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H-PROPERTY, NORMAL STRUCTURE AND

FIXED POINTS OF NONEXPANSIVE MAPPINGS

IN METRIC LINEAR SPACES

WU JUNDE AND T. D. NARANG

Let E be a vector space over the scalar field R and d an invariant linear
metric on E. The metric space (E, d) is said to be strictly convex [1] if
whenever r > 0, x, y ∈ E, x 6= y, d(x, 0) ≤ r and d(y, 0) ≤ r, then

d
(x + y

2
, 0

)

< r.

The metric linear space (E, d) is said to satisfy:
U.C. I: If given r > 0 and ε > 0 there exists δ > 0 such that d(x, 0) <

r + δ, d(y, 0) < r + δ and d(x, y) ≥ ε imply

d
(x + y

2
, 0

)

< r.

U.C. II: If given r > 0 and ε > 0 there exists δ > 0 such that d(x, 0) ≤ r,
d(y, 0) ≤ r and d(x, y) ≥ ε imply

d
(x + y

2
, 0

)

≤ r − δ.

U.C. III: If given r > 0 and ε > 0 there exists δ > 0 such that d(x, 0) =
r, d(y, 0) = r and d(x, y) ≥ 0 imply

d
(x + y

2
, 0

)

≤ r − δ.

Ahuja, Narang and Trehan [1] introduced the notions of strict convexity
and U.C. I (uniform convexity) in metric linear spaces which are general-
izations of the corresponding concepts in normed linear spaces. Sastry
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and Naidu [2] introduced the notions of U.C. II and U.C. III in metric
linear spaces and showed that the three forms of uniform convexity in
metric linear spaces are not always equivalent. Wu Junde and others [3], [4]
showed that if (E, d) is a complete U.C. I (U.C. II or U.C. III) metric linear
space, then (E, d) is reflexive. Thus each bounded closed convex subset
of (E, d) is weakly compact and weakly sequentially compact [5, p. 318].
In this paper we will consider the H-property, normal structure and fixed
points of nonexpansive mappings in metric linear spaces. We show that
U.C. I (U.C. II or U.C. III) metric linear space has the H-property, U.C. II
metric linear space has the normal structure and if K is a nonempty
bounded closed convex subset of a complete U.C. II metric linear space,
then each nonexpansive mapping T : K → K has a fixed point.

The following lemmas will be used in the sequel:

Lemma 1 [2]. Let (E, d) be a strictly convex metric linear space. Then
for each ε > 0,

{

x ∈ E
∣

∣d(x, 0) ≤ ε
}

is an absolutely convex absorbing
neighbourhood of 0 in (E, d).

Lemma 2 [2]. Let (E, d) be a U.C. I (U.C. II or U.C. III) metric linear
space, then (E, d) is strictly convex.

Lemma 3 ]3], [4]. Let (E, d) be a strictly convex metric linear space.
If

{

x ∈ E
∣

∣d(x, 0) ≤ r
}

6= E, then the Minkowski gauge Pr of
{

x ∈

E
∣

∣d(x, 0) ≤ r
}

is a strictly convex norm and Pr(x) = 1 if and only if
d(x, 0) = r.

The metric linear space (E, d) is said to have the H-property if for each
r > 0, whenever d(xn, 0) = r, d(x0, 0) = r, (n = 1, 2, . . . ), and xn → x0

(weakly), we must have xn → x0 (strongly).
A point x0 of a bounded closed convex subset K of (E, d) is said to be

diametral whenever

diamK = sup
{

d(x, y)
∣

∣x, y ∈ K
}

= sup
{

d(x0, y)
∣

∣y ∈ K
}

.

A bounded closed convex subset K of (E, d) is said to have the normal
structure whenever given any bounded closed convex subset C of K con-
taining more than one point, there exists a non-diametral point x ∈ C. If
each bounded closed convex subset K of (E, d) has the normal structure,
then (E, d) is said to have the normal structure.

Let C be a subset of (E, d). A mapping T : C → E is said to be
nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C.

The following result deals with the H-property in metric spaces:
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Theorem 1. If (E, d) satisfies U.C. I or U.C. II or U.C. III, then (E, d)
has the H-property.

Proof. At first, we prove Theorem 1 for the case when (E, d) satisfies
U.C. I. Let

{

xn

}

⊆ E, x0 ∈ E and d(xn, 0) = r (n = 1, 2, . . . ), d(x0, 0) = r
and xn → x0 (weakly). If xn → x0 (strongly) does not hold, then there
exists ε0 > 0 and a subsequence

{

xnk

}

of
{

xn

}

such that d(xnk
, x0) ≥ ε0.

Without loss of generality we may assume that for each n ∈ N , d(xn, 0) ≥
ε0. Since (E, d) satisfies U.C. I, there exists δ > 0 such that whenever

d(x, 0) < r + δ, d(y, 0) < r + δ and d(x, y) ≥ ε0 we have d
(x + y

2
, 0

)

< r.

Let V =
{

x
∣

∣d(x, 0) ≤ δ/2
}

. Then for each y ∈ V we have

d(xn + y, 0) ≤ r + δ/2,

d(x0 + y, 0) ≤ r + δ/2,

d(xn + y, x0 + y) ≥ ε0.

Thus, from the uniform convexity of (E, d), it follows that

d
(xn + x0

2
+ y, 0

)

< r.

Therefore
xn + x0

2
+ V ⊆

{

x
∣

∣d(x, 0) ≤ r
}

.

It is obvious that
{

x
∣

∣d(x, 0) ≤ r
}

6= E. Let Pr be the Minkowski gauge of
{

x
∣

∣d(x, 0) ≤ r
}

. From Lemma 3 we know that (E, Pr) is a normed space
and Pr(x0) = 1. By the Hahn-Banach theorem there exists f ∈ (E, Pr)

′

such that
∥

∥f
∥

∥

Pr

= 1 and f(x0) = Pr(x0) = 1. Then f ∈ (E, d)′. Since

xn → x0 (weakly), we have

lim
n→∞

f(xn + x0) = f(x0 + x0) = 2.

Note that
{

x
∣

∣d(x, 0) ≤ δ/2
}

is an absorbing balanced subset of E. There

exists y0 ∈
{

x
∣

∣d(x, 0) ≤ δ/2
}

such that f(y0) = t0 > 0. Since d
(xn + x0

2
+

y0, 0
)

≤ r,

Pr

(xn + x0

2
+ y0

)

≤ 1.
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Thus we have

∣

∣

∣
f
(xn + x0

2
+ y0

)
∣

∣

∣
≤

∥

∥f
∥

∥

Pr

· Pr

(xn + x0

2
+ y0

)

≤ 1.

Letting n → ∞ it follows that f(x0 + y0) = 1 + t0 ≤ 1. This contradicts
t0 > 0.

The U.C. II or U.C. III case can be proved by the same method.

The next two result deal with the normal structure in metric linear
spaces.

Theorem 2. Let (E, d) be a strictly convex metric linear space. Then
each compact convex subset of (E, d) has the normal structure.

Proof. If K is a compact convex subset of (E, d) and K does not have non-
diametral points (diamK > 0), then for any x1 ∈ K there exists x2 ∈ K

such that d(x1, x2) = diamK. Since K is a convex subset,
x1 + x2

2
∈ K.

Thus, there exists x3 ∈ K such that d
(x1 + x2

2
, x3

)

= diamK. In this

way we get a sequence {xn} ⊆ K such that

d
(x1 + x2 + · · ·+ xn

n
, xn−1

)

= diamK.

Let r = diam K and Pr be the Minkowski gauge of
{

x
∣

∣d(x, 0) ≤ r
}

. It is

obvious that
{

x|d(x, 0) ≤ r
}

6= E. From Lemma 3 we have Pr(x) = 1 if
and only if d(x, 0) = r. Since

d
(x1 + x2 + · · · + xn

n
− xn+1, 0

)

= diamK = r,

we get

Pr

(

xn+1 −
x1 + · · · + xn

n

)

= 1.

Note that for any xm and xk, d(xm, xk) ≤ diam K = r. Then we have
Pr(xm − xk) ≤ 1. From

Pr

(xn+1 − x1 + xn+1 − x2 + · · ·+ xn+1 − xn

n

)

= 1

≤
1

n

n
∑

i=1

Pr(xn+1 − xi) ≤ 1
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it follows that Pr(xn+1 − xk) = 1 for k = 1, 2, . . . , n. So d(xn+1, xk) = r.
This shows that the sequence {xn} has no Cauchy subsequences, i.e., K
is not compact.

Theorem 3. If (E, d) satisfies U.C. II, then each bounded closed convex
subset of (E, d) has the normal structure.

Proof. Let K be a bounded closed convex subset of (E, d) and diam K =
r > 0. Take x1, x2 ∈ K satisfying d(x1, x2) ≥ r/2. Then for each y ∈ K,
d(x1, y) ≤ r, d(x2, y) ≤ r. Since (E, d) satisfies U.C. II, there exists δ > 0
such that for each y ∈ K,

d
(x1 + x2

2
− y, 0

)

≤ r − δ.

This show that

sup
{

d
(x1 + x2

2
, y

)
∣

∣

∣
y ∈ K

}

≤ r − δ < r.

So
x1 + x2

2
is a non-diametral point.

We do not know whether U.C. I or U.C. III metric linear spaces also
have the normal structure.

Finally we consider fixed points of nonexpancive mappings in metric
linear spaces.

Theorem 4. Let (E, d) be a complete U.C. II metric linear space and K
a bounded closed convex subset of (E, d). If T : K → K is a nonexpansive
mapping, then T has a fixed point.

Proof. From [4, Th. 2] and Theorem 3 it follows that K is a weakly compact
subset of (E, d) and has the normal structure. Now proceeding as in
Theorem 3 of [6, p. 39], we can get the result.
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