothesis that

ϕ−1(N(F,G)) is nonempty. So, we must have that C(α) ∩ C(β) is the empty

set. This implies that ϕ−1(N(F,G)) = C(α) \ (∪β∈G′C(β)), where G′ = {β ∈

G | β = αβ′ for some β′ ∈ E∗}. We denote by G′′ the set of all elements β′.

Then ϕ−1(N(F,G)) = C(α) \ (∪p∈G′′C(αp)) = C(α,G′′). Note that G′′ is a

subset of r(α)E∗. From this note, without loss of generality we may assume that

G ⊆ r(α)E∗ := {p ∈ E∗ | s(p) = r(α)}.

We claim that {C(α,G) | α ∈ E∗, G ⊆ s−1(r(α)) is finite} and {C(α,G) | α ∈

E∗, G ⊆ r(α)E∗ is finite} are bases for the same topology. Indeed, the first set

is clearly contained in the second one. Let α ∈ E∗, a finite subset G ⊆ r(α)E∗

and β ∈ C(α,G). Consider the following two cases.
10



Case 1. β = e1 · · · ek · · · is an infinite path. Let n = max{|αp| | p ∈ G},

µ = e1 · · · en and F = ∅. We then have β ∈ C(µ) = C(µ, F ) ⊆ C(α,G).

Case 2. β ∈ E∗. If G = ∅ or both β 6= α and β is not a prefix path of any path

αp with p ∈ G, then we have β ∈ C(β) = C(β, ∅) ⊆ C(α,G). If β 6= α and β is a

prefix path of a path αp for some p ∈ G, then we assume that p1, p2, . . . , pn are all

such paths in G, that is, for each 1 ≤ i ≤ n, we have αpi = βqi for some path qi
of positive length. Write qi = f i1 · · · f

i
ki

(1 ≤ i ≤ n). Let F := {f11 , f
2
1 , . . . , f

n
1 } ⊆

s−1(r(β)). We then have β ∈ C(β, F ) ⊆ C(α,G). Consider the case when β = α

and G 6= ∅. Assume that p1, p2, . . . , pm are all elements of positive length in G.

Write pi = ei1 · · · e
i
ni

(1 ≤ i ≤ m). Set F := {e11, e
2
1, . . . , e

m
1 } ⊆ s−1(r(β)). We

then have β ∈ C(β, F ) = C(α,F ) ⊆ C(α,G).

In any case we always have that there exist a path µ ∈ E∗ and a finite subset

F ⊆ s−1(r(µ)) such that β ∈ C(µ, F ) ⊆ C(α,G), thus showing the claim. Hence,

the collection {C(α,G) | α ∈ E∗, G ⊆ s−1(r(α)) is finite} is a basis for the

topology on E∗ ∪ E∞.

We prove that E∗∪E∞ is a locally compact Hausdorff space. To do so, we will

show that C(α,G) is compact for any α ∈ E∗ and any finite subsetG ⊆ s−1(r(α)).

We first prove that C(v) is compact for each v ∈ E0. Since ϕ is a homeomorphism

onto its range, and {0, 1}E
∗
is compact, it suffices to show that ϕ(C(v)) is closed.

Let {pd ∈ C(v) | d ∈ D} be a net such that limϕ(pd) = f ∈ {0, 1}E
∗
, where D is a

directed set. Write A := {α ∈ E∗ | f(α) = 1}. Since v ∈ A, we have that A 6= ∅.

If α, β ∈ A, then there exist dα, dβ ∈ D such that ϕ(pd)(α) = 1 for all d ∈ D with

d ≥ dα and ϕ(pd′)(β) = 1 for all d′ ∈ D with d′ ≥ dβ . Since D is a directed set,

there must exist d′′ ∈ D with d′′ ≥ dα and d′′ ≥ dβ, so ϕ(pd′′)(α) = 1 = ϕ(pd′′)(β)

and pd′′ ∈ C(α)∩C(β). By Lemma 2.5, we have either α = ββ′ for some β′ ∈ E∗

or β = αα′ for some α′ ∈ E∗. This implies that all elements of A determine a

unique element p ∈ E∗ ∪ E∞.

We claim that limϕ(pd) = ϕ(p). Let µ ∈ E∗. If ϕ(p)(µ) = 1, then p ∈ C(µ),

i.e, p = µp′ for some p′ ∈ E∗ ∪ E∞. Then, there is an element γ ∈ A such

that γ = µγ′ for some γ′ ∈ E∗ ∪ E∞. Since γ ∈ A, there exists dγ ∈ D such

that ϕ(pd)(γ) = 1, i.e, pd ∈ C(γ), for all d ∈ D with d ≥ dγ , so pd ∈ C(µ)

for all d ∈ D with d ≥ dγ . This implies that limϕ(pd)(µ) = 1 = ϕ(p)(µ). If

ϕ(p)(µ) = 0, then p /∈ C(µ), i.e. p 6= µx for all x ∈ E∗ ∪ E∞, so µ /∈ A, and

hence limϕ(pd)(µ) = 0 = ϕ(p)(µ), thus showing the claim. Since {0, 1}E
∗
is

a Hausdorff space, limϕ(pd) is determined uniquely, so f = ϕ(p). Therefore,

ϕ(C(v)) is a closed set, so C(v) is also closed.

We show that C(α) is compact for all α ∈ E∗, by induction on |α|. If α =

e ∈ E1, then C(s(e)) \ C(e) = C(s(e), {e}) is an open set, so C(e) is closed in

C(s(e)), and hence it is compact. Assume that α = e1 . . . en (n ≥ 2). We then

have C(e1 . . . en−1) \C(α) = C(e1 . . . en−1, {en}) is an open set, so C(α) is closed

in C(e1 . . . en−1). By the induction hypothesis, C(e1 . . . en−1) is compact, so C(α)

is compact.

11



Finally, for α ∈ E∗ and a finite subsetG ⊆ s−1(r(α)), we have C(α)\C(α,F ) =
⋃

e∈F C(αe) is an open set, so C(α,F ) is closed in C(α), and hence it is compact,

thus finishing the proof. �

Definition 2.7. Let E = (E0, E1, r, s) be a graph. We define the subset XE of

E∗ ∪ E∞ by setting

XE := {p ∈ E∗ | r(p) is either a sink or an infinite emitter} ∪ E∞.

We note that if α ∈ (E∗∪E∞)\XE , then r(α) is a regular vertex, and C(α, s−1(r(α))) =

{α} is open in E∗ ∪ E∞, thus showing XE is closed in E∗ ∪ E∞. From this and

Theorem 2.6, we immediately get the following.

Corollary 2.8. For any graph E, XE is a locally compact Hausdorff space with

the basis of compact open sets

Z(α,F ) := C(α,F ) ∩XE

where α ∈ E∗ and F is a finite subset of s−1(r(α)).

We now describe the connection between Leavitt path algebras and Steinberg

algebras. Let E = (E0, E1, r, s) be a graph. We define

GE := {(αx, |α| − |β|, βx) | α, β ∈ E∗, x ∈ XE , r(α) = s(x) = r(β)}.

We view each (x, k, y) ∈ GE as a morphism with range x and source y. The formu-

las (x, k, y)(y, l, z) = (x, k + l, z) and (x, k, y)−1 = (y,−k, x) define composition

and inverse maps on GE making it a groupoid with G
(0)
E = {(x, 0, x) | x ∈ XE}

which we identify with the set XE by the map (x, 0, x) 7−→ x. Then, by Corol-

lary 2.8, we have that G
(0)
E is a locally compact Hausdorff space with the basis of

compact open sets

Z(α,α, F ) = {(y, 0, y) | y ∈ Z(α,F )}

where α ∈ E∗ and F is a finite subset of s−1(r(α)).

For α, β ∈ E∗ with r(α) = r(β), and a finite subset F ⊆ s−1(r(α)), we define

Z(α, β) = {(αx, |α| − |β|, βx) | x ∈ XE , r(α) = s(x) = r(β)}

and

Z(α, β, F ) = Z(α, β) \
⋃

e∈F

Z(αe, βe).

By generalizing [24, Lemma 2.5 and Proposition 2.6] (refer to [31, Lemmas 2.15

and 2.16]) we get that the sets Z(α, β, F ) form a basis for a Hausdorff topology on

GE . Let rGE
and sGE

: GE −→ G
(0)
E be the range and source maps defined respec-

tively by: rGE
(x, k, y) = (x, 0, x) and sGE

(x, 0, y) = (y, 0, y) for all (x, k, y) ∈ GE .

For α ∈ E∗ and a finite subset F ⊆ s−1(r(α)), we have

r−1
GE

(Z(α,α, F )) =
⋃

β∈E∗, r(β)=r(α) Z(α, β, F )

and

s−1
GE

(Z(α,α, F )) =
⋃

β∈E∗, r(β)=r(α) Z(β, α, F ),
12



so r−1
GE

(Z(α,α, F )) and s−1
GE

(Z(α,α, F )) are open in GE , and hence rGE
, sGE

are

continuous. Then for α, β ∈ E∗ with r(α) = r(β), and a finite subset F ⊆

s−1(r(α)), we have that rGE
|Z(α,β,F ) : Z(α, β, F ) −→ Z(α,α, F ) and sGE

|Z(α,β,F ) :

Z(α, β, F ) −→ Z(β, β, F ) are homeomorphisms. Then, since Z(α,α, F ) is com-

pact, Z(α, β, F ) is compact. Thus, the sets Z(α, β, F ) constitute a basis of com-

pact open bisections for a topology under which GE is a Hausdorff ample groupoid

(refer to [18, Subsection 2.3] or [31, Theorem 2.18]). Thus we may form the Stein-

berg algebra AK(GE).

The key result for us is that the map

πE : LK(E) −→ AK(GE),

determined by πE(v) = 1Z(v,v), πE(e) = 1Z(e,r(e)), and πE(e
∗) = 1Z(r(e),e), is an

algebra isomorphism; see e.g. [20, Example 2.3] for the details of the argument.

In other words, every Leavitt path algebra is a Steinberg algebra. In particular,

we have πE(αβ
∗ −

∑

e∈F αee
∗β∗) = 1Z(α,β,F ).

Definition 2.9. Let E = (E0, E1, r, s) be an arbitrary graph, and H a nonempty

subset of E0. We define the subset GE|H of GE by setting

GE |H = {(αx, |α| − |β|, βx) ∈ GE | x ∈ XE , s(α), s(β) ∈ H}.

Theorem 2.10. Let K be a field, E = (E0, E1, r, s) an arbitrary graph, and H

a nonempty subset of E0.

(1) GE|H is an open ample subgroupoid of GE.

(2)
∑

v,w∈H vLK(E)w ∼= AK(GE |H).

(3) If H is finite, then (
∑

v∈H v)LK(E)(
∑

v∈H v) ∼= AK(GE |H).

Proof. (1) Since the sets Z(α,α, F ), where α ∈ E∗ and F ⊆ s−1(r(α)) is finite, is a

basis of compact open sets for the Hausdorff space G
(0)
E , the set U :=

⋃

v∈H Z(v, v)

is also an open subset of G
(0)
E . Also, we then have that for each (αx, |α|−|β|, βx) ∈

GE , (αx, |α|−|β|, βx) ∈ r−1
GE

(U)∩s−1
GE

(U) ⇐⇒ (αx, 0, αx) ∈ U and (βx, 0, βx) ∈ U

⇐⇒ s(α), s(β) ∈ H. This implies that r−1
GE

(U) ∩ s−1
GE

(U) = GE|H , so GE |H is an

open ample subgroupoid of GE by Proposition 2.3 (1).

(2) By using the aforementioned properties of the isomorphism πE : LK(E) →

AK(GE) described in [20, Example 2.3], the restriction of πE gives an isomorphism

between these two corner-like algebras:
∑

v,w∈H

vLK(E)w ∼=
∑

v,w∈H

1Z(v,v)AK(GE)1Z(w,w).

We note that Z(v, v) ∩ Z(w,w) = ∅ for all v 6= w, and by item (1), r−1
GE

(U) ∩

s−1
GE

(U) = GE|H , where U :=
⋃

v∈H Z(v, v). Then, by Proposition 2.3 (2),

∑

v,w∈H

1Z(v,v)AK(GE)1Z(w,w) = AK(GE |H),

13



so
∑

v,w∈H

vLK(E)w ∼= AK(GE |H).

(3) Since H is finite, we have

(
∑

v∈H

v)LK(E)(
∑

v∈H

v) =
∑

v,w∈H

vLK(E)w,

so (
∑

v∈H v)LK(E)(
∑

v∈H v) = AK(GE |H) by item (2), finishing the proof. �

In addition to providing the previously-promised instance of a corner of a

Leavitt path algebra which is not a Leavitt path algebra, we illustrate many

of the ideas that have been presented in this section in the following specific

example.

Example 2.11. Let K be any field and C = (C0, C1, r, s) the graph with C0 =

{v,wn | n ∈ N}, C1 = {en | n ∈ N} and r(en) = wn, s(en) = v for all n. (So C is

the “infinite clock” graph described in [3, Example 1.6.12].)

Then vLK(C)v is not isomorphic to a Leavitt path algebra with coefficients in

K for any graph F , as follows. Since (ene
∗
n)(eme

∗
m) = δm,nene

∗
n for all n ∈ N, it

is not hard to see that vLK(C)v = SpanK{v, ene
∗
n | n ∈ N}. Thus vLK(C)v is an

infinite-dimensional commutative unital K-algebra. So if vLK(C)v ∼= LK(F ) for

some graph F , then by the unital property necessarily F 0 would be finite, and by

commutativity F would have only isolated vertices and/or vertices with exactly

one loop based at that vertex. This would force LK(F ) to be a finite direct sum

of copies of K and K[x, x−1]. But such an algebra contains only finitely many

idempotents, and so can not be isomorphic to vLK(C)v.

Now defineH = {v}. Then Theorem 2.10 (3) gives that vLK(C)v is isomorphic

to a Steinberg algebra, specifically AK(GC|{v}), which we describe here in the

notation of that result. C∗ denotes the set of all finite paths in C (including

vertices), so that C∗ = {v,wn, en | n ∈ N}. C∞ denotes the set of all infinite

paths in C, so that C∞ = ∅. XC is the union of C∞ with the set of finite paths

in C that end in a singular vertex, so that XC = {v,wn, en | n ∈ N}. Thus the

groupoid GC is explicitly described as

GC := {(αx, |α| − |β|, βx) | α, β ∈ C∗, x ∈ XC , r(α) = s(x) = r(β)}

= {(v, 0, v); (wn , 0, wn); (en, 0, en); (en, 1, wn); (wn,−1, en) | n ∈ N}.

A description of the subgroupoid GC|{v} of GC is given by

GC|{v} := {(αx, |α|−|β|, βx) ∈ GC | s(α) = v = s(β)} = {(v, 0, v); (en , 0, en) | n ∈ N}.

The groupoid GC|{v} is ample, with a basis of compact open sets consisting of

sets of the form Z(en, en) and Z(v, v, F ), namely, sets of the form {(en, 0, en)}

(n ∈ N) and {(v, 0, v), (em , 0, em) | em /∈ F}, where F is any finite subset of C1.
14



The isomorphism between vLK(C)v and AK(GC|{v}) is clear: it is the K-linear

extension of the map which takes v to 1GC|{v}
, and which takes ene

∗
n to 1{(en,0,en)}

for all n ∈ N.

More concretely, it is easy to see that the unital algebra vLK(C)v ∼= AK(GC|{v})

is isomorphic to the K-unital extension of the nonunital K-algebra ⊕n∈NK; that

is, the direct sum of countably infinitely many copies of K, with an extra copy

of K appended to provide a unit element. Namely, let A = K × ⊕n∈NK be the

unital algebra with component-wise addition an the multiplication defined by

(k, x) · (k′, x′) = (kk′, kx′ + k′x + xx′), k, k′ ∈ K,x, x′ ∈ ⊕n∈NK. Then the map

v 7→ (1, 0), ene
∗
n 7→ (0, εn), where {εn, n ∈ N} is the canonical basis of ⊕n∈NK,

determines an isomorphism of algebras.

We close this section with the following useful corollary.

Corollary 2.12. Let E = ((Ei)i∈I , (ϕij)i≤j in I) be a direct system in CKGr and

let E be the direct limit for E in CKGr with canonical morphisms ηi : Ei −→ E.

For each i ∈ I let Ti be a finite subset of E0
i with the condition that ϕ0

ij(Ti) ⊆ Tj
for all i ≤ j. Let T :=

⋃

i∈I η
0
i (Ti) ⊆ E0. Let K be any field. Then, AK(GE |T ) is

a direct limit for the system ((
∑

v∈Ti
v)LK(Ei)(

∑

v∈Ti
v))i∈I in K-Alg.

Proof. By Proposition 1.2 (3), every CK-morphism ϕij : Ei −→ Ej induces an

injective K-algebra homomorphism LK(ϕij) : LK(Ei) −→ LK(Ej) defined by

LK(ϕij)(v) = ϕ0
ij(v) for all v ∈ E0

i and LK(ϕij)(e) = ϕ1
ij(e) for all e ∈ E1

i . Then,

for any i ≤ j in I, since ϕ0
ij(Ti) ⊆ Tj , LK(ϕij) induces an injective K-algebra

homomorphism

ψij : (
∑

v∈Ti

v)LK(Ei)(
∑

v∈Ti

v) −→ (
∑

v∈Tj

v)LK(Ej)(
∑

v∈Tj

v),

so ((
∑

v∈Ti
v)LK(Ei)(

∑

v∈Ti
v))i∈I , (ψij)i≤j in I) is a direct system in K-Alg.

Let A be the direct limit for this system in K-Alg with canonical homomor-

phisms θi : (
∑

v∈Ti
v)LK(Ei)(

∑

v∈Ti
v) −→ A. We show that A is isomorphic to

theK-algebra
∑

v,w∈T vLK(E)w. Indeed, by Proposition 1.2 (2), LK(E) is the di-

rect limit for the system ((LK(Ei))i∈I , (LK(ϕij))i≤j in I) inK-Alg with canonical

homomorphisms LK(ηi) : LK(Ei) −→ LK(E) defined by LK(ηi)(v) = η0i (v) for

all v ∈ E0
i and LK(ηi)(e) = η1i (e) for all e ∈ E1

i . We note that LK(ηi) is injective

for all i ∈ I, by Proposition 1.2 (2). For each i ∈ I, since η0i (Ti) ⊆ T , LK(ηi) in-

duces an injective K-algebra homomorphism λi : (
∑

v∈Ti
v)LK(Ei)(

∑

v∈Ti
v) −→

∑

v,w∈T vLK(E)w. Since LK(ηj)LK(ϕij) = LK(ηi) for all i ≤ j in I, we have

that λjψij = λi for all i ≤ j in I, so there is a unique K-algebra homomorphism

π : A −→
∑

v,w∈T vLK(E)w such that πθi = λi for all i ∈ I. We show that π is

an isomorphism.

Let x ∈
∑

v,w∈T vLK(E)w. By Remark 1.1 (2), we have that x may be writ-

ten of the form x =
∑n

k=1 rkpkq
∗
k, where rk ∈ K, pk and qk (1 ≤ k ≤ n) are
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paths in E such that rE(pk) = rE(qk) and sE(pk), sE(qk) ∈ T . By Proposi-

tion 1.2 (1), E0 and E1 are the direct limits of the corresponding direct sys-

tems of sets, ((E0
i )i∈I , (ϕ

0
ij)i≤j in I) and ((E1

i )i∈I , (ϕ
1
ij)i≤j in I), with canonical

maps η0i : E0
i −→ E0 and η1i : E1

i −→ E1. Then, there exists i ∈ I such that

pk, qk are paths in ηi(Ei) and sE(pk), sE(qk) ∈ η0i (Ti) for all 1 ≤ k ≤ n, whence

x ∈ Im(λi) ⊆ π(A). Consequently, π is surjective. Now consider a ∈ ker(π),

write a = θi(b) for some i ∈ I and b ∈ (
∑

v∈Ti
v)LK(Ei)(

∑

v∈Ti
v). We then

have that λi(b) = πθi(b) = π(θi(b)) = π(a) = 0. Since λi is injective, b = 0, so

a = θi(0) = 0. Thus π is an isomorphism, as announced.

Finally, by Theorem 2.10 (2), we have that
∑

v,w∈T vLK(E)w ∼= AK(GE |T ) as

K-algebras, whence lim−→I
(
∑

v∈Ti
v)LK(Ei)(

∑

v∈Ti
v) ∼= AK(GE |T ), thus finishing

the proof. �

3. Endomorphism rings of finitely generated projective modules

over Leavitt path algebras of arbitrary graphs

The main goal of this section is to show that the endomorphism ring of a

nonzero finitely generated projective module over the Leavitt path algebra of

an arbitrary graph is isomorphic to a Steinberg algebra (Theorem 3.6). Con-

sequently, we get that every algebra with local units over a given field which

is Morita equivalent to the Leavitt path algebra of an arbitrary row-countable

graph is indeed isomorphic to a Steinberg algebra (Theorem 3.9).

Lemma 3.1. Let E = (E0, E1, r, s) be an arbitrary graph and K a field. Then

every nonzero finitely generated projective left LK(E)-module Q may be written

in the form

Q ∼= (
⊕

v∈V

nvLK(E)(v −
∑

e∈Tv

ee∗))⊕ (
⊕

w∈W

nwLK(E)w),

where V and W are finite subsets of E0, each v ∈ V is an infinite emitter, each

Tv is a nonempty finite subset of s−1(v), and the numbers nv, nw are positive

integers.

Proof. Let Q be a nonzero finitely generated projective left LK(E)-module. By

Theorem 1.3 (3), there exist a nonempty finite subset S ⊆ E0 × 2E
1

and positive

integers {n(v, T )}(v,T )∈S such that

(1) Q ∼=
⊕

(v,T )∈S n(v, T )LK(E)(v −
∑

e∈T ee
∗);

(2) For all (v, T ) ∈ S, T is a finite subset of s−1(v);

(3) For all (v, T ) ∈ S, T is nonempty only if v is an infinite emitter.

For any infinite emitter v with (v, T ) ∈ S for some nonempty subset T ⊆ E1, we

denote Tv :=
⋃

(v,T )∈S T ⊂ s−1(v). Then, by Theorem 1.3 (2), for each (v, T ) ∈ S
16



with T 6= ∅, we have that

LK(E)(v −
∑

e∈T

ee∗) ∼= LK(E)(v −
∑

e∈Tv

ee∗)
⊕

(
⊕

e∈Tv\T

LK(E)r(e)). (∗)

Now replace any one of the summands isomorphic to LK(E)(v−
∑

e∈T ee
∗), where

T is a nonempty finite subset of s−1(v), which appears in the decomposition (1)

of Q by the isomorphic version of LK(E)(v−
∑

e∈T ee
∗) given in (∗). Continuing

this process on all such other vertices v, we get a direct sum decomposition of Q

as in the statement, finishing the proof. �

Definition 3.2 ([2, Definition 2.6]: the “out-split” graph). Let E = (E0, E1, r, s)

be a graph and v ∈ E0 a vertex that is not a sink. Partition s−1(v) into a finite

number, say n, of disjoint nonempty subsets E1, E2, ..., En. We form the out-split

graph Eos = (E0
os, E

1
os, ros, sos) from E using the partition {Ei | i = 1, ..., n} as

follows: E0
os = (E0 \ {v}) ∪ {v1, v2, ..., vn},

E1
os = {e1, e2, ..., en | e ∈ E1, r(e) = v} ∪ {f | f ∈ E1 \ r−1(v)},

and define ros, sos : E
1
os −→ E0

os by setting ros(e
j) = vj , ros(f) = r(f), and

sos(x) =















s(f) if x = f /∈ s−1(v)

vi if x = f ∈ s−1(v) and f ∈ Ei
s(e) if x = ej and e /∈ s−1(v)

vi if x = ej , e ∈ s−1(v) and e ∈ Ei

.

The following proposition can be seen as an extension of [2, Theorem 2.8].

Proposition 3.3. Let K be any field. Let E be an arbitrary graph, v ∈ E0 a

vertex which is not a sink, and a partition

s−1(v) = E1 ⊔ E2 ⊔ . . . ⊔ En

is chosen with at most one of the Ei is infinite. Then LK(E) ∼= LK(Eos) as

Z-graded K-algebras. This isomorphism yields an isomorphism of categories

Φ : LK(E)-Mod −→ LK(Eos)-Mod

for which Φ(LK(E)v) = ⊕n
i=1LK(Eos)v

i and Φ(LK(E)w) = LK(Eos)w for all

w ∈ E0 \ {v}.

Proof. The quoted result [2, Theorem 2.8] applies to constructions more general

than the out-split construction of row-finite graphs. Accordingly, based on the

proof of [16, Theorem 3.2], we provide here a short proof of Proposition 3.3.

We define the elements {Qu | u ∈ E0} and {Te, Te∗ | e ∈ E1} of LK(Eos) by

setting

Qu =

{ ∑n
i=1 v

i if u = v,

u otherwise ,

Te =

{ ∑n
i=1 e

i if e ∈ r−1(v)

e otherwise ,
17



and

Te∗ =

{ ∑n
i=1(e

i)∗ if e ∈ r−1(v)

e∗ otherwise .

By repeating verbatim the corresponding argument in the proof of [2, Theorem

2.8], we get that {Qu, Te, Te∗ | u ∈ E0, e ∈ E1} is a family in LK(Eos) satisfy-

ing the same relations as {u, e, e∗ | u ∈ E0, e ∈ E1}. Then, by the Universal

Homomorphism Property of LK(E), there exists a K-algebra homomorphism

π : LK(E) −→ LK(Eos), which maps u 7−→ Qu, e 7−→ Te and e∗ 7−→ Te∗ . Since

Qu has degree 0, Te has degree 1, and Te∗ has degree −1 for all u ∈ E0 and e ∈ E1,

π is thus a Z-graded homomorphism, whence the injectivity of π is guaranteed by

[34, Theorem 4.8]. To prove that π is surjective, we show that the generators of

LK(Eos) lie in Im(π). If w ∈ E0
os \{v

1, v2, ..., vn}, then w = π(w) ∈ Im(π). Since

{Ei}
n
i=1 are chosen with at most one of the Ei infinite, there is a unique number

i such that vi is an infinite emitter. Without loss of generality we may assume

that i = 1, and so vj is a regular vertex for all 2 ≤ j ≤ n. For each 2 ≤ j ≤ n,

we have

vj =
∑

f∈s−1
os (vj )

ff∗ =
∑

e∈Ej

TeTe∗ =
∑

e∈Ej

π(ee∗) ∈ Im(π)

and

v1 = Qv −
n
∑

j=2

vj = π(v) −
n
∑

j=2

vj ∈ Im(π).

If f ∈ E1
os \ {e1, e2, ..., en | e ∈ E1, r(e) = v}, then f = π(f) ∈ Im(π). For

each e ∈ r−1(v), we have π(e) = Te =
∑n

i=1 e
i, so ei = π(e)vi ∈ Im(π) for

all i = 1, ..., n. Therefore, π is surjective, so it is an isomorphism. Moreover,

this isomorphism maps w to
∑n

i=1 v
i if w = v, and to w otherwise, so that the

associated isomorphism of categories restricts to the desired map, finishing the

proof. �

Consequently, we get the following useful result.

Corollary 3.4. Let K be a field, E an arbitrary graph, v an infinite emitter

and Tv a nonempty finite subset of s−1(v). Put E1 = Tv and E2 = s−1(v) \ Tv.

Let F be the graph obtained by out-splitting the vertex v into the vertices v1, v2

according to the partition E1, E2. Then LK(E) ∼= LK(F ) as Z-graded K-algebras.

This isomorphism yields an isomorphism of categories

Φv : LK(E)−Mod −→ LK(F )−Mod

with the following properties:

(1) Φv(LK(E)v) = LK(F )v1⊕LK(F )v2 and Φv(LK(E)w) = LK(F )w for all

w ∈ E0 \ {v},
18



(2) For all w ∈ E0 \ {v} and all finite subsets W ⊆ s−1(w) with v /∈ rE(W ),

Φv(LK(E)(w −
∑

e∈W

ee∗)) = LK(F )(w −
∑

e∈W

ee∗),

(3) For all w ∈ E0 \ {v} and any finite subset W ⊆ s−1(w) with v ∈ rE(W ),

there exists a finite subset W ′ ⊆ s−1
F (w) such that

Φv(LK(E)(w −
∑

e∈W

ee∗)) = LK(F )(w −
∑

e∈W ′

ee∗),

(4) Φv(LK(E)(v −
∑

e∈Tv
ee∗)) = LK(F )v2.

Proof. By Proposition 3.3, the map πv : LK(E) −→ LK(F ), defined by

πv(u) =

{

v1 + v2 if u = v,

u otherwise ,

πv(e) =

{

e1 + e2 if e ∈ r−1(v)

e otherwise ,

and

πv(e
∗) =

{

(e1)∗ + (e2)∗ if e ∈ r−1(v)

e∗ otherwise ,

extends to an isomorphism of Z-graded K-algebras, and this isomorphism yields

an isomorphism of categories

Φv : LK(E)-Mod −→ LK(F )-Mod

with property (1) of the statement.

(2) Let w ∈ E0\{v} andW a finite subset of s−1(w) with v /∈ rE(W ). We then

have that πv(w −
∑

e∈W ee∗) = w −
∑

e∈W ee∗, so Φv(LK(E)(w −
∑

e∈W ee∗)) =

LK(F )(w −
∑

e∈W ee∗).

(3) Let w ∈ E0\{v} andW a finite subset of s−1(w) with v ∈ rE(W ). PutH =

{e ∈ W | r(e) = v}. We then for e ∈ H have that e1(e2)∗ = (e1v1)(v2(e2)∗) =

e1(v1v2)(e2)∗ = 0 and e2(e1)∗ = (e2v2)(v1((e1)∗)) = e2(v2v1)(e1)∗ = 0, and

πv(w −
∑

e∈W ee∗) = w −
∑

e∈H(e1 + e2)((e1)∗ + (e2)∗)−
∑

e∈W\H ee
∗

= w −
∑

e∈H(e1(e1)∗ + e2(e2)∗)−
∑

e∈W\H ee
∗

= w −
∑

e∈W ′ ee∗,

whereW ′ = (W\H)⊔{e1, e2 | e ∈ H} ⊆ s−1
F (w). This implies that Φv(LK(E)(w−

∑

e∈W ee∗)) = LK(F )(w −
∑

e∈W ′ ee∗).

(4) Let H = {e ∈ Tv | r(e) = v}. Then, similar to item (3) we have that

e1(e2)∗ = 0 = e2(e1)∗ and πv(v −
∑

e∈Tv
ee∗) = v1 + v2 −

∑

e∈H(e1 + e2)((e1)∗ +

(e2)∗)−
∑

e∈Tv\H
ee∗ = v1 + v2 −

∑

e∈H(e1(e1)∗ + e2(e2)∗)−
∑

e∈Tv\H
ee∗.

On the other hand, we have that s−1
F (v1) = (Tv \ H) ⊔ {e1, e2 | e ∈ H},

so v1 =
∑

e∈H(e1(e1)∗ + e2(e2)∗) +
∑

e∈Tv\H
ee∗ in LK(F ). This implies that
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πv(v−
∑

e∈Tv
ee∗) = v1 + v2 −

∑

e∈H(e1(e1)∗ + e2(e2)∗)−
∑

e∈Tv\H
ee∗ = v2, and

hence Φv(LK(E)(v −
∑

e∈Tv
ee∗)) = LK(F )v2, finishing the proof. �

Using Lemma 3.1 and Corollary 3.4 we get the following result which plays an

important role in the proof of the main theorem below.

Proposition 3.5. Let K be a field, E an arbitrary graph and Q a nonzero finitely

generated projective left LK(E)-module. Then there exists a graph F with the

following properties.

(1) F is obtained from E in some step-by-step process of out-splittings.

(2) There exists an isomorphism of categories

Φ : LK(E)−Mod −→ LK(F )−Mod

such that Φ(Q) ∼=
⊕

v∈H nvLK(F )v for some finite subset H ⊆ F 0 and

some positive integers {nv}v∈H .

Proof. By Lemma 3.1, we have that

Q ∼= (
⊕

v∈V

nvLK(E)(v −
∑

e∈Tv

ee∗))⊕ (
⊕

w∈W

mwLK(E)w),

where V and W are some finite subsets of E0, each v ∈ V is an infinite emitter,

each Tv is some nonempty finite subset of s−1(v), and nv,mw are some positive

integers. Write V = {v1, v2, . . . , vn}. Let E1 be the graph obtained from E

by out-splitting the vertex v1 into the vertices v11 , v
2
1 according to the partition

E1 = Tv1 , E2 = s−1(v1) \ Tv1 . By Corollary 3.4, there exists an isomorphism of

categories

Φv1 : LK(E)−Mod −→ LK(E1)−Mod

with the following properties:

(i) Φv1(LK(E)v1) = LK(E1)v
1
1 ⊕ LK(E1)v

2
1 and Φv1(LK(E)w) = LK(E1)w

for all w ∈ E0 \ {v1},

(ii) for all w ∈ E0 \ {v1} and all finite subsets W ⊆ s−1(w) with v1 /∈ rE(W ),

Φv1(LK(E)(w −
∑

e∈W

ee∗)) = LK(E1)(w −
∑

e∈W

ee∗),

(iii) for all w ∈ E0 \ {v1} and any finite subset W ⊆ s−1(w) with v ∈ rE(W ),

there exists a finite subset W ′ ⊆ s−1
E1

(w) such that

Φv1(LK(E)(w −
∑

e∈W

ee∗)) = LK(E1)(w −
∑

e∈W ′

ee∗), and

(iv) Φv1(LK(E)(v1 −
∑

e∈Tv1
ee∗)) = LK(E1)v

2
1 .

We then have that Φv1(Q) is isomorphic to

(
n

⊕

i=2

nviLK(E1)(vi −
∑

e∈T ′
vi

ee∗))⊕ nv1LK(E1)v
2
1 ⊕ (

⊕

w∈W ′′

m′′
wLK(E1)w)
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as left LK(E1)-modules, where T ′
vi

is some nonempty finite subset of s−1
E1

(vi), and

W ′′,m′′
w are defined by setting

W ′′ =W if v1 /∈W

(in this case we have that m′′
w = mw for all w ∈W ), and

W ′′ = {v11 , v
2
1} ∪W \ {v1} otherwise

(in this case we have that m′′
w = mw for all w ∈W \ {v1} and m′′

vi
1

= mv1).

Let W ′ :=W ′′ ∪ {v21}, m
′
w := m′′

w for all w ∈W ′ \ {v21}, and m
′
v2
1

:= nv1 +m′′
vi
1

(note that m′′
vi
1

= 0 if v1 /∈W ). We then get that

Φv1(Q) ∼= (

n
⊕

i=2

nviLK(E1)(vi −
∑

e∈T ′
vi

ee∗))⊕ (
⊕

w∈W ′

m′
wLK(E1)w)

as left LK(E1)-modules.

We repeat the process described above, starting with the graph E2 which is

obtained from E1 by out-splitting v2 into v12 and v22 with respect to E1 = T ′
v2
,

E2 = s−1
E1

(v2) \ T
′
v2
. We see that after n steps we arrive at the graph F of the

statement and an isomorphism of categories Φ : LK(E)−Mod −→ LK(F )−Mod

such that Φ(Q) ∼=
⊕

v∈H nvLK(F )v for some finite subset H ⊆ F 0 and some

positive integers {nv}v∈H , finishing the proof. �

We are now in position to achieve the main result of this section.

Theorem 3.6. Let K be any field, E an arbitrary graph, and Q a nonzero finitely

generated projective left LK(E)-module. Then EndLK(E)(Q) is isomorphic to a

Steinberg algebra.

Proof. By Proposition 3.5, there exist a graph F and an isomorphism of categories

Φ : LK(E)−Mod −→ LK(F )−Mod such that Φ(Q) ∼=
⊕

v∈T nvLK(F )v for some

finite subset T ⊆ F 0 and some positive integers {nv}v∈T . The categorical isomor-

phism yields that EndLK(E)(Q) ∼= EndLK(F )(Φ(Q)). Write T = {v1, v2, . . . , vu}

and let ni := nvi for all vi ∈ T . Note that there are σ =
∑u

i=1 ni direct summands

in the above decomposition of Φ(Q). By Proposition 1.4, EndLK(F )(Φ(Q)) is iso-

morphic to a σ × σ matrix ring, with entries described as follows. The indicated

matrices may be viewed as consisting of rectangular blocks of size ni×nj, where,

for 1 ≤ i ≤ u, 1 ≤ j ≤ u, the entries of the (i, j) block are elements of the

K-vector space viLK(F )vj .

Let G be the graph formed from F by taking each vi ∈ T and attaching a

“head” of length ni − 1 of the form

•v
ni−1

i

e
ni−1

i // · · · •v
2

i

e2i // •v
1

i

e1i // •vi

to F . By construction, F is a CK-subgraph of G, so that by Proposition 1.2 (3)

we may view LK(F ) as a K-subalgebra of LK(G).
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For each 1 ≤ i ≤ u, and each 1 ≤ y ≤ ni − 1, let pyi := eyi · · · e
1
i denote the

(unique) path in G having s(pyi ) = vyi , and r(p
y
i ) = vi. Note that, because of the

specific configuration of the added vertices and edges used to build G from F ,

repeated application of Remark 1.1 (1) gives that pyi (p
y
i )

∗ = vyi in LK(G). Let

H := T ∪ {vji | 1 ≤ i ≤ u, 1 ≤ j ≤ ni − 1} ⊆ G0. Note also that |H| =
∑

1≤i≤u ni,

which is precisely σ. Let P :=
⊕

v∈H LK(G)v and again using Proposition 1.4,

we obtain that EndLK(G)(P ) is isomorphic to the σ × σ matrix ring with entries

described as follows. For 1 ≤ i, j ≤ u, and 0 ≤ y ≤ ni − 1, 0 ≤ z ≤ nj − 1, the

entries in the row indexed by (ni, y) and column indexed by (nj , z) are elements

of vyi LK(G)vzj , where v
0
i = vi.

We now show that these two σ×σ matrix rings are isomorphic as K-algebras.

To do so, we show first that for each pair (ni, y), (nj, z) with 1 ≤ i, j ≤ u, and

1 ≤ y ≤ ni − 1, 1 ≤ z ≤ nj − 1, there is a K-vector space isomorphism

ϕ = ϕ(ni,y),(nj ,z) : viLK(F )vj → vyi LK(G)vzj .

For r ∈ LK(F ) we define

ϕ(ni,y),(nj ,z)(virvj) = pyi virvj(p
z
j )

∗.

Since LK(F ) is a K-subalgebra of LK(G), we easily see that ϕ is K-linear. Fur-

ther, ϕ is a monomorphism: if pyi virvj(p
z
j )

∗ = 0 then multiplying on the left

by (pyi )
∗ and on the right by pzj yields virvj = 0. To show ϕ is surjective: for

vyi sv
z
j ∈ vyi LK(G)vzj with s ∈ LK(G), define s′ = (pyi )

∗vyi sv
z
j p

z
j ∈ viLK(G)vj . But

using the fact that there are no paths in G from elements of T to any of the

newly added vertices which yield G, we have as above that s′ may be viewed as

an element of LK(F ). Then, using the previous observation that pyi (p
y
i )

∗ = vyi
in LK(G), we conclude that ϕ(s′) = pyi (p

y
i )

∗vyi sv
z
j p

z
j(p

z
j )

∗ = vyi sv
z
j , and thus ϕ is

surjective.

We now define Θ to be the K-space isomorphism between the two matrix

rings induced by applying each of the ϕ(mi,y),(mj ,z) componentwise. We need only

show that these componentwise isomorphisms respect the corresponding matrix

multiplications. To do so, it suffices to show that the maps behave correctly in

each component. That is, we need only show, for each nℓ (1 ≤ ℓ ≤ u) and each

x (1 ≤ x < nℓ), that

ϕ(mi,y),(mℓ,x)(virvℓ) · ϕ(mℓ,x),(mj ,z)(vℓr
′vj) = ϕ(mi,y),(mj ,z)(virvℓr

′vj).

But this is immediate, as (pxℓ )
∗pxℓ = vℓ for each vℓ ∈ T and 1 ≤ x < nℓ. Thus,

we obtain that EndLK(F )(Φ(Q)) ∼= EndLK(G)(P ), and hence EndLK(E)(Q) ∼=
EndLK(G)(P ) = EndLK(G)(

⊕

v∈H LK(G)v) ∼= (
∑

v∈H v)LK(G)(
∑

v∈H v) as K-

algebras. Moreover, by Theorem 2.10 (3), we have that

(
∑

v∈H

v)LK(G)(
∑

v∈H

v) ∼= AK(GG|H)

as K-algebras, so EndLK(E)(Q) ∼= AK(GG|H), finishing the proof. �
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We note that some of the techniques utilized in the proof of Theorem 3.6 were

also used in establishing [7, Theorem 3.8].

The following example will help illuminate the ideas of Theorem 3.6.

Example 3.7. Let E be the graph

E = •v

e

�� (∞)
// •w

(∞)
// •u

where there are infinitely many edges {fi | i ∈ Z
+} from v to w. Consider as

just one example the nonzero finitely generated projective left R-module Q =

LK(E)(v − ee∗)⊕ LK(E)(v − f1f
∗
1 ). Then, by Lemma 3.1, we have

Q ∼= 2LK(E)(v − ee∗ − f1f
∗
1 )⊕ LK(E)v ⊕ LK(E)w.

Let Tv = {e, f1} ⊂ s−1(v) and let F be the graph obtained from E by out-

splitting the vertex v into the vertices v1, v2 according to the partition E1 :=

Tv, E2 := s−1(v) \ Tv, pictured here:

F = •v1

e1

��

e2
��

f1
// •w

(∞)
// •u

•v2
(∞)

==
④
④
④
④
④
④
④
④

.

By Corollary 3.4, there exists an isomorphism of categories Φ : LK(E)−Mod −→

LK(F )−Mod such that Φ(LK(E)v) = LK(F )v1⊕LK(F )v2, Φ(LK(E)w) = LK(F )w

and Φ(LK(E)(v − ee∗ − f1f
∗
1 )) = LK(F )v2, and hence

Φ(Q) ∼= 2LK(F )v2⊕(LK(F )v1⊕LK(F )v2)⊕LK(F )w ∼= LK(F )v1⊕3LK(F )v2⊕LK(F )w.

This decomposition dictates that we construct the graph G, graphically:

G = •v1

e1

��

e2

��

f1
// •w

(∞)
// •u

•v
2

2 // •v
1

2 // •v2
(∞)

==
⑤
⑤
⑤
⑤
⑤
⑤
⑤
⑤

.

Consider the finitely generated projective left LK(G)-module

P := LK(G)v1 ⊕ LK(G)v22 ⊕ LK(G)v12 ⊕ LK(G)v2 ⊕ LK(G)w.

By Theorem 3.6, we have EndLK(F )(Φ(Q)) ∼= EndLK(G)(P ). For notational sim-
plification, let R and S denote LK(F ) and LK(G), respectively. Then the explicit
description of these two algebras as matrix rings as described in the proof of The-
orem 3.6 is:
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













v1Rv1 v1Rv2 v1Rv2 v1Rv2 v1Rw

v2Rv1 v2Rv2 v2Rv2 v2Rv2 v2Rw

v2Rv1 v2Rv2 v2Rv2 v2Rv2 v2Rw

v2Rv1 v2Rv2 v2Rv2 v2Rv2 v2Rw

wRv1 wRv2 wRv2 wRv2 wRw















∼=















v1Sv1 v1Sv
2

2 v1Sv
1

2 v1Sv2 v1Sw

v
2

2Sv1 v
2

2Sv
2

2 v
2

2Sv
1

2 v
2

2Sv2 v
2

2Sw

v
1

2Sv1 v
1

2Sv
2

2 v
1

2Sv
1

2 v
1

2Sv2 v
1

2Sw

v2Sv1 v2Sv
2

2 v2Sv
1

2 v2Sv2 v2Sw

wSv1 wSv
2

2 wSv
2

2 wSv2 wSw















.

Thus we get that

EndLK(E)(Q) ∼= EndLK(G)(P ) ∼= (
∑

v∈H

v)LK(G)(
∑

v∈H

v) ∼= AK(GG|H),

where H = {v1, v
2
2 , v

1
2 , v2, w} ⊂ G0.

Corollary 3.8. Let K be any field, E an arbitrary graph, and ε a nonzero idempo-

tent in LK(E). Then the corner εLK(E)ε of LK(E) is isomorphic to a Steinberg

algebra.

Proof. The statement follows from Theorem 3.6, as LK(E)ε is a nonzero finitely

generated projective left LK(E)-module, and EndLK(E)(LK(E)ε) ∼= εLK(E)ε.

�

Let R be a ring with local units. Recall ([11, Definition 3]) that a module

P ∈ R−Mod is said to be locally projective if there is a direct system (Pi)i∈I of

finitely generated projective direct summands of P (so that I is a directed set,

and Pi is a direct summand of Pj whenever i ≤ j) such that lim−→I
Pi = P .

Write ψi : P −→ Pi for the projection. For a locally projective module P ∈

R−Mod, the endomorphisms of each Pi extend to endomorphisms of P when

composed by ψi, and in this way the endomorphism rings of the components Pi

form a direct system of subrings of EndR(P ). Their limit lim
−→I

EndR(Pi) consists

exactly of those endomorphisms of P which factor through one of the projections

ψi. The ring lim−→I
EndR(Pi) has local units because if the endomorphism ϕ ∈

lim−→I
EndR(Pi) factors through ψi, then the projection ψi is a unit for ϕ.

For rings with local units R and S, we call R and S Morita equivalent in case

the categories R-Mod and S-Mod are equivalent. In [11, Theorem 2.5] Ánh and

Márki proved that two rings R and S with local units are Morita equivalent if and

only if there exists a locally projective generator P for R−Mod such that, using

the notation above, S ∼= lim
−→I

EndR(Pi). Applying this result, Corollary 2.12

and Theorem 3.6, we close this section with the following result and subsequent

example.

Theorem 3.9. Let K be any field and let A be a K-algebra with local units which

is Morita equivalent to the Leavitt path algebra of a row-countable graph. Then

A is isomorphic to a Steinberg algebra.

Proof. Let A be a K-algebra with local units which is Morita equivalent to the

Leavitt path algebra LK(F ) of a row-countable graph F . Let E be the Drinen-

Tomforde desingularization of F (see, e.g. [21] or [5, p. 434]). Since the Drinen-

Tomforde desingularization of a row-countable graph is always row-finite, E is
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a row-finite graph. By [5, Theorem 5.2] (or [8, Theorem 14]), the Leavitt path

algebras LK(E) and LK(F ) are Morita equivalent, whence A is Morita equivalent

to LK(E). Then, by [11, Theorem 2.5], there exists a locally projective generator

P for LK(E)−Mod such that, using the notation above, A ∼= lim−→I
EndLK(E)(Pi)

as K-algebras.

For each i ∈ I, by Lemma 3.1, we have that Pi
∼=

⊕

v∈Vi
nivLK(E)v for some

finite subset Vi of E
0 and some positive integers (niv)v∈Vi

. We note that for all

j ≥ i in I, we have that Pi is a direct summand of Pj , whence we obtain a direct

sum decomposition of Pj as follows: Pj
∼=

⊕

v∈Vj
njvLK(E)v for some finite subset

Vj of E0 and some positive integers (njv)v∈Vj
satisfying Vi ⊆ Vj and niv ≤ njv for

all v ∈ Vi.

Let Gi be the graph formed from E by taking each v ∈ Vi and attaching a

“head” of length niv − 1 of the form

•v
ni
v−1 e

ni
v−1

v // · · · •v
2 e2v // •v

1 e1v // •v

to E. Put

Ti := Vi ∪ {vj | v ∈ Vi, 1 ≤ j ≤ niv − 1} ⊆ G0
i .

As was shown in the proof of Theorem 3.6, we have that

EndLK(E)(Pi) ∼= (
∑

v∈Ti

v)LK(Gi)(
∑

v∈Ti

v)

as K-algebras.

By the above note and the construction of graphs Gi (i ∈ I), we have that Gi

is a CK-subgraph of Gj and Ti ⊆ Tj whenever i ≤ j; that means, we have that

(Gi)i∈I is a direct system in CKGr and the set {Ti ⊆ G0
i | i ∈ I} satisfies the

condition as in Corollary 2.12. Let G be the direct limit for the system (Gi)i∈I
in CKGr with canonical morphisms ηi : Gi −→ G, and T =

⋃

i∈I η
0
i (Ti) ⊆ G0.

By Corollary 2.12, we get that

A ∼= lim
−→I

EndLK(E)(Pi) ∼= lim
−→I

(
∑

v∈Ti
v)LK(Gi)(

∑

v∈Ti
v) ∼= AK(GG|T )

as K-algebras, thus showing that A is isomorphic to a Steinberg algebra, finishing

the proof. �

Example 3.10. We note that the row-countable graph C of Example 2.11 pro-

vides an example of a K-algebra which is Morita equivalent to the Leavitt path

algebra of a row-countable graph, but is not isomorphic to a Leavitt path alge-

bra. Specifically, because wn = e∗nven for each n ∈ N, we see that each vertex

of C lies in the ideal LK(C)vLK(C) of LK(C), whence v is a full idempotent in

LK(C). Thus [11, Theorem 2.5] applies, and we conclude that vLK(C)v is Morita

equivalent to LK(C). But, as shown in Example 2.11, the algebra vLK(C)v is

not isomorphic to a Leavitt path algebra.
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4. Corners of graph C∗-algebras

Arklint and Ruiz [15], and Arklint, Gabe and Ruiz [14] have established (among

many other things) that for a countable graph E having finitely many vertices,

any corner pC∗(E)p of the graph C∗-algebra C∗(E) by a projection p is isomorphic

to a graph C∗-algebra. The goal of this section is to show that for a countable

graph E, any corner pC∗(E)p of the graph C∗-algebra C∗(E) by a projection p

is isomorphic to a C∗-algebra of an ample groupoid (Theorem 4.6).

Following [25, Theorem 1.2], if E is a countable graph, then the graph C∗-

algebra C∗(E) is the universal C∗-algebra generated by mutually orthogonal pro-

jections {pv | v ∈ E0} and partial isometries with mutually orthogonal ranges

{se | e ∈ E1} satisfying

(1) s∗ese = pr(e) for all e ∈ E1,

(2) pv =
∑

e∈s−1(v) ses
∗
e for any regular vertex v,

(3) ses
∗
e ≤ ps(e) for all e ∈ E1.

If µ = e1 · · · en ∈ E∗ and n ≥ 2, then we let sµ := se1 · · · sen . Likewise, we let

sv := pv if v ∈ E0. It follows from [25, Lemma 1.1] that

C∗(E) = Span{sµs
∗
ν | µ, ν ∈ E∗, r(µ) = r(ν)}.

Take the projection p =
∑

v∈H pv where H is a finite subset of E0. It is crucial

for us to observe that

psµs
∗
ν =

{

sµs
∗
ν if s(µ) ∈ H

0 otherwise

so that

pC∗(E)p = Span{sµs
∗
ν | µ, ν ∈ E∗, s(µ), s(ν) ∈ H, r(µ) = r(ν)}.

We recall for reader’s convenience that a map between C∗-algebras is a C∗-

algebra isomorphism if and only if it is an isomorphism of ∗-algebras (see, for

example, [27, Theorem 2.1.7]). Accordingly, throughout this section the symbol
∼= will mean “isomorphism as C∗-algebras”.

In [24], Kumjian, Pask, Raeburn, and Renault defined the groupoid C∗-algebra

C∗(GE) associated to a row-finite graph with no sources E. In [18], Brown-

lowe, Carlsen and Whittaker explained this construction in the case when E

is a countable graph. Also, in [18, Proposition 2.2], Brownlowe, Carlsen and

Whittaker showed that if E is a countable graph, then there is a unique iso-

morphism π : C∗(E) −→ C∗(GE) such that π(pv) = 1Z(v,v) for all v ∈ E0 and

π(se) = 1Z(e,r(e)) for all e ∈ E1.

Proposition 4.1. Let E be a countable graph, H a nonempty finite subset of E0,

and p =
∑

v∈H pv ∈ C∗(E). Then pC∗(E)p ∼= C∗(GE |H).

Proof. We note firstly that

pC∗(E)p = Span{sµs
∗
ν | µ, ν ∈ E∗, s(µ), s(ν) ∈ H, r(µ) = r(ν)}.
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By Theorem 2.10, the sets Z(µ, ν, F ), where µ, ν ∈ E∗ with s(µ), s(ν) ∈ H,

r(µ) = r(ν), and a finite subset F ⊆ s−1(r(µ)), constitute a base of compact

open bisections for the topology of GE |H , and by [19, Proposition 4.2] the span

of the characteristic functions of those sets is dense in C∗(GE |H). From this and

by the above isomorphism π : C∗(E) −→ C∗(GE), we immediately obtain that

pC∗(E)p ∼= C∗(GE |H), thus finishing the proof. �

For a C∗-algebra A, letM∞(A) be the directed union ofMn(A) (n ∈ N), where

the transition maps Mn(A) −→ Mn+1(A) are given by x 7−→

(

x 0

0 0

)

. We

define V (A) to be the set of Murray-von Neumann equivalence classes (denoted

[P ]) of projections inM∞(A); see [17, 4.6.2 and 4.6.4]. If P and Q are projections

in M∞(A), we will use the symbol P ∼ Q to indicate that they are (Murray-von

Neumann) equivalent, that is, there is a partial isometry W ∈M∞(A) such that

W ∗W = P and WW ∗ = Q. We will write P ⊕ Q for the block-diagonal matrix

diag(P,Q), and we will denote by n ·P the direct sum of n copies of P . We endow

V (A) with the structure of a commutative monoid by imposing the operation

[P ] + [Q] = [P ⊕Q]

for all projections P and Q ∈M∞(A).

In [34, Theorem 7.3], Tomforde showed that if E is a countable graph, then

there exists an injective algebra ∗-homomorphism ιE : LC(E) −→ C∗(E) with

ιE(v) = pv and ιE(e) = se for all v ∈ E0 and e ∈ E1. Hay et. al [23] proved the

following interesting result.

Theorem 4.2 ([23, Corollary 3.5]). For any countable graph E, the natural injec-

tion ιE : LC(E) −→ C∗(E) induces a monoid isomorphism V (ιE) : V (LC(E)) −→

V (C∗(E)).

Using Theorem 4.2 and Lemma 3.1, we obtain the following useful corollary.

Corollary 4.3. For any countable graph E, every nonzero projection p ∈ C∗(E)

may be written in the form

p ∼ (
⊕

v∈V

nv(pv −
∑

e∈Tv

ses
∗
e))⊕ (

⊕

w∈W

nwpw) in M∞(C∗(E)),

where V and W are finite subsets of E0, each v ∈ V is an infinite emitter, each

Tv is a nonempty finite subset of s−1(v), and the numbers nv, nw are positive

integers.

We proceed with the next fact.

Lemma 4.4. Let E be a countable graph, v an infinite emitter and Tv a nonempty

finite subset of s−1(v). Put E1 = Tv and E2 = s−1(v) \ Tv. Let F be the graph

obtained by out-splitting the vertex v into the vertices v1, v2 according to the

partition E1, E2. Then there exists a C∗-algebra isomorphism Φv : C∗(E) −→

C∗(F ) with the following properties:
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(1) Φv(pv) = pv1 + pv2 and Φv(pw) = pw for all w ∈ E0 \ {v},

(2) For all w ∈ E0 \ {v} and all finite subsets W ⊆ s−1(w) with v /∈ rE(W ),

Φv(pw −
∑

e∈W

ses
∗
e) = pw −

∑

e∈W

ses
∗
e,

(3) For all w ∈ E0 \ {v} and any finite subset W ⊆ s−1(w) with v ∈ rE(W ),

there exists a finite subset W ′ ⊆ s−1
F (w) such that

Φv(pw −
∑

e∈W

ses
∗
e) = pw −

∑

e∈W ′

ses
∗
e,

(4) Φv(pv −
∑

e∈Tv
ses

∗
e) = pv2 .

Proof. By [16, Theorem 3.2], the map Φv : C∗(E) −→ C∗(F ), defined by

Φv(pu) =

{

pv1 + pv2 if u = v,

pu otherwise ,

and

Φv(se) =

{

se1 + se2 if e ∈ r−1(v)

se otherwise ,

extends to a C∗-algebra isomorphism. Then, similarly as in the proof of Corollary

3.4, we get immediately that Φv satisfies the properties as in the statement,

finishing the proof. �

Using Corollary 4.3 and Lemma 4.4 we obtain the following result which plays

an important role in the proof of the main theorem below.

Proposition 4.5. Let E be a countable graph and p a nonzero projection in

C∗(E). Then there exists a graph F with the following properties:

(1) F is obtained from E in some step-by-step process of out-splittings.

(2) There exists a C∗-algebra isomorphism Φ : C∗(E) −→ C∗(F ) such that

Φ(p) ∼
⊕

v∈H nvpv in M∞(C∗(F )) for some finite subset H ⊆ F 0 and

some positive integers {nv}v∈H .

Proof. By Corollary 4.3, we have that

p ∼ (
⊕

v∈V

nv(pv −
∑

e∈Tv

ses
∗
e))⊕ (

⊕

w∈W

nwpw) in M∞(C∗(E)),

where V and W are some finite subsets of E0, each v ∈ V is an infinite emitter,

each Tv is some nonempty finite subset of s−1(v), and nv,mw are some positive

integers. Write V = {v1, v2, . . . , vn}. Let E1 be the graph obtained from E by

out-splitting the vertex v1 into the vertices v11 , v
2
1 according to the partition E1 =

Tv1 , E2 = s−1(v1) \ Tv1 . By Lemma 4.4, there exists a C∗-algebra isomorphism

Φv1 : C∗(E) −→ C∗(E1) with the following properties:

(i) Φv1(pv1) = pv1
1

+ pv2
1

and Φv(pw) = pw for all w ∈ E0 \ {v1},
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(ii) for all w ∈ E0 \ {v1} and all finite subsets W ⊆ s−1(w) with v1 /∈ rE(W ),

Φv1(pw −
∑

e∈W

ses
∗
e) = pw −

∑

e∈W

ses
∗
e,

(iii) for all w ∈ E0 \ {v1} and all finite subsets W ⊆ s−1(w) with v ∈ rE(W ),

there exists a finite subset W ′ ⊆ s−1
E1

(w) such that

Φv1(pw −
∑

e∈W

ses
∗
e) = pw −

∑

e∈W ′

ses
∗
e, and

(iv) Φv1(pv1 −
∑

e∈Tv1
ses

∗
e) = pv2

1

.

We then have that

Φv1(p) ∼ (

n
⊕

i=2

nvi(pvi −
∑

e∈T ′
vi

ses
∗
e))⊕ nv1pv2

1

⊕ (
⊕

w∈W ′′

m′′
wpw)

inM∞(C∗(E1)), where T
′
vi
is some nonempty finite subset of s−1

E1
(vi), andW

′′,m′′
w

are defined by setting

W ′′ =W if v1 /∈W

(in this case we have that m′′
w = mw for all w ∈W ), and

W ′′ = {v11 , v
2
1} ∪W \ {v1} otherwise

(in this case we have that m′′
w = mw for all w ∈W \ {v1} and m′′

vi
1

= mv1).

Let W ′ := W ′′ ∪{v21}, m
′
w := m′′

w for all w ∈W ′ \ {v21}, and m
′
v2
1

:= nv1 +m′′
vi
1

.

We then get that

Φv1(p) ∼ (
n

⊕

i=2

nvi(pvi −
∑

e∈T ′
vi

ses
∗
e))⊕ (

⊕

w∈W ′

m′
wpw)

in M∞(C∗(E1)).

We repeat the process described above, starting with the graph E2 which is

obtained from E1 by out-splitting v2 into v12 and v22 with respect to E1 = T ′
v2
,

E2 = s−1
E1

(v2) \ T
′
v2
. We see that after n steps we arrive at the graph F of

the statement and a C∗-algebra isomorphism Φ : C∗(E) −→ C∗(F ) such that

Φ(p) ∼
⊕

v∈H nvpv in M∞(C∗(F )) for some finite subset H ⊆ F 0 and some

positive integers {nv}v∈H , finishing the proof. �

We are now in position to achieve the main result of this section. Before doing

so, we need to recall the concept of the stabilization of a graph; see [9, Definition

9.4]. Given a graph E, let SE be the graph formed from E by taking each v ∈ E0

and attaching an infinite “head” of the form

· · ·
e4v // •v

3 e3v // •v
2 e2v // •v

1 e1v // •v

to E. We call SE the stabilization of E.
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Theorem 4.6. Let E be a countable graph and p a nonzero projection in C∗(E).

There exists a countable graph F with the following properties:

(1) F is obtained from E in some step-by-step process of out-splittings.

(2) pC∗(E)p ∼= C∗(GSF |H) for some finite subset H ⊆ (SF )0.

Proof. By Proposition 4.5, there exists a graph F which is obtained from E

in some step-by-step process of out-splittings, and a C∗-algebra isomorphism

Φ : C∗(E) −→ C∗(F ) such that q := Φ(p) ∼
⊕

v∈T nvpv in M∞(C∗(F )) for some

finite subset T ⊆ F 0 and some positive integers {nv}v∈T .

Let K be the compact operators on a separable infinite-dimensional Hilbert

space H. By [9, Proposition 9.8] and its proof, we have that C∗(F ) ⊗ K =

M∞(C∗(F )), and there exists a C∗-algebra isomorphism ϕ : C∗(F ) ⊗ K −→

C∗(SF ) such that ϕ(pv ⊗ E11) = pv and ϕ(pv ⊗ E(k+1)(k+1)) = pvk for all

v ∈ F 0 and k ≥ 1. Write T = {v1, v2, . . . , vu} and let ni := nvi for all

vi ∈ T . Let H := T ∪ {vki | 1 ≤ i ≤ u, 1 ≤ k ≤ ni − 1} ⊆ (SF )0. We

then have ϕ(q) is Murray-von Neumman equivalent to
∑

v∈H pv in C∗(SF ),

and hence ϕ(q)C∗(SF )ϕ(q) ∼= (
∑

v∈H pv)C
∗(SF )(

∑

v∈H pv). By Proposition 4.1,

(
∑

v∈H pv)C
∗(SF )(

∑

v∈H pv) ∼= C∗(GSF |H), so ϕ(q)C∗(SF )ϕ(q) ∼= C∗(GSF |H).

On the other hand, we note that

pC∗(E)p ∼= qC∗(F )q ∼= q(C∗(F )⊗K)q ∼= ϕ(q)C∗(SF )ϕ(q),

so pC∗(E)p ∼= C∗(GSF |H), thus finishing the proof. �
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